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O N S U R F A C E S O F O R D E R T H R E E 

BY 

TIBOR BISZTRICZKY 

A surface of order three F in the real projective three-space P3 is met by 
every line, not in F, in at most three points. 

In the present paper, we determine the existence and examine the distribu­
tion of elliptic, parabolic and hyperbolic points; that is, the differentiable points 
of F which do not lie on any line contained in F. 

We define a topology of P3 in the usual manner. We denote the planes, lines 
and points of P3 by the letters a, | 3 , . . . ; L, M , . . . ; and p, q , . . . respectively. 
For a collection of flats a,L,p,... ; (a, L,p,...) denotes the flat of P3 spanned 
by them. For a set M, (Ji) denotes the flat of P3 spanned by the points of M. 

1. A (plane) curve V is the union of a finite collection of sets CX(M) where 
the Q ' s are continuous maps from a line M = {m, m ' , . . . } into a plane a. Let 
pea. Then p is a simple [double] point of CX(M) if the equation p = Q ( m ) has 
exactly one solution [exactly two solutions] meM. 

Let C = Ck. The line Tm =lim <C(m), C(m')), as m'±m tends to m, is the 
tangent of C at m. Let C be differentiable; that is, Tm exists and |Tm fï C(M)|< 
oo for every meM. We introduce (cf. [1] 1.3.3 and [4]) the characteristic of C at 
m and the multiplicity with which a line L e a meets C at m. Then C is of 
order n if n is the supremum of the number of points of M, counting 
multiplicities, mapped into collinear points by C. 

If C is of order two [three], we denote C(M) by S^FJJ. Every point of an S1 

is simple, an F* contains at most one double point and a simple point of F* is 
an ordinary, inflection or cusp point; cf. [1] 1.4 and [2]. If C(M) is a line 
[point], then C is considered to have order one [two]. 

T is of order k if k is the supremum of the number of points of T, counting 
multiplicities on each Q , lying on any line not in T. If k = 1, then T is a straight 
line. If k = 2 , then T is an S1 or an isolated point or a pair of distinct lines. If 
k = 3, then T is (i) an F^ plus possibly an Sx or an isolated point either disjoint 
from F% or (ii) the union of a line and a V of order two. We denote a T of 
order three satisfying (i) by F 1 . 

2. A surface of order three F in P3 is a compact and connected set such that 
every intersection of F with a plane is a curve of order < 3 and some plane 
intersection is an F1 . 

Let F be a surface of order three; peF. Let a denote a plane through p. 
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Then p is regular in F[a OF] if there is a line N in P 3 [a] such that p e N and 
| N H F | = 3; otherwise, p is irregular in F [a HF] . If a H F is an F 1 , then there 
is at most one irregular point v in a H F and such a v is a cusp, double point or 
isolated point. Finally, 

l(p, a ) = | { L c a | p G L c F } | < /(a) = |{L c a | L cz F}\ < 3. 

A line T is a tangent of F at p if T is the tangent of some CA at 
m;p = CK(m)<= Q ( M ) c F Let T(P) be the set of tangents of F at p. Then p is 
differentiable if p is regular in F and T(P) is a plane 7r(p); otherwise, p is 
singular. 

Henceforth, we assume that every regular p in F is differentiable and rr(p) 
depends continuously on p. 

Let p be differentiable. Then peT^7r(p) implies that either T c F or 
| T n F | < 2 . Thus l(p) = \{LczF\peL}\ = l(p,ir(p)) and p is irregular in 
7 r (p )nF If Z(p) = 0, then p is an isolated point, cusp or double point of 
7r (p)nF and we call p elliptic, parabolic or hyperbolic respectively. 

Let 3F be a closed connected subset of S1 or F*. If the end points of SF are 
distinct [equal], then SF is a subarc [subcurve]. A subarc of F*, containing only 
ordinary points in its interior, is of order two. 

Let p be regular in F Let 3F(p) be the set of all subarcs 2F of order two such 
that p G 3F<£ TT(P); {3FU £F2}^3F(p). Then 3FX and ZF2 are p-compatible if there is 
a |3 c P3\{p} and an open neighbourhood U(p) of p in P 3 such that U(p) D 
( ^ U ^ ) is contained in a closed half-space of P3 bounded by u(p) and |3; 
otherwise, ^ and &?2 are p-incompatible. 

