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Jordan x-Derivations of Finite-Dimensional
Semiprime Algebras

Ajda Fosner and Tsiu-Kwen Lee

Abstract. In this paper, we characterize Jordan *-derivations of a 2-torsion free, finite-dimensional
semiprime algebra R with involution *. To be precise, we prove the following. Let 6: R — Rbea
Jordan *-derivation. Then there exists a *-algebra decomposition R = U @ V such that both U and
V are invariant under §. Moreover, * is the identity map of U and § |y is a derivation, and the Jordan
*-derivation 0 |v is inner. We also prove the following. Let R be a noncommutative, centrally closed
prime algebra with involution *, char R # 2, and let § be a nonzero Jordan *-derivation of R. If § is
an elementary operator of R, then dim¢ R < oo and § is inner.

1 Results

Throughout the paper, R always denotes an associative ring. An additive map d: R —
Ris called a derivation if d(xy) = xd(y)+d(x)y forall x, y € R. Let * be an involution
of R; that is, * is an anti-automorphism of R satisfying (x*)* = x for all x € R. When
Risan algebra over a field F, the involution * is not necessarily F-linear in general. An
additive mapping §: R — R is called a Jordan *-derivation if §(x?) = 6(x)x* + x5(x)
for all x € R. A Jordan x-derivation of R is said to be inner if it is of the form
x +— xa — ax™ for some a € R. For the motivation to study Jordan *-derivations, we
refer the reader to the references in [3,10].

In [2] Bre$ar and Vukman proved that if a unital *-ring R contains % and a central
invertible skew-hermitian element y (i.e., u* = —pu), then every Jordan %-derivation
of R is inner. In particular, every Jordan x-derivation of a unital complex x-algebra
is inner. In [10] Semrl showed that every Jordan -derivation of B(H), the algebra
of all bounded linear operators on a real Hilbert space H, with dimg H > 1 is inner
(see also [3]). Clearly, the algebra B(H) is a prime ring with nonzero socle and is not
a division ring if dimg H > 1. The following *-version of [4, Theorem 1.2] gives a
generalization of Semrl’s theorem.

Theorem 1.1 Let R be a prime ring with involution , char R # 2, and let §: R — R
be a Jordan x-derivation. Suppose that R has nonzero socle but is not a division ring.
Then there exists a € Q;(R) such that 6(x) = xa — ax™ for all x € R, where Qs(R) is the
symmetric Martindale ring of quotients of R.

In the theorem above, the case that R is a division ring is not yet solved. This paper
is a continuation of the recent paper [4] concerning Jordan *-derivations. An ideal I
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of a ring (resp. algebra) R with involution x is called a x-ideal if I* = I. By a *-ring
(resp. x-algebra) decomposition of R, we mean a ring (resp. algebra) decomposition
R = U &V, where U and V are *-ideals of R. The first purpose of this paper is to
prove the following theorem.

Theorem 1.2 Let R be a 2-torsion free, finite-dimensional, semiprime algebra with
involution x and let 6: R — R be a Jordan x-derivation. Then there exists a x-algebra
decomposition R = U &V such that U and V are invariant under 0. Moreover, * is the
identity map of U, 0 |y is a derivation, and the Jordan x-derivation 0 |y is inner.

As an application of Theorem 1.2, we characterize Jordan *-derivations of a prime
ring R when these *-derivations are “elementary operators”. For simplicity of no-
tation, we assume that the prime ring R is centrally closed; that is, R = RC + C,
where C is the extended centroid of R. In this case, R is a prime algebra over C. By
an elementary operator of R we mean an additive map ¢: R — R, which is of the
form x +— . a;xb; for x € R, where a;, b; are finitely many elements in R. When
dim¢ R < o0, R is a finite-dimensional central simple C-algebra (see [6, Theorem 2
(p.- 57)]). Let R° denote the C-algebra opposite to the C-algebra R. It is known that
there exists an isomorphism ®: R ®c R’ — End¢(R) defined by

<I>(Zai ® h,) (x) = Z‘lixbi

for >, a; ® bi € R®c R°? and x € R. This implies that every C-linear map of R
into itself is an elementary operator. In the next theorem, we prove that a centrally
closed prime ring R must be finite-dimensional over C if it admits a nonzero Jordan
x-derivation that is also an elementary operator. Although the theorem below has an
analog in the case of semiprime rings, to avoid a lengthy argument we only prove the
case of prime rings.

Theorem 1.3 Let R be a noncommutative, centrally closed, prime algebra with invo-
lution , char R # 2, and let §: R — R be a nonzero Jordan x-derivation that is also an
elementary operator. Then dim¢ R < oo and § is inner.

