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ON SURFACES OF ORDER THREE

BY
TIBOR BISZTRICZKY

A surface of order three F in the real projective three-space P> is met by
every line, not in F, in at most three points.

In the present paper, we determine the existence and examine the distribu-
tion of elliptic, parabolic and hyperbolic points; that is, the differentiable points
of F which do not lie on any line contained in F.

We define a topology of P? in the usual manner. We denote the planes, lines
and points of P? by the letters o, B8,...;L, M,...; and p, g, ... respectively.
For a collection of flats o, L, p, . . . ;{a, L, p, . . .) denotes the flat of P*> spanned
by them. For a set ., {(#() denotes the flat of P> spanned by the points of /.

1. A (plane) curve I is the union of a finite collection of sets C, (M) where
the C,’s are continuous maps from a line M ={m, m’, ...} into a plane a. Let
p € a. Then p is a simple [double] point of C, (M) if the equation p = C, (m) has
exactly one solution [exactly two solutions] m € M.

Let C=C,. The line T,, =1lim{(C(m), C(m')), as m' # m tends to m, is the
tangent of C at m. Let C be differentiable; that is, T,, exists and |T,, N C(M)| <
o for every me M. We introduce (cf. [1] 1.3.3 and [4]) the characteristic of C at
m and the multiplicity with which a line L < a meets C at m. Then C is of
order n if n is the supremum of the number of points of M, counting
multiplicities, mapped into collinear points by C.

If C is of order two [three], we denote C(M) by S'[F]. Every point of an S*
is simple, an Fj contains at most one double point and a simple point of Fj, is
an ordinary, inflection or cusp point; cf. [1] 1.4 and [2]. If C(M) is a line
[point], then C is considered to have order one [two].

I is of order k if k is the supremum of the number of points of I', counting
multiplicities on each C,, lying on any line not in I. If k = 1, then I is a straight
line. If k=2, then I' is an S* or an isolated point or a pair of distinct lines. If
k =3, then I is (i) an F} plus possibly an S* or an isolated point either disjoint
from Fj or (ii) the union of a line and a I’ of order two. We denote a I' of
order three satisfying (i) by F'.

2. A surface of order three F in P> is a compact and connected set such that
every intersection of F with a plane is a curve of order =3 and some plane
intersection is an F'.

Let F be a surface of order three; pe F. Let a denote a plane through p.
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Then p is regular in Fla N F] if there is a line N in P*[«a] such that p e N and
NN F|=3; otherwise, p is irregular in Fla NF]. If « NF is an F', then there
is at most one irregular point v in @ N F and such a v is a cusp, double point or
isolated point. Finally,

I(pa)={Lca|peLcFY=l(a)=f{Lca|LcF}=<3.

A line T is a tangent of F at p if T is the tangent of some C, at
m;p=C,(m)c C,(M)c F. Let 7(p) be the set of tangents of F at p. Then p is
differentiable if p is regular in F and 7(p) is a plane w(p); otherwise, p is
singular.

Henceforth, we assume that every regular p in F is differentiable and 7 (p)
depends continuously on p.

Let p be differentiable. Then pe T < w(p) implies that either T< F or
ITNF|=2. Thus l(p)={L<F|peL}=I(p,w(p)) and p is irregular in
w(p)NF. If I(p)=0, then p is an isolated point, cusp or double point of
w(p)NF and we call p elliptic, parabolic or hyperbolic respectively.

Let & be a closed connected subset of S' or Fj. If the end points of & are
distinct [equal], then & is a subarc [subcurve]. A subarc of Fj, containing only
ordinary points in its interior, is of order two.

Let p be regular in F. Let %(p) be the set of all subarcs % of order two such
that pe F& w(p); {F., F.} < F(p). Then ¥, and %, are p-compatible if there is
a B < P?\{p} and an open neighbourhood U(p) of p in P? such that U(p)N
(#,U%,) is contained in a closed half-space of P? bounded by = (p) and B;
otherwise, %, and %, are p-incompatible.

