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1. Summary. Let F(x) be the continuous distribution
function of a random variable X and F (x) be the empirical
n
distribution function determined by a random sample Xi' o, X
n
taken on X. Using the method of Birnbaum and Tingey [1]
we are going to derive the exact distributions of the random

variables
sup (F(x)-Fn(x)), sup (Fn(x)-F(x)), sup (F(x)-F (x))
F(x) <b a < F(x) F (x) <b "
and sup (F (x)-F(x)), where 0<a<1, 0<b<1 and
a < Fn(x)

where the indicated sup's are taken over all x's such that
-oo<x<xb and x < x<+ o with F(Xb)=b, F(x ) =a in the
a— a

first two cases and over all x's so that F (x) <b and
n ol =
a < F (%) in the last two cases. We are also going to discuss
— n

briefly the asymptotic behaviour of these random variables
and the consistency of the relevant statistical tests.

2. Introduction. Let Y = F(x). Then Y is a uniformly
distributed random variable on (0,1) and we have Yi' e, Y
n

as a random sample on Y resulting from this transformation.
Let Y <...<Y be the corresponding order statistics

(1) (n)

which determines the empirical distribution function
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0 for Y<Y
(1)

k
2.1 Y) =¢( = { Y, <Y<
( ) Gn( ) s n or (k)—Y Y(k+1)
1 for Y <Y
(n) =
We are going to need the following result of Birnbaum and
Tingey:
(2.2) P{ sup (F(x) - F (x))<e} =P{ sup (Y - G (Y))<e}
S < x < o " 0<Y<1 "
1-I 3 l(+
€ n n ° 1 1 1
I A A Y BT B
(L Y Y
(0) (1) (k) (k1) (n-2) " (n-1)
dy, dY ...dy dY ...dYy,_dy
(n) " (n-1) (k+2)  (k+1) (2) (1)
=1- =T T, () ,
j=o 7

where T. (g) = (;)(1—5 - )n—j (e-k%)j-1 €, k=[n(1-¢)] = greatest

j»n

~ :3|L_-.

integer contained in n(1-¢) and 0<e <1 .

3. Exact distributions of random variables of section 1.
Using the notation of sections 1 and 2 we are going to prove:

THEOREM 1.

(3.1) P{ sup (F(x)-F (x))<e} =P{ sup (Y-G (Y)) <¢e}
F(x) < b " 0<Y<b "

k
=1- Z T. (g) :Ni(s,b,n),
i=0

where k =[n(b-¢)] with 0 <e <b.
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COROLLARY 1.

(3.2) P{ sup (F (x)-F(x))<e} P{ sup (G (Y)-Y)<e}
a< F(x) a<yY<i n

N'i(e ,a,n) ,

where N'i(.) is obtained by putting b =1-a in Ni(.) of
Theorem 1.
The statement of Corollary 1 follows immediately from

Theorem 1 after putting b =1-a and replacing 1-F(x) by F(x)
and 1-F (x) by F (x) in it. We also note here that Corollaries
n n

2, 3 and 4 as stated below follow exactly the same way from
their respective preceding theorems.

THEOREM 2.

(3.3) P{ sup (F(x)-F (x))<e} P{ sup (Y-G (Y)) <e}
F (x)<b N 0<G (y)<b "

k
1 = Z T. (E) = N (E ,b,n) ’
n 2

j=o >
where k =min{[nb],[n(1-¢)]}, O0<e <1.
COROLLARY 2.
(3.4) P{ sup (F (x)-F(x))<e} = P{ sup (G (Y)-Y) <e)
a< Fn(x) n afGn(Y)<1

N'Z(e ,a,n) ,

~vhere N'z(.) is obtained by putting b =1-a in NZ(.) of
Theorem 2.
Proof of Theorem 4. It is clear that the distribution of

he random variable sup (F(x)-F (x)) is the same as that
n
F(x) <b
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of sup (Y-G (Y)), and saying that
Y<b

(3-5) sup (Y-G (Y))<e
Y <b i

is equivalent to saying: Y < G (Y)+ ¢ forall Y<b. From
n =
the definition of G (Y) it follows that Y < G (Y) + ¢ for all
n n

Y <b occurs if and only if the ordered random sample

(3.6) O<Y(“<Y(2)<...<Y(n)<1

falls into the region

. j-1 .
Y,. <Y, <=—+¢ for =4,2,...,k+1,
G-1 " "G " n .
(3.7)
Y,. <Y, <1 for j=k+2,...,n,
(G-1) () !
where Y(O) =0 and k is the greatest integer so that
k
(3. 8) ~+e <b,
n =

(that is k =[n(b-£)] with 0<e¢ <b).
The density function of (3. 6) is given by

(3.9) plY , Y, ) = nidY

...d
(1)’ (n) (1) Y (n)

and thus the probability that (3. 6) falls into the region (3.7) is
given by the last two lines of (2. 2) with k =[n(b-¢)] and
0<e <b. This completes the proof of Theorem 1.

