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Jordan ∗-Derivations of Finite-Dimensional
Semiprime Algebras
Ajda Fošner and Tsiu-Kwen Lee

Abstract. In this paper, we characterize Jordan ∗-derivations of a 2-torsion free, finite-dimensional
semiprime algebra R with involution ∗. To be precise, we prove the following. Let δ : R → R be a
Jordan ∗-derivation. Then there exists a ∗-algebra decomposition R = U ⊕ V such that both U and
V are invariant under δ. Moreover, ∗ is the identity map of U and δ |U is a derivation, and the Jordan
∗-derivation δ |V is inner. We also prove the following. Let R be a noncommutative, centrally closed
prime algebra with involution ∗, char R 6= 2, and let δ be a nonzero Jordan ∗-derivation of R. If δ is
an elementary operator of R, then dimC R <∞ and δ is inner.

1 Results

Throughout the paper, R always denotes an associative ring. An additive map d : R→
R is called a derivation if d(xy) = xd(y)+d(x)y for all x, y ∈ R. Let ∗ be an involution
of R; that is, ∗ is an anti-automorphism of R satisfying (x∗)∗ = x for all x ∈ R. When
R is an algebra over a field F, the involution ∗ is not necessarily F-linear in general. An
additive mapping δ : R→ R is called a Jordan ∗-derivation if δ(x2) = δ(x)x∗ + xδ(x)
for all x ∈ R. A Jordan ∗-derivation of R is said to be inner if it is of the form
x 7→ xa− ax∗ for some a ∈ R. For the motivation to study Jordan ∗-derivations, we
refer the reader to the references in [3, 10].

In [2] Brešar and Vukman proved that if a unital ∗-ring R contains 1
2 and a central

invertible skew-hermitian element µ (i.e., µ∗ = −µ), then every Jordan ∗-derivation
of R is inner. In particular, every Jordan ∗-derivation of a unital complex ∗-algebra
is inner. In [10] Šemrl showed that every Jordan ∗-derivation of B(H), the algebra
of all bounded linear operators on a real Hilbert space H, with dimR H > 1 is inner
(see also [3]). Clearly, the algebra B(H) is a prime ring with nonzero socle and is not
a division ring if dimR H > 1. The following ∗-version of [4, Theorem 1.2] gives a
generalization of Šemrl’s theorem.

Theorem 1.1 Let R be a prime ring with involution ∗, char R 6= 2, and let δ : R→ R
be a Jordan ∗-derivation. Suppose that R has nonzero socle but is not a division ring.
Then there exists a ∈ Qs(R) such that δ(x) = xa− ax∗ for all x ∈ R, where Qs(R) is the
symmetric Martindale ring of quotients of R.

In the theorem above, the case that R is a division ring is not yet solved. This paper
is a continuation of the recent paper [4] concerning Jordan ∗-derivations. An ideal I
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of a ring (resp. algebra) R with involution ∗ is called a ∗-ideal if I∗ = I. By a ∗-ring
(resp. ∗-algebra) decomposition of R, we mean a ring (resp. algebra) decomposition
R = U ⊕ V , where U and V are ∗-ideals of R. The first purpose of this paper is to
prove the following theorem.

Theorem 1.2 Let R be a 2-torsion free, finite-dimensional, semiprime algebra with
involution ∗ and let δ : R → R be a Jordan ∗-derivation. Then there exists a ∗-algebra
decomposition R = U ⊕V such that U and V are invariant under δ. Moreover, ∗ is the
identity map of U , δ |U is a derivation, and the Jordan ∗-derivation δ |V is inner.

As an application of Theorem 1.2, we characterize Jordan ∗-derivations of a prime
ring R when these ∗-derivations are “elementary operators”. For simplicity of no-
tation, we assume that the prime ring R is centrally closed; that is, R = RC + C ,
where C is the extended centroid of R. In this case, R is a prime algebra over C . By
an elementary operator of R we mean an additive map φ : R → R, which is of the
form x 7→

∑
i aixbi for x ∈ R, where ai , bi are finitely many elements in R. When

dimC R < ∞, R is a finite-dimensional central simple C-algebra (see [6, Theorem 2
(p. 57)]). Let Rop denote the C-algebra opposite to the C-algebra R. It is known that
there exists an isomorphism Φ : R⊗C Rop → EndC (R) defined by

Φ

(∑
i

ai ⊗ bi

)
(x) =

∑
i

aixbi

for
∑

i ai ⊗ bi ∈ R ⊗C Rop and x ∈ R. This implies that every C-linear map of R
into itself is an elementary operator. In the next theorem, we prove that a centrally
closed prime ring R must be finite-dimensional over C if it admits a nonzero Jordan
∗-derivation that is also an elementary operator. Although the theorem below has an
analog in the case of semiprime rings, to avoid a lengthy argument we only prove the
case of prime rings.