A pair of subarcs £F and ^ ' are compatible [incompatible] if there is a 
p e f n ^ such that {^ ,^}c=^(p) and ^ and S '̂ are p-compatible [p-
incompatible]. We consider a subcurve of order two as an element of &*(p) if it 
contains a subarc 2F such that p € f e £F(p). 

3. We assume that F is non-ruled; that is, F is not generated by lines. Then 
1(F) = |{i cz p 3 I L c F}\ < œ and F contains at most four irregular points; cf. [3]. 
We denote by E, I and H: the set of elliptic, parabolic and hyperbolic points of 
F respectively. We shall prove that for any (non-ruled) F:H^ </>, I=fi <f) implies 
that E^&E is open and I is nowhere dense in F 

By way of preparation, we have the following remarks: 
3.1 Let L^F and p G F\L such that (L, p) H F consists of L and a n S 1 . We 

denote this S1 by Sa(L, p). 
3.2 If a plane section of F is of order two, then it consists of a pair of lines. 

([112.2.3.) 
3.3 If p is regular in F and isolated in a Pi F, then p G F and a = Trip). ([1], 

2.3.7.) 
3.4 Let p be regular in F, Z(p) = 0. Then p e H if and only if there exist 

incompatible 9 and <F in <^(p) with p e i n t ^ n i n t O F ) . ([1], 2.5.7) 
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3.5 Let &' e&(p) for each p e&'. Let L c F such that L£{&') and S 1 ^ p) e 
^ (p) for each p e ^ ' . Then ^ ' and S1(L, p) are either compatible for all p e ^ ' 
or incompatible for all pe&'. ([1], 2.5.8.) 

3.6 Let px be a sequence converging to a differentiable p. If px e / [ JE] for 
each A, then l(p) = 0 implies that p e I [ E U l ] and 7r(p)nF = L U S 1 implies 
that L f l S ^ i p } . ([1], 2.4.6 and 2.4.9.) 

3.7. LEMMA. Let G be an open region in F such that a 0 n G = <£ /or some 
a0, bd(F\G) = bd(G),(bd(G)) is a plane and each peG is regular in F. Then 
GnE^<t>. 

Proof. We note that any line in a plane (F%) meets F* and thus, any line in 
F 3 meets F by 3.2. 

Let peG and put L = a0C\(bd(G)). Then LPiG = 4> implies that 
LD(F\G)^cl) and (L,p)nG is an S1 or an isolated point of <L,p)nF. 
Obviously, a0nG = <f) yields that there is a p 0 e G such that (L, p0)U G = {p0}. 
Then p 0 e E and 7r(p0) = (L, p0) by 3.3. 

We note that É H H = <f> and I n (E U H) = <J> by 3.6. It is clear that a limit of 
hyperbolic points may be parabolic but not elliptic. Thus, E is open in F and 

{p G Ë H H | /(p) = 0 and p is regular in F} ç I. 

3.8. THEOREM. If i(F)>0, then I is nowhere dense in F and 

I = {p e E H H | l(p) = 0 and p is regular in F}. 

Proof. Let L c F and p 0 e I . Then there i s a T c 7r(p0) such that T D F ^ { p 0 } . 
Let Tc/3^7r(po). Then J(Po) = 0, T n F = {p0} and 3.2 imply that 0 PlF is an 
F 1 with po as an inflection point. Thus there are 8F and SF' in ^(p0) such that 
& U ̂ ' c |3 and ^ f W = {p0}. We note that & and ^ ' are incompatible and for 
p close to p0 in & U ̂ ' , p is regular in F. Since i(p0) = 0 and T H L = <f>, we may 
assume that l(p) = 0 and (0 n ?r(p)) H L = <£ for each p e ^ U ^ ' . Then 
<L,p>nF = LUS 1 (L ,p) for each p e ^ U ^ ' by 3.3. 

(i) Since & and ^ ' are incompatible, S1(L,p0)e^(p0) implies that S1^^^ 
and say & are incompatible. By 3.5, S1^, p) and ^ are incompatible for each 
peint(&). Thus p 0 e H b y 3.4. 