The proof of Theorem 2 is exactly the same as that of
Theorem 1. To indicate its main lines we have there that
Y <G (Y)+e for all Y such that G (Y) <b occurs if and

n n —_—

only if (3. 6) falls into region (3. 7) where k is now defined as

k .
the greatest integer such that —+ ¢ <b + ¢ <1, thatis
n = =
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k = [nb]_<_ [n(1-¢)] with 0<e < 1. Thus k =min{[nb],[n(1-¢)]}.
From here we can proceed exactly the same way as we did above
when proving Theorem 1.

4. Limiting distributions. If we put ¢ = T in
n
theorems 1 - 2 of section 3 then the following statements hold:
THEOREM 3.
(4. 1) 1i N()\b) ¢ (X, Db)
. =, 0,Nn = s ’
mm 1'\n 1
n —>o
where

LT P a2’ P42
6,(\,b) = 1NZT | e dt-(e " /Nzm) [ e /2 4,

- 00 - 00
I A-2\(1-b
and o :m’ B :ng)——_) . We note here that when
2)\’2
b =1, thatis when a =f =400, then we have ¢1()\, 1) =1-e ,
the original theorem of Smirnov [4].
COROLLARY 3.
(4.2) lim N'(——)\- ) = o (N )
) 1'Nn 2 2 n T et gk
n-—-co
where
) 2 2 v 2
-t /2 -2\ -t /2
6,(\,a) = 1/NZm [ e 2 4t - (e INZm) [ e /2 4
-© -
d 6=, y=—22 gy =0, that is wh
an —m), Y—\/‘a(Tg) . en a = > at 1S when
2

-2\
5 =y =40, then ¢2()\,0) =1-e , the above quoted

Smirnov theorem again.
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THEOREM 4.

. .\ B
(4. 3) lim I\Z(\"-n ,b,n) = ¢1()\,b) ,

11 =00

where éi(\ ,b) is as it was defined in Theorem 3. Thus

Theorems 1 and 2 are equivalent in the limit.
COROLLARY 4.

4. 4) 11 I\"(——'\— = (\,a)
(4. im 2\,~n,a,n) = ¢2 ,a)

n—>oo

where (bz(\.,a) is as it was defined in Corollary 3. Thus

Corollaries 1 and 2 are equivalent in the limit.

Having got the explicit forms of Theorems 1 and 2, a
natural way to derive theorems 3 and 4 would be through
making use of Stirling's approximation for large factorials
and some change-of-variable techniques. In fact we would
have to prove only Theorem 3 this way, for we are going to
show that Theorem 3 implies Theorem 4. Thus we will have
to have an actuzal derivation for Theorem 3 only.

Theorem 3 itself could also be verified through manipu-
lations with generating functions and their limiting forms, the
Laplace transforms, the way Feller proved the Kolmogorov-
Smirnov theorems in [2].

None of these ways of proof is simple and they are
definitely not short. However, we can get Theorem 3 and its
corollary as immediate by-products of a theorem of Manija,
which we are going to quote here. Using the method of Feller's
paper [2], he proved the following theorem:

THEOREM (Manija [3]):

lim P{ sup (F(x) - F (x)) < ;“f—)\-} = ofa,b;\),
n-» o a < F(x)<b n n

where 0 <a <b< 1 and
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b «a -—G(ti.tz) W2 Y P —e(t1 5)
ola,p;x)=C [ [ e dtdi, - Ce "0 [ [oe de dt,
-00 -00 -00 ~0C

2 ,5(1 -b)
= = ’ R ) =
where C =1/27 N1-R b“_ G(t t ) 1/{1-R )[t +2Rt1t2+t2]

— 2
G(ti,tz) =1/(1-R )[t 2Rt1t2+t2] and a,B, 6,y are as defined

in Theorem 3 and Corollary 3.

If, in the above theorem, a =0 we immediately get
Theorem 3 and, when b =1, Corollary 3 is gained. We remark
here that we can actually equate a to zero and b to one in
Manija's theorem, for Feller's method of proof does not require
the restriction 0 <a <b <1 and is valid for a =0 or b=1.