Theorem 1.3 Let R be a noncommutative, centrally closed, prime algebra with invo-
lution ∗, char R 6= 2, and let δ : R→ R be a nonzero Jordan ∗-derivation that is also an
elementary operator. Then dimC R <∞ and δ is inner.

For a, b ∈ R, [a, b] denotes the element ab− ba. Given two additive subgroups A
and B of R, [A,B] (resp. AB) will denote the additive subgroup of R generated by all
elements [a, b] (resp. ab) for a ∈ A and b ∈ B.

2 Proof of Theorem 1.2

We first prove Theorem 1.2 with R a division algebra.

Theorem 2.1 Let D be a noncommutative, finite-dimensional, central division C-
algebra with involution ∗ and char D 6= 2. Then every Jordan ∗-derivation of D is
inner.

We first recall a result due to Herstein. Suppose that L is a Lie ideal of a ring R;
that is, L is an additive subgroup of R satisfying [L,R] ⊆ L. It follows from the proof
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of [5, Lemma 1.3] that R[L, L]R ⊆ L + L2. Let D be as in Theorem 2.1. Since [D,D]
is a Lie ideal of D and

[
[D,D], [D,D]

]
6= 0 by the fact that char D 6= 2, we have

D = [D,D] + [D,D]2. We will use the result in the proof below. The involution ∗ of
D is said to be of the first kind if β∗ = β for all β ∈ C . Otherwise, ∗ is said to be of
the second kind.

Proof of Theorem 2.1 Let δ : D → D be a nonzero Jordan ∗-derivation. Let x, y ∈
D. Expanding δ((x + y)2) = δ(x + y)(x + y)∗ + (x + y)δ(x + y), we see that

(2.1) δ(xy + yx) = δ(x)y∗ + δ(y)x∗ + xδ(y) + yδ(x).

Case 1. Suppose that ∗ is of the second kind. Choose a nonzero β∗ = −β ∈ C . For
x ∈ D, by (2.1) we have

2δ(βx) = δ(βx + xβ) = δ(β)x∗ + δ(x)(−β) + xδ(β) + βδ(x).

That is, 2δ(βx) = δ(β)x∗ + xδ(β). Replacing x by β−1x, we see that δ(x) = xa− ax∗

for all x ∈ D, where a := δ(β)/2β.

Case 2. Suppose that ∗ is of the first kind. We claim that δ is C-linear. Fix a β ∈ C
and set f (w) := δ(βw)− βδ(w) for w ∈ D. Let x, y ∈ D. By (2.1) we have

(2.2) δ((βx)y + y(βx)) = δ(βx)y∗ + δ(y)βx∗ + βxδ(y) + yδ(βx).

On the other hand,

(2.3) δ(x(βy) + (βy)x) = δ(x)βy∗ + δ(βy)x∗ + xδ(βy) + βyδ(x).

It follows from (2.2) and (2.3) that

(2.4) f (x)y∗ − f (y)x∗ − x f (y) + y f (x) = 0.

Replacing y by 1 in (2.4) and using δ(1) = 0, we see that

(2.5) f (x) = bx∗ + xb

for all x ∈ D, where b := δ(β)/2. It follows from (2.4) that

(bx∗ + xb)y∗ − (by∗ + yb)x∗ − x(by∗ + yb) + y(bx∗ + xb) = 0.

That is, b[x∗, y∗] = [x, y]b, i.e., b[x, y]∗ + [x, y]b = 0 for all x, y ∈ D. By (2.5), we
see that f ([D,D]) = 0. That is,

(2.6) δ(βx) = βδ(x) for all x ∈ [D,D] and β ∈ C .
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Let u, v ∈ [D,D] and γ ∈ C . Then u∗, v∗ ∈ [D,D]. By (2.1) and (2.6), we have

δ
(
γ(uv + vu)

)
= δ
(

(γu)v + v(γu)
)

= δ(γu)v∗ + δ(v)γu∗ + γuδ(v) + vδ(γu)

= γ
(
δ(u)v∗ + δ(v)u∗ + uδ(v) + vδ(u)

)
= γδ(uv + vu).