A pair of subarcs & and %' are compatible [incompatible] if there is a
peFNF such that {# FlcF(p) and ¥ and F' are p-compatible [p-
incompatible]. We consider a subcurve of order two as an element of %(p) if it
contains a subarc & such that pe Fe F(p).

3. We assume that F is non-ruled; that is, F is not generated by lines. Then
I(F)=|{l= P?| L = F}|< and F contains at most four irregular points; cf. [3].
We denote by E, I and H: the set of elliptic, parabolic and hyperbolic points of
F respectively. We shall prove that for any (non-ruled) F: H# ¢, I # ¢ implies
that E# ¢, E is open and I is nowhere dense in F.

By way of preparation, we have the following remarks:

3.1 Let L< F and p € F\L such that (L, p)N F consists of L and an S'. We
denote this S' by S'(L, p).

3.2 If a plane section of F is of order two, then it consists of a pair of lines.
([1],2.2.3)

3.3 If p is regular in F and isolated in « NF, then p€e E and a = w(p). ((1],
2.3.7)

3.4 Let p be regular in F,l(p)=0. Then pe H if and only if there exist
incompatible % and %’ in %(p) with p €int(%) Nint(F’). (1], 2.5.7)
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3.5 Let # ¢ %(p) for each pe %'. Let L < F such that L£(%'Y and S*(L, p)e
F(p) for each pe %'. Then %' and S*(L, p) are either compatible for all p e &'
or incompatible for all pe %', (1], 2.5.8.)

3.6 Let p, be a sequence converging to a differentiable p. If p, € I[E] for
each A, then I(p)=0 implies that pe [[EUI] and w(p)NF=LUS"' implies
that LNS*={p}. (1], 2.4.6 and 2.4.9.)

3.7. Lemma. Let G be an open region in F such that ;NG =¢ for some
ao, bd(F\G) =bd(G), (bd(G)) is a plane and each p € G is regular in F. Then
GNE#¢.

Proof. We note that any line in a plane (F) meets Fj and thus, any line in
P? meets F by 3.2.

Let peG and put L=a,N(bd(G)). Then LNG=¢ implies that
LN(F\G)#¢ and (L,p)NG is an S' or an isolated point of (L, p)NF.
Obviously, a,N G = ¢ yields that there is a poe G such that (L, poyU G ={p,}.
Then p,€ E and w(p,) =(L, po) by 3.3.

We note that ENH =¢ and I N(EUH)=¢ by 3.6. It is clear that a limit of
hyperbolic points may be parabolic but not elliptic. Thus, E is open in F and

{pe ENH|I(p)=0 and p is regular in F}c L.
3.8. Tueorem. If I(F)>0, then I is nowhere dense in F and
I={pc ENH|Il(p)=0 and p is regular in F}.

Proof. Let L = F and p,< I. Then there is a T < w(p,) such that TN F ={p,}.
Let T< B# w(py). Then I(py) =0, TNF={po} and 3.2 imply that BN F is an
F* with p, as an inflection point. Thus there are ¥ and %' in %(p,) such that
FUF < B and FNF ={p,}. We note that ¥ and ¥’ are incompatible and for
p close to p, in FU%F', p is regular in F. Since [(p,) =0 and TN L = ¢, we may
assume that l(p)=0 and (BNw(p))NL=¢ for each peFUF'. Then
(L,pyNF=LUS'(L, p) for each pecFU%’ by 3.3.

(i) Since % and %’ are incompatible, S'(L, p,) € %(p,) implies that S'(L, p,)
and say % are incompatible. By 3.5, S*(L, p) and & are incompatible for each
p €int(%). Thus p,e H by 3.4.