It remains to show that Theorem 3 implies Theorem 4.
To do this, let us consider the event IY-G (Y) ]< 6, where
n =

6§ > 0 and is arbitrarily small. In case of Theorem 7 we have
that 0 < G (Y) <b and thus it follows that |Y-b| <& or

|Y- bl > 6. The second case can only result from Y-b < -9,
and this together with -6 < Y- G (Y) implies that G (Y) <Y +6 <b;

thus

(4. 5) sup (Y-G (Y)) < sup (Y-G (Y)) .
Y <b-8 i G_(Y)<b

A
I.et A be the event that sup (Y-G (Y)) < N and let
n
Gn(Y) <b

)
A' be the event that sup (Y-G (Y)) < = . Then, by (4.5),
n Nn
Y <b-96
AC A', and if we let B be the event ,Y-G (Y)] < &, then
= n =
ABC A'B. Thus
C C C
A = AB UABCB UA'BCB UA',

C
where B denotes the complementary event of B. Therefore

P(A) < P(BC) + P(A'), that is
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X
P{ sup (Y-G (Y))< —}
G (Y)<b n \n
s
(4. 0)
< P{|Y-G (Y)]| > 8} + P{ sup (Y-G (Y)) < ?)\_}'
n Y_<-b—6 n n

It can be similarly shown that

N
P{ sup (Y-G (Y))< —}
Y<bts Vi
(4.7) X
< P{!Y-Gn(Y)l >6} + P{ sup (Y-G (Y))<@}.

G (Y)<b
n =

We also have

(1. 8) Iim P{|Y - G (Y)] >8} =0

n-—+o n
and Theorem 3 states that
(4. 9) lim P{ s (Y G (Y)) < )\} (\,Db)
. 1 - T = 3 .
up n Nn ¢1

n-> o0 Y <b
It follows then from (4. 6), (4.7), (4. 8) and (4. 9) that

hN
lim sup N_(— ,b,n) < ¢, (X, b-08),
2'Nn -1

n-—>oo
(4.10) N

im inf N(7= ,b,n) > ¢, (X, b+d) .

n
n-—-oc

Since & can be chosen arbitrarily small, and an integral is a
continuous function of its upper limit, it follows that

. N _
lim hz(\fn,b,n) —¢1(>\,b) )

n-=>00

and this terminates the proof of Theorem 4.
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Theorems 1 - 4 and their corollaries provide statistical
tests or one-sided confidence contours for unknown continuous
distribution functions when we would want to work with truncated
theoretical or empirical distribution functions.

5. Consistency. Let us consider the null hypothesis
H :F(x) = F (x) which we would like to test against the alterna-
o o

tive HizF(x) = Fi(x), where F (x) is a given continuous
o

distribution function, F1(x) is continuous too and satisfies

the relation

(5.1) sup (F (%) - Fi(x)) =d>0,
F‘o(x)f b

and let x < x
o—

, where F (x, )=b, be a value of x such that
b o b

(5.2) F(x)-F (x) =4d.
o o 1" o

We are going to use the test-statistic of Theorem 1 to
test this statistical hypothesis. The critical region of this test
is defined by

(5. 3) P{ sup (F (x)-F (x)) >¢ } <a,
F (x)<b © n ma
o=
where ¢ is chosen as the smallest positive number such
n,a

that (5. 3) holds and can be found from Ni(e ,b,n) of Theorem 1.

To show consistency of this test against the class of
alternatives specified in (5.1), we take ¢ =\ /~n where
n,a o

H

N is such that
a

(5.4) lim P{ sup (F (x)-F (x)) <\ /Nn} =1- o,
o n a
n-»> oo FO(X)fb

and can be found from (4. 3). Thus we have
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(5.5) lim P{ sup (F (x)-F (x)) >x /n} = o,
o n - o

n—=-x F (x)<b
o -

and the test is called consistent if

(5.0) im P{ sup (F (x)-F (x))>x /Nn|F, (x)} = 1.
o n — a 1
11— F (x)<b

o2
Using relation (5.2) we have

P{ sup (F_(x)-F_(x) > xa/\f11[F1(x)}
F (x)<b

|V

P{F (x )-F (x )> X\ /~n|F, (%)}
o o n o — o 1

P{F (x )-F, (x )<d- \/~Nn}
n o 1" o —

and thus, taking limits on both sides of (5.7), we get (5. 6),
that is, consistency, as a straightforward consequence of the
weak convergence of the individual sample quantiles to the
corresponding true quantiles.

Consistency of a possible statistical test based on
Corollary 1 can be shown similarly. We have shown that in
the limit Theorem 2 and Corollary 2 with € = \/ Nn, are
equivalent to Theorem 1 and Corollary 1 respectively, and
so the statistical tests based on them are the same asymptoti-
cally zs the ones treated above.
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