(2.7)

Since uv − vu = [u, v] ∈ [D,D], it follows from (2.6) that

(2.8) δ(γ(uv − vu)) = γδ(uv − vu).

By (2.7) and (2.8), we have δ(γuv) = γδ(uv) for all u, v ∈ [D,D] and γ ∈ C . In view
of the fact that D = [D,D] + [D,D]2, every element of D is of the form u +

∑
i uivi

for some u ∈ [D,D] and finitely many ui , vi ∈ [D,D]; this implies that δ : D→ D is
C-linear, as asserted.

Let C be the algebraic closure of C and let D̂ := D ⊗C C . Then D̂ ∼= Mn(C) for
some n. Moreover, n > 1, since D is not a field. Since ∗ is of the first kind, the
involution ∗ of D can be extended to a first kind involution on D̂, also denoted by ∗,
by the following rule:(∑

i

xi ⊗ βi

)∗
=
∑

i

x∗i ⊗ βi for xi ∈ D and βi ∈ C .

Moreover, δ : D→ D can be extended to a well-defined map on D̂, also denoted by δ,
by

δ
(∑

i

xi ⊗ βi

)
=
∑

i

δ(xi)⊗ βi for xi ∈ D and βi ∈ C .

Note that C is an infinite field. By the C-linearity of δ and the fact that ∗ is of the first
kind, we claim that δ(y2) = δ(y)y∗ + yδ(y) for all y ∈ D̂.

Let C[λ1, . . . , λm] denote the polynomial ring over C in commutative indetermi-
nates λ1, . . . , λm, where m := dimC D. Choose a basis {e1, . . . , em} for D over C .
Write

(2.9) eie j =
m∑

k=1

αi jkek, e∗i =

m∑
k=1

βikek, and δ(ei) =

m∑
k=1

γikek

for 1 ≤ i, j ≤ m, where all αi jk, βik, γik ∈ C . For x ∈ D, write

x =

m∑
i=1

µiei ∈ D, where µ1, . . . , µm ∈ C.

Using expansion formulas (2.9) to expand δ(x2)− δ(x)x∗ − xδ(x), we see that

0 = δ(x2)− δ(x)x∗ − xδ(x)

=

m∑
s=1

ps(µ1, . . . , µm)es =

m∑
s=1

es ⊗ ps(µ1, . . . , µm),

(2.10)
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where

ps(λ1, . . . , λm) =∑
1≤i, j≤m

m∑
k=1

(
αi jkγks −

m∑
t=1

αtksβ jkγit − αiksγ jk

)
λiλ j ∈ C[λ1, . . . , λm]

for s = 1, . . . ,m. Note that ps(λ1, . . . , λm)’s depend only on αi jk, βik, γik. Since
ps(µ1, . . . , µm) ∈ C for all µi ∈ C , it follows from (2.10) that ps(µ1, . . . , µm) = 0 for
1 ≤ i ≤ m. Thus, ps(λ1, . . . , λm) = 0 in the polynomial ring C[λ1, . . . , λm], since C
is an infinite field.

In particular, we have ps(ν1, . . . , νm) = 0 for all νi ∈ C . Thus,

m∑
s=1

ei ⊗ ps(ν1, . . . , νm) = 0

in D ⊗C C . Reversing the expansion of (2.10), we see that δ(y2) = δ(y)y∗ + yδ(y),
where y =

∑m
i=1 ei ⊗ νi ∈ D⊗C C . This proves our claim.

Clearly, D̂ is a prime locally matrix ring (see [4, 7]). In view of [4, Theorem 1.1]
or Theorem 1.1, there exists an element c ∈ D̂ such that

δ(x ⊗ 1) = (x ⊗ 1)c − c(x∗ ⊗ 1)

for all x ∈ D. Write c = a ⊗ 1 + c1 ⊗ γ1 + · · · , where a, ci ∈ D and 1, γ1, . . . are
C-independent. This implies that(

δ(x)− xa + ax∗
)
⊗ 1 + ( · )⊗ γ1 + · · · = 0

for all x ∈ D. Thus, δ(x) = xa− ax∗ for all x ∈ D.

By applying the same arguments as in the proof of Theorem 2.1, we have the fol-
lowing theorem.