For a,b € R, [a, b] denotes the element ab — ba. Given two additive subgroups A
and B of R, [A, B] (resp. AB) will denote the additive subgroup of R generated by all
elements [a, b] (resp. ab) fora € Aand b € B.

2 Proof of Theorem 1.2

We first prove Theorem 1.2 with R a division algebra.

Theorem 2.1 Let D be a noncommutative, finite-dimensional, central division C-
algebra with involution x and char D # 2. Then every Jordan x-derivation of D is
inner.

We first recall a result due to Herstein. Suppose that L is a Lie ideal of a ring R;
that is, L is an additive subgroup of R satisfying [L, R] C L. It follows from the proof
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of [5, Lemma 1.3] that R[L, LR C L + L?. Let D be as in Theorem 2.1. Since [D, D]
is a Lie ideal of D and [[D, D], [D, D]] # 0 by the fact that char D # 2, we have
D = [D, D] + [D, D]?. We will use the result in the proof below. The involution * of
D is said to be of the first kind if 5* = ( for all 5 € C. Otherwise, * is said to be of
the second kind.

Proof of Theorem 2.1 Let §: D — D be a nonzero Jordan #-derivation. Let x, y €
D. Expanding §((x + y)?) = d(x + y)(x + y)* + (x + y)6(x + y), we see that

(2.1) O(xy + yx) = 8(x)y* + 0(y)x™ +x0(y) + yd(x).

Case 1. Suppose that * is of the second kind. Choose a nonzero * = —f € C. For
x € D, by (2.1) we have

26(Bx) = 6(Bx +xp3) = 6(B)x" + 6(x)(=B) +x6(B) + B (x).

That is, 26(8x) = §(8)x* + x5(3). Replacing x by 5~ !x, we see that §(x) = xa — ax*
for all x € D, where a := 4(8)/20.

Case 2. Suppose that * is of the first kind. We claim that ¢ is C-linear. Fixa 5 € C
and set f(w) := d(Bw) — Bo(w) for w € D. Letx, y € D. By (2.1) we have

(2.2) 6((Bx)y + y(Bx)) = 6(Bx)y™ + 6(y)Bx" + Bxd(y) + yo(Bx).
On the other hand,
(2.3) 0(x(By) + (By)x) = 0(x)By" +6(By)x™ + x6(By) + Byd(x).
It follows from (2.2) and (2.3) that
(2.4) fE)y* = fy)x™ —xf(y) + yf(x) = 0.
Replacing y by 1 in (2.4) and using §(1) = 0, we see that
(2.5) f(x) = bx* +xb
for all x € D, where b := §(88)/2. It follows from (2.4) that
(bx* +xb)y* — (by* + yb)x* — x(by* + yb) + y(bx* + xb) = 0.

That is, b[x*, y*] = [x, y]b, i.e., b[x, y]* + [x, y]b = 0 for all x, y € D. By (2.5), we
see that f([D, D]) = 0. That is,

(2.6) 0(Bx) = Bd(x) forallx € [D,D]and 8 € C.
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Letu,v € [D,D] and v € C. Then u*,v* € [D, D]. By (2.1) and (2.6), we have
(2.7) 5(7(uv + vu)) = 5( (yu)v + v(wu))
= d(yu)v* + d(W)yu™ + yud(v) + vo(yu)
= 7(5(u)v* +o(W)u* +ud(v) + vé(u))
= v0(uv + vu).
Since uv — vu = [u,v] € [D, D], it follows from (2.6) that
(2.8) O(y(uv —vu)) = v6(uv — vu).

By (2.7) and (2.8), we have 6 (yuv) = vd(uv) for all u,v € [D,D] and v € C. In view
of the fact that D = [D, D] + [D, D]?, every element of D is of the form u + Y. u;v;
for some u € [D, D] and finitely many u;, v; € [D, D]; this implies that 6: D — D is
C-linear, as asserted.

Let C be the algebraic closure of C and let D := D ®¢ C. Then D = M,,(C) for
some n. Moreover, n > 1, since D is not a field. Since x is of the first kind, the
involution * of D can be extended to a first kind involution on ﬁ, also denoted by x,
by the following rule:

(in(@ﬁi)* :fo@)ﬁi for x; € D and §3; eC.

Moreover, §: D — D can be extended to a well-defined map on D, also denoted by 4,
by

5( D w@B) = )@ f forx € Dand B € C.