(ii) Since p0el, 

7r(p0)nF = &1U&2 

where ^ i [ ^ 2 ] is a subarc of order two, p0e&1n&2 and | ^ \ H ^ 2 | = 2. Let px in 
int(^) converge to p0. Since pxeH for each A, 

where !£K is a subcurve of order two, ^ i , x [^2, \ ] *s a subarc of order two, 
2K H ^ L X U^ 2 , x ) = {px}, px e ^ 1 A n ^ 2 , x and | ^ 1 A n ^ 2 , x | = 2. We note that as 
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pK tends to p0, 

l i m i r ( p j n F = 7 r ( p 0 ) n F 

and limi£x is a closed curve of order <2 . It is easy to check that 

lim «Sfx = {p0} and lim &^K U ̂ 2,A = ^ , U ^ 2 -

Since p0 is parabolic, we can describe a sufficiently small neighbourhood of 
p0 in F. In particular, it is easy to check that (for pK sufficiently close to p0) S£x 

is the boundary of an open region F(i?x)<=F such that bd(F\F(&k)) = 
bd(F(3?x)) and lim F(££k) ={p0}. Finally, l(p0) = 0 and p0 regular in F imply that 
F(«SPX) satisfies 3.7 for px sufficiently close to p0. Hence, F(J£K)C\E^<$) and 
p 0 e F . 

3.9. THEOREM. 1/ i(F)>0, then F contains hyperbolic points. 

Proof. We note that l((3) = 0 implies that /3DF contains an inflection point 
by 3.2. As /(F)<°°, the set 

â={q G F I q is an inflection point} 

is infinite. If q e â and /(q) = 0, then qelUH. Since I^c^ implies that 
ËC\Hï<t> (and thus E^4>^H) by 3.8, we obtain that q G l U H yields that 

Suppose that H = </>. Then l(q)>0 for each q e â and there is an L c F such 
that L H â is an infinite set. 

CASE 1. There is an M cz F such that Lf)M = <f). 

Let q G L H â. Then ir(q) = <L, Tq> where Tq H F = {q}. As ir(q) H M<£ L, this 
implies that either (q, 7r(q)n M) a F or ir(q) H F consists of L and an S1 where 
\L n S 1 ! = 2 and q e L D S 1 . In the latter case, 3.6 clearly implies that qeH and 
H ^ </>; a contradiction. Thus (q, ir(q)DM)c:F for each q e L f l l Then / (F)< 
oo implies that |LHâ|<oo; a contradiction. 

CASE 2. Every M<=F meets L. 

Clearly, there is a point q1e2l\L. Thus there is an L1aF such that q1eL1 

and L j O L is a point vj=qr. 
If M c F such that M f l L ^ ^ , then M1 = (ql9 ir(q^) f l M ) c F b y the preced­

ing. Since v£Mt and M1C)L^<f>, we obtain that M1a{L,L1). Then 
7r(q1)nF = M 1 U L 1 U L where M i n i ^ n L ^ ^ implies that qx^Si\ a con­
tradiction. Thus, every line in F passes through v. 

Let U G 0 . Then either i(0)>O or (1(0) = 0, pC\2L={v} and) 0 contains an 
irregular point of F. Since F contains a finite number of lines and irregular 
points, this is a contradiction. 
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4. In each of the following examples, F contains exactly one irregular point 
v and one line L. Recall that r(v) is the set of tangents of F at v. 

Let P 3 be suitably coordinatized. 
The surface F defined by 

0 = xl-(xl + xi)x3 (L=xo = x3 = 0,v = (0,0,0,l)) 

contains neither elliptic nor parabolic points. r(v) is a line T = xt = x2 = 0 and v 
is the cusp [isolated point] of (3 O F if T c j3[j3 n T = {t)}]. 

The surface F defined by 

0--=xl-(xl + xl-xl)x3 (L = x0 = x3 = 0,v = (0,0,0,1)) 

contains elliptic but not parabolic points. r(t>) is a cone of order two with 
vertex v and v e T<= r(v) if and only if TC\F = {v}. If (3 HT(U) = {i;}, then v is 
the isolated point of j3HF; otherwise, u is the cusp or the double point of 
j3PlF. Finally, E and H are both connected with É = EU{v} and H = 
H U L U W . 

The surface F defined by 

0 = *o + xxx\ 4- x 1X3 (L = x0 = * i = 0, v = (0,0, 0,1)) 

contains parabolic points, T(V) = X1 = 0 and jSHL^ji;} implies that v is the 
cusp of |8 H F. In this case; I = S1(L, p)\{u} where p = (0,1 , 0, 0) or equivalently 
I = 0 = x0 = x\ 4- xxx3, E is connected with Ë = EUlU{v} and H = H U J U L . 
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