Theorem 2.2 Let D be a 2-torsion free, noncommutative, central division C-algebra
with involution ∗. Suppose that there exists an extension field F of C such that D⊗C F ∼=
Ms(∆) for some division F-algebra ∆ and some s > 1. Then every Jordan ∗-derivation
of D is inner.

We next deal with the case that R is a ring with exchange involution τ ; that is, R
has a ring decomposition R = T ⊕ Top with involution (x, y)τ = (y, x) for x, y ∈ T,
where Top is the ring opposite to T.

Theorem 2.3 Let R be a unital ring with exchange involution τ . Then every Jordan
τ -derivation of R is inner.
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Proof Write R = T⊕Top with involution (x, y)τ = (y, x) for x, y ∈ T. Let δ : R→ R
be a Jordan τ -derivation. Since R is a unital ring, 1R = e1 +e2, where e1 = (1, 0), e2 =
(0, 1), and 1 is the identity of the ring T. Thus, eτ1 = e2. For x = (x1, x2) ∈ R, define
x̃ = (x1,−x2). Then

δ
(

(x1 + 1, 0)2
)

= δ
(

(x1 + 1, 0)
)

(0, x1 + 1) + (x1 + 1, 0)δ
(

(x1 + 1, 0)
)
.

On the other hand,

δ
(

(x1 + 1, 0)2
)

= δ
(

(x2
1 + 2x1 + 1, 0)

)
= δ
(

(x1, 0)
)

(0, x1) + (x1, 0)δ
(

(x1, 0)
)

+ 2δ
(

(x1, 0)
)

+ δ
(

(1, 0)
)
.

Comparing the two equalities above, we see that

(2.11) δ
(

(x1, 0)
)

= (x1, 0)δ(e1) + δ(e1)(0, x1).

Similarly, we have

(2.12) δ
(

(0, x2)
)

= (0, x2)δ(e2) + δ(e2)(x2, 0) = −(0, x2)δ(e1)− δ(e1)(x2, 0),

where we have used the identity δ(e2) = −δ(e1) at the second equality above. By
(2.11) and (2.12), we have δ(x) = x̃δ(e1) + δ(e1)(x̃)τ for all x ∈ R. A direct compu-

tation shows that δ(x) = xa− axτ for all x ∈ R, where a := δ̃(e1).

Lemma 2.4 Let N be a field with involution ∗, char N 6= 2, and let K = {x ∈ N |
x∗ = −x}. Then the following hold:

(i) Every Jordan ∗-derivation of N is inner if K 6= {0}.
(ii) Every Jordan ∗-derivation of N is a derivation if K = {0}.

Proof Let δ : N → N be a Jordan ∗-derivation. Since N is a field, δ(x2) = (x +
x∗)δ(x) for all x ∈ N.

Case 1. Suppose that K 6= {0}. Choose a nonzero k ∈ K. Let x ∈ N. Note that
δ(k2) = 0. Thus,

δ
(

(x + k)2
)

= (x + x∗)δ(x + k),

implying that 2δ(kx) = (x+x∗)δ(k). Replacing x by k−1x, we see that δ(x) = xa−ax∗,
where a := δ(k)/2k 6= 0. This proves (i).

Case 2. Suppose that K = {0}; that is, ∗ is the identity map of N. Thus δ(x2) =
2xδ(x) for all x ∈ N. By the linearization on x, we get δ(xy) = xδ(y) + δ(x)y for all
x, y ∈ N. That is, δ is a derivation of N.

Proof of Theorem 1.2 Let R be a 2-torsion free, finite-dimensional, semiprime F-al-
gebra with involution ∗, where F is a field and let δ : R→ R be a Jordan ∗-derivation.
By the Wedderburn–Artin Theorem,

R = W1 ⊕W2 ⊕ · · · ⊕Wt ,
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where all Wi are finite-dimensional, simple, Artinian F-algebras. Note that Wi ’s are
the only minimal ideals of R. Thus, for each Wi , either W ∗i = Wi (that is, Wi is a
∗-ideal of R) or W ∗i = W j for some j 6= i.