Note that C is an infinite field. By the C-linearity of 6 and the fact that « is of the first
kind, we claim that §(y?) = 6(y)y* + yd(y) forall y € D.

Let C[Aq, ..., An] denote the polynomial ring over C in commutative indetermi-
nates A, ..., Ay, where m := dim¢ D. Choose a basis {ej, ..., ey} for D over C.
Write

m m m
(2.9) eiej = > qijker, ¢ = > Puer, and  5(e) =Y ek
k=1 k=1 k=1

for 1 < i, j < m, where all o jx, Bi, ik € C. For x € D, write

m
xzz,uieiED, where pq, ..., um € C.

i=1
Using expansion formulas (2.9) to expand §(x?) — §(x)x* — x(x), we see that

(2.10) 0= 6(x%) — 5(x)x* — x0(x)

- Zps(lffla ce. a/im)es - Zes ®ps(,ufla cee ,,U,m),
s=1 s=1
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where
sty ooy Am) =
Z Z (aijk’Yks - Zatksﬁjk’wt - aiks’ij) Aidj € C[AL, .., Al
1<i,j<m k=1 =1

fors = 1,...,m. Note that p(\;,...,\,)’s depend only on «;jx, Bix, vik- Since
ps(pery .o i) € C forall p; € C, it follows from (2.10) that p.(u1, . . ., tim) = 0 for
1 <i < m. Thus, ps(A1,...,An) = 01in the polynomial ring C[ Ay, . . ., A,], since C
is an infinite field.

In particular, we have p(vy, .. .,v,) = 0 forall ; € C. Thus,

Zei®ps(l/l7'-'7ym)20
s=1

in D ®c C. Reversing the expansion of (2.10), we see that 6(y*) = 3(y)y* + yé(y),
where y = szzl e; ® v; € D ®¢ C. This proves our claim.

Clearly, Disa prime locally matrix ring (see [4,7]). In view of [4, Theorem 1.1]
or Theorem 1.1, there exists an element ¢ € D such that

fdx®1)=x®1)c—cx"®1)

forallx € D. Writec = a® 14+ ¢ ® 7 + -+, wherea,¢; € Dand 1,7y,... are
C-independent. This implies that

(5(x)fxa+ax*) RI+( )@y +---=0

for all x € D. Thus, 6(x) = xa — ax* for all x € D. [ |

By applying the same arguments as in the proof of Theorem 2.1, we have the fol-
lowing theorem.

Theorem 2.2 Let D be a 2-torsion free, noncommutative, central division C-algebra
with involution . Suppose that there exists an extension field F of C such that D@¢ F =
M (A) for some division F-algebra A and some s > 1. Then every Jordan x-derivation
of D is inner.

We next deal with the case that R is a ring with exchange involution 7; that is, R
has a ring decomposition R = T & T°P with involution (x, y)" = (y,x) forx,y € T,

where T°P is the ring opposite to T.

Theorem 2.3 Let R be a unital ring with exchange involution 7. Then every Jordan
T-derivation of R is inner.
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Proof Write R = T® TP with involution (x, y)” = (y,x) forx,y € T. Letd: R — R
be a Jordan 7-derivation. Since R is a unital ring, 1z = e; +e,, wheree; = (1,0),e; =
(0,1), and 1 is the identity of the ring T. Thus, e] = e,. For x = (x1,x;) € R, define
x = (x1, —x3). Then

§((x1+1,00%) =6((x1+1,0)) (0,1 + 1) + (x; + 1,006 ( (x; + 1,0)) .
On the other hand,

§((x1+1,00%) =6((x +2x +1,0))
=6((x1,0)) (0,1) + (x1,0)5((x1,0)) +25((x1,0)) +5((1,0)).
Comparing the two equalities above, we see that
(2.11) §((x1,0)) = (x1,0)5(er) + 6(e1)(0,x1).
Similarly, we have
(2.12)  6((0,x)) = (0,%:)d(es) + 6(e2)(x2,0) = —(0,%2)0(ex) — d(en)(x2,0),

where we have used the identity d(e;) = —d(ep) at the second equality above. By
(2.11) and (2.12), we have §(x) = xd(e;) + d(e1)(x)" for all x €ER A direct compu-
tation shows that §(x) = xa — ax” for all x € R, where a := §(e;). [ |

Lemma 2.4 Let N be a field with involution , char N # 2, and let K = {x € N |
x* = —x}. Then the following hold:

(i)  Every Jordan x-derivation of N is inner if K # {0}.

(ii) Every Jordan x-derivation of N is a derivation if K = {0}.