(i) Since poel,

T(p)NF=F UF,

where %,[%,] is a subarc of order two, po€ %, N%, and |F, NF,|=2. Let p, in
int(%) converge to p,. Since p, € H for each A,

a(p)NF=4%, UF\UFo

where &, is a subcurve of order two, %,,[%,,] is a subarc of order two,
LN F 1 UF0) ={p ), P €F10 NF,, and |F,, NF,,|=2. We note that as
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p, tends to p,
lim w(p,) NF=m(py) NF
and lim %, is a closed curve of order =2. It is easy to check that
lim%, ={p,} and lm%,,U%,, =%, U%,.

Since p, is parabolic, we can describe a sufficiently small neighbourhood of
po in F. In particular, it is easy to check that (for p, sufficiently close to p,) £,
is the boundary of an open region F(¥,)cF such that bd(F\F(%,))=
bd(F(%£,)) and lim F(%,) ={po}. Finally, l(p,) =0 and p, regular in F imply that
F(%,) satisfies 3.7 for p, sufficiently close to p,. Hence, F(%,)NE# ¢ and
po€ E.

3.9. Tueorem. If I(F)>0, then F contains hyperbolic points.

Proof. We note that [(8) =0 implies that 8 N F contains an inflection point
by 3.2. As [(F)<oo, the set

9 ={q e F| q is an inflection point}

is infinite. If qe2 and l(q)=0, then qe IUH. Since I# ¢ implies that
ENH#¢ (and thus E# ¢# H) by 3.8, we obtain that qe IUH yields that
H# ¢.

Suppose that H = ¢. Then 1(q)>0 for each q€ 2 and there is an L = F such
that L N2 is an infinite set.

Case 1. There is an M < F such that LM = ¢.

Let qe LN&. Then w(q)=(L, T,) where T, NF={q}. As w(q) " M¢& L, this
implies that either (g, w(q) "M)< F or w(q) N F consists of L and an S' where
ILNS'=2and ge L NS". In the latter case, 3.6 clearly implies that q € H and
H# ¢; a contradiction. Thus (g, w(q) N M) < F for each ge L N2. Then I[(F)<
o implies that |LN2|<o; a contradiction.

Case 2. Every McF meets L.

Clearly, there is a point q, € 2\ L. Thus there is an L, < F such that q,€ L,
and L,NL is a point v# q;.

If M = F such that M N L, = ¢, then M, =(q,, w(q,;) N M) < F by the preced-
ing. Since v¢M,; and M,NL#¢, we obtain that M,<(L,L,). Then
w(q)NF=M;UL,UL where M;NL,NL=¢ implies that q,¢2; a con-
tradiction. Thus, every line in F passes through v.

Let ve B. Then either I(B)>0 or (I(B)=0, BN2={v} and) B contains an
irregular point of F. Since F contains a finite number of lines and irregular
points, this is a contradiction.
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4. In each of the following examples, F contains exactly one irregular point
v and one line L. Recall that 7(v) is the set of tangents of F at v.

Let P? be suitably coordinatized.

The surface F defined by

Ozxg_(x%+x§)x3 (LEXO=X3=O,UE(0, 0’0’ 1))

contains neither elliptic nor parabolic points. 7(v) is a line T=x, =x,=0 and v
is the cusp [isolated point] of BNF if T B[BNT ={v}].
The surface F defined by

0=x3—(x§+x§_x3)x3 (LEXO:X3:0,UE(O,O,O, 1))

contains elliptic but not parabolic points. 7(v) is a cone of order two with
vertex v and ve T< 7(v) if and only if TNF ={v}. If BN 7(v)={v}, then v is
the isolated point of B N F; otherwise, v is the cusp or the double point of
BNF. Finallyy, E and H are both connected with E=EU{v} and H=
HUL U{v}.

The surface F defined by

0=x3+x,x2+x2x, (L=x,=x,=0,v=(0,0,0, 1))

contains parabolic points, 7(v)=x,=0 and B NL ={v} implies that v is the
cusp of BN F. In this case; I =S'(L, p)\{v} where p=(0, 1, 0, 0) or equivalently
I=0=x,=x3+x,x5, E is connected with E= EUIU{v} and H=HUIUL.
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