Case 1. Suppose that W ∗i = Wi . Then Wi is a 2-torsion free, finite-dimensional,
simple F-algebra with involution ∗. Note that, as an additive group, Wi is generated
by elements x2 for x ∈ Wi , since 2Wi = Wi and 2x = (x + ei)2 − x2 − ei , where
ei denotes the identity of Wi . This implies that δ(Wi) ⊆ Wi . Thus δ : Wi → Wi is
a Jordan ∗-derivation. By the Wedderburn–Artin Theorem, Wi

∼= Ms(∆) for some
division algebra ∆ and some integer s ≥ 1. If s > 1, then δ is inner according to
[4, Theorem 1.2]. If s = 1, then δ is inner on Wi unless Wi is a field and ∗ is the
identity map on Wi (see Theorem 2.1 and Lemma 2.4). By Lemma 2.4, δ : Wi →Wi

is a derivation when ∗ is the identity map on Wi .

Case 2. Suppose that W ∗i = W j for some j 6= i. Let T := Wi ⊕W j = Wi ⊕W ∗i .
Since T is generated by elements x2 for x ∈ T as an additive group, T is invariant
under δ. In fact, T ∼= Wi ⊕W op

i via the map φ : T →Wi ⊕W op
i defined by

φ(x + y∗) = (x, y) for x, y ∈Wi .

Let τ denote the exchange involution on Wi ⊕ W op
i ; that is, (x, y)τ = (y, x) for

x, y ∈ Wi . Then φ(z∗) = φ(z)τ for z ∈ T. Thus, T is isomorphic to Wi ⊕W op
i as

rings with involution. In view of Theorem 2.3, δ is inner on T.
Let

Γ = {i |Wi is a field and ∗ is the identity map on Wi}.

Set U =
⊕

i∈Γ Wi and V =
⊕

j /∈Γ W j . Clearly, U and V are ∗-ideals of R and are
invariant under δ. Moreover, δ is a derivation on U by Lemma 2.4 and the Jordan
∗-derivation δ on V is inner by Theorems 2.1 and 2.3 and Lemma 2.4. This proves
the theorem.

Using the proofs above, we can establish an analog of Theorem 1.2 in the context
of semiprime Artinian rings. Recall that a semiprime Artinian ring R is the direct
sum of finitely many simple Artinian rings. These simple Artinian rings are the only
minimal ideals of R, which are called the components of R. A division component I
of R means that the component I is itself a division ring.

Theorem 2.5 Let R be a 2-torsion free, semiprime, Artinian ring with involution ∗
such that every ∗-invariant division component of R is a finite-dimensional central divi-
sion algebra. Suppose that δ : R→ R is a Jordan ∗-derivation. Then there exists a ∗-ring
decomposition R = U ⊕V such that U and V are invariant under δ. Moreover, ∗ is the
identity map of U , δ |U is a derivation, and the Jordan ∗-derivation δ |V is inner.

3 Proof of Theorem 1.3

Throughout this section, R always denotes a noncommutative, centrally closed,
prime ring with involution ∗. Thus, R is a prime C-algebra, where C is the extended
centroid of R. In order to prove Theorem 1.3, we need the well-known result of
Martindale [9, Theorem 2(a)], stated below in a form convenient for our purpose.
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Lemma 3.1 Let ai , bi , c j , d j ∈ R be such that
∑`

i=1 aixbi +
∑m

j=1 c jxd j = 0 for all
x in a nonzero ideal of R. If a1, . . . , a` are linearly independent over C, then each bi is
a C-linear combination of the d j ’s. Analogously, if b1, . . . , b` are linearly independent
over C, then each ai is a C-linear combination of the c j ’s.

Applying the same argument as given in the proof of [8, Lemma 2.6], after replac-
ing Q by R, we have the following lemma.

Lemma 3.2 Let a1, . . . , an ∈ R be C-independent. If dimC R ≥ n2(n+5)2

4 , then there
exists y ∈ R such that a1, . . . , an, a1 y, . . . , an y are C-independent.

Lemma 3.3 Suppose that the map x 7→ cx∗ for x ∈ R is an elementary operator of R,
where c is a fixed nonzero element of R. Then dimC R <∞.

Proof Suppose on the contrary that dimC R = ∞. Write cx∗ =
∑n

i=1 aixbi for all
x ∈ R, where ai , bi are fixed elements in R and n is a positive integer. Choose n to be
minimal. Then a1, . . . , an are C-independent.

Let x, y ∈ R. Then c(xy)∗ =
∑n

i=1 aixybi . On the other hand, c(xy)∗ = cy∗x∗ =∑n
i=1 ai ybix∗. Thus,

(3.1)
n∑

i=1

(aix)ybi =

n∑
i=1

ai y(bix
∗).