Proof Let §: N — N be a Jordan #-derivation. Since N is a field, §(x?) = (x +
x*)d0(x) forall x € N.

Case 1. Suppose that K # {0}. Choose a nonzero k € K. Let x € N. Note that
5(k*) = 0. Thus,
5((x + k)z) = (x+x")0(x+k),

implying that 25(kx) = (x+x*)d(k). Replacing x by k~x, we see that §(x) = xa—ax*,
where a := 6(k)/2k # 0. This proves (i).

Case 2. Suppose that K = {0}; that is, * is the identity map of N. Thus §(x?) =
2x0(x) for all x € N. By the linearization on x, we get 6(xy) = xd(y) + §(x)y for all
x,y € N. Thatis, ¢ is a derivation of N. |

Proof of Theorem 1.2 Let R be a 2-torsion free, finite-dimensional, semiprime F-al-
gebra with involution %, where F is a field and let §: R — R be a Jordan *-derivation.
By the Wedderburn—Artin Theorem,

R:WI@W2€B"'@Wt,
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where all W; are finite-dimensional, simple, Artinian F-algebras. Note that W,’s are
the only minimal ideals of R. Thus, for each W;, either W* = W; (that is, W; is a
x-ideal of R) or W;* = W for some j # i.

Case 1. Suppose that W* = W,. Then W; is a 2-torsion free, finite-dimensional,
simple F-algebra with involution *. Note that, as an additive group, W; is generated
by elements x? for x € W, since 2W; = W; and 2x = (x + ¢;)> — x> — ¢;, where
e; denotes the identity of W;. This implies that §(W;) C W;. Thus §: W; — W; is
a Jordan *-derivation. By the Wedderburn—Artin Theorem, W; = M,(A) for some
division algebra A and some integer s > 1. If s > 1, then ¢ is inner according to
[4, Theorem 1.2]. If s = 1, then ¢ is inner on W; unless W; is a field and * is the
identity map on W; (see Theorem 2.1 and Lemma 2.4). By Lemma 2.4, §: W; — W;
is a derivation when x is the identity map on W;.

Case 2. Suppose that W;" = W, forsome j # i. Let T := W; @ W; = W; @ W,
Since T is generated by elements x* for x € T as an additive group, T is invariant
under 4. In fact, T = W; & W;” via the map ¢: T — W; & W, defined by

Px+y*) = (x,y) forx,y € W,.

Let 7 denote the exchange involution on W; & W;‘O P: that is, (x,y)” = (y,x) for
x,y € W;. Then ¢(z*) = ¢(2)” for z € T. Thus, T is isomorphic to W; & Wiop as
rings with involution. In view of Theorem 2.3, § is inner on T.
Let
I’ = {i | W; is a field and * is the identity map on W; }.

SetU = Pjer Wiand V = o W;. Clearly, U and V are +-ideals of R and are
invariant under §. Moreover, § is a derivation on U by Lemma 2.4 and the Jordan
«-derivation ¢ on V is inner by Theorems 2.1 and 2.3 and Lemma 2.4. This proves
the theorem. ]

Using the proofs above, we can establish an analog of Theorem 1.2 in the context
of semiprime Artinian rings. Recall that a semiprime Artinian ring R is the direct
sum of finitely many simple Artinian rings. These simple Artinian rings are the only
minimal ideals of R, which are called the components of R. A division component I
of R means that the component I is itself a division ring.

Theorem 2.5 Let R be a 2-torsion free, semiprime, Artinian ring with involution *
such that every x-invariant division component of R is a finite-dimensional central divi-
sion algebra. Suppose that §: R — Ris a Jordan x-derivation. Then there exists a x-ring
decomposition R = U @V such that U and V are invariant under §. Moreover, * is the
identity map of U, § |y is a derivation, and the Jordan x-derivation § |y is inner.

3 Proof of Theorem 1.3

Throughout this section, R always denotes a noncommutative, centrally closed,
prime ring with involution *. Thus, R is a prime C-algebra, where C is the extended
centroid of R. In order to prove Theorem 1.3, we need the well-known result of
Martindale [9, Theorem 2(a)], stated below in a form convenient for our purpose.
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Lemma 3.1 Leta;, bi,cj,d; € R be such that Zf:1 a;xb; + Z;":l cjxdj = 0 for all
x in a nonzero ideal of R. If ay, . .., a; are linearly independent over C, then each b; is
a C-linear combination of the d;’s. Analogously, if by, ..., by are linearly independent
over C, then each a; is a C-linear combination of the c;’s.

Applying the same argument as given in the proof of [8, Lemma 2.6], after replac-
ing Q by R, we have the following lemma.