In view of Lemma 3.2, there exists x0 ∈ R such that a1, . . . , an, a1x0, . . . , anx0 are
C-independent. By (3.1) we have

∑n
i=1(aix0)ybi =

∑n
i=1 ai y(bix∗0 ) for all y ∈ R. It

follows from Lemma 3.1 that bi = 0 for all i, a contradiction.

Proof of Theorem 1.3 Suppose on the contrary that dimC R = ∞. Since δ : R → R
is an elementary operator, there exist finitely many ai , bi ∈ R, 1 ≤ i ≤ m, such that
δ(x) =

∑m
i=1 aixbi for all x ∈ R. Let x, y ∈ R. Since δ is Jordan ∗-derivation of R, it

follows from (2.1) that

m∑
i=1

ai(xy + yx)bi = δ(x)y∗ +
m∑

i=1

ai ybix
∗ + x

m∑
i=1

ai ybi + yδ(x),

implying that

(3.2)
m∑

i=1

[ai , x]ybi +
m∑

i=1

ai y(xbi − bix
∗)− yδ(x) = δ(x)y∗.

Choose a basis 1 = c0, c1, . . . , ct for the C-space C +
∑m

i=1 Cai and a basis e1, . . . , es

for the C-space
∑m

i=1 Cbi . We rewrite (3.2) as

s∑
i=1

[di , x]yei + c0 y
(

xh0 − h0x∗ − δ(x)
)

+
t∑

j=1

c j y(xh j − h jx
∗) = δ(x)y∗
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for all x, y ∈ R, where all di , h j ∈ R are fixed. Write

f0(x) := xh0 − h0x∗ − δ(x) and f j(x) := xh j − h jx
∗ for j = 1, . . . , t.

Then we have

(3.3)
s∑

i=1

[di , x]yei +
t∑

j=0

c j y f j(x) = δ(x)y∗

for all x, y ∈ R. Let x, y, z ∈ R. By (3.3), we see that

δ(x)(yz)∗ = δ(x)z∗y∗ =

s∑
i=1

[di , x]zei y∗ +
t∑

j=0

c jz f j(x)y∗.

On the other hand, δ(x)(yz)∗ =
∑s

i=1[di , x]yzei +
∑t

j=0 c j yz f j(x). Thus,

(3.4)
t∑

j=0

(c j y)z f j(x)−
t∑

j=0

c jz( f j(x)y∗) =

s∑
i=1

[di , x]z(ei y∗)−
s∑

i=1

(
[di , x]y

)
zei .

Since dimC R = ∞, it follows from Lemma 3.2 that e0, . . . , es, e0 y∗0 , . . . , es y∗0 are
C-independent for some y0 ∈ R. By (3.4), we have

t∑
j=0

(c j y0)z f j(x)−
t∑

j=0

c jz( f j(x)y∗0 ) =

s∑
i=1

[di , x]z(ei y∗0 )−
s∑

i=1

([di , x]y0)zei .

By Lemma 3.1, [di ,R] ⊆
∑t

j=0 C(c j y0) +
∑t

j=0 Cc j for i = 1, . . . , s. Since
dimC R = ∞, it follows from [1, Theorem 2] that di ∈ C for i = 1, . . . , s. Thus,
(3.4) is reduced to

(3.5)
t∑

j=0

(c j y)z f j(x)−
t∑

j=0

c jz( f j(x)y∗) = 0.

By Lemma 3.2 again, there exists y0 ∈ R such that c0, . . . , ct , c0 y0, . . . , ct y0 are C-in-
dependent. By (3.5), we have

t∑
j=0

(c j y0)z f j(x)−
t∑

j=0

c jz
(

f j(x)y∗0
)

= 0

for all x, z ∈ R. In view of Lemma 3.1, f j(x) = 0 for all x ∈ R and all j. In particular,
f0 = 0; that is, δ(x) = xh0 − h0x∗ for all x ∈ R. Since δ is a nonzero elementary
operator, h0 6= 0 and the map x 7→ h0x∗ for x ∈ R is also an elementary operator of
R. In view of Lemma 3.3, dimC R <∞, a contradiction.

Up to now, we have proved that dimC R < ∞. In view of Posner’s Theorem
[6, Theorem 2 (p. 57)] R is a finite-dimensional central simple C-algebra. Thus, by
Theorem 1.2, the Jordan ∗-derivation δ of R is inner, as asserted.
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