Lemma 3.2 Letay,...,a, € R be C-independent. If dim¢ R > M, then there
exists y € Rsuch thatay, ..., a,, a1y, ...,a,y are C-independent.

Lemma 3.3 Suppose that the map x — cx* for x € R is an elementary operator of R,
where c is a fixed nonzero element of R. Then dim¢ R < oo.

Proof Suppose on the contrary that dim¢ R = oco. Write cx* =Y.' a;xb; for all
x € R, where a;, b; are fixed elements in R and # is a positive integer. Choose # to be
minimal. Then a4, ..., a, are C-independent.

Letx,y € R. Then c(xy)* = 27:1 aixyb;. On the other hand, c(xy)* = cy*x* =
Yoo aiybix*. Thus,

n n
(3.1) > (ax)ybi = aiy(bix*).

i=1 i=1
In view of Lemma 3.2, there exists x, € R such that ay,...,a,, a1xo,...,da.xy are
C-independent. By (3.1) we have Y ., (aixo)ybi = > ., aiy(bix;) forall y € R. It
follows from Lemma 3.1 that b; = 0 for all i, a contradiction. [ |

Proof of Theorem 1.3 Suppose on the contrary that dim¢ R = co. Since §: R — R
is an elementary operator, there exist finitely many a;,b; € R, 1 < i < m, such that
o(x) = Zlmzl a;xb; for all x € R. Let x, ¥ € R. Since ¢ is Jordan *-derivation of R, it

follows from (2.1) that

Zai(xy +yx)b; = 0(x)y* + Zaiyb,-x* +xZa,~yb,~ + yd(x),

i=1 i=1 i=1

implying that
(32) > laixlybi+ > aiy(xb; — bix®) — yd(x) = 5(x)y".
i=1 i=1
Choose a basis 1 = ¢, ¢y, .. ., ¢; for the C-space C + szzl Ca; and a basis eq, . . ., e

for the C-space Z:":l Cb;. We rewrite (3.2) as

S

t
Z[di,x]ye,- + coy(xho — hox™ — 6(x)) + chy(xhj —hjx") = d(x)y*
j=1

i=1
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forall x,y € R, whereall d;, h; € R are fixed. Write
fo(x) :=xhg — hox™ — 0(x) and fij(x) :=xh; —hjx"for j=1,...,¢.

Then we have

s t

(33) D ldixlyei + Y ey fix) = 5(x)y”

i=1 j=0

forallx,y € R. Letx, y,z € R. By (3.3), we see that
s t
0(x)(yz)* =d(x)z"y* = Z[d,-,x]zeiy* + chzfj(x)y*.
i=1 =0

On the other hand, §(x)(yz)* = >_I_, [di, x]yze; + Z;:o cjyzfi(x). Thus,

N N

B4) D (ezfix) = > cialfix)y™) = ldi,xlzley™) = > (di, x]y) ze;.
j=0 j=0

i=1 i=1

Since dim¢ R = o0, it follows from Lemma 3.2 that e, ..., e, e¥5, .- ., ey; are
C-independent for some y, € R. By (3.4), we have

> (eiyo)zfitx) = Y ciz(fix)ys) = > ldi xlz(eiys) — Y ([di, x]yo)ze;.
i=1

j=0 j=0 i=1

By Lemma 3.1, [d;,R] C Z;:OC(C]‘)/()) + Z;:o Ccj fori = 1,...,s. Since
dimc R = o0, it follows from [1, Theorem 2] that d; € C fori = 1,...,s. Thus,
(3.4) is reduced to

t t
(3.5) > ipzfitx) = > cjalfilx)y™) = 0.
j=0 j=0
By Lemma 3.2 again, there exists yy € R such that ¢y, ..., ¢, coYo,-- ., ¢ yo are C-in-

dependent. By (3.5), we have

> iyozfix) = Y ciz(fix)ys) =0

j=0 j=0

forall x, z € R. In view of Lemma 3.1, f;(x) = 0 for all x € R and all j. In particular,
fo = 0; that is, §(x) = xhy — hox™ for all x € R. Since J is a nonzero elementary
operator, hy # 0 and the map x — hox* for x € R is also an elementary operator of
R. In view of Lemma 3.3, dim¢ R < o0, a contradiction.

Up to now, we have proved that dim¢ R < oo. In view of Posner’s Theorem
[6, Theorem 2 (p. 57)] R is a finite-dimensional central simple C-algebra. Thus, by
Theorem 1.2, the Jordan x-derivation ¢ of R is inner, as asserted. [ |
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