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DEFORMATIONS OF SECONDARY CLASSES 
FOR SUBFOLIATIONS 

DEMETRIO DOMINGUEZ 

ABSTRACT. The purpose of this paper is to study the rigidity and deformations of 
secondary characteristic classes for subfoliations. 

1. Introduction. Let M be an «-dimensional manifold, TM its tangent bundle. A 
(#i,#2)-codimensional subfoliation on M is a couple (Fi,F2) of integrable subbundles 
Ft of TM of dimension n — qt, i = 1,2, and such that F2 C F\. Feigin [9], Cordero-
Masa [3], Carballés [1], Wolak [16] and the author ([4], [5], [6], [7], [8]) have studied 
the secondary characteristic classes for subfoliations. 

In this paper, using the techniques of Cordero-Masa [3], we discuss the rigidity and 
deformations of secondary characteristic classes for subfoliations. This generalizes the 
result of Heitsch [11] on the rigidity of secondary characteristic classes of a foliation 
under one-parameter deformations. 

In Section 2 we prove the rigidity theorem for subfoliations which generalizes 
Heitsch's rigidity theorem [11] for foliations. This result is then applied in Section 3 
to see which classes of the Vey basis of H*(W0i) (as defined in [4]) are rigid. It follows 
in particular that the Godbillon-Vey classes for subfoliations of codimension (q\, qi) are 
variable. A similar result holds for subfoliations with trivialized normal bundle (in the 
sense of [3]). 

The variable classes are used in [8] to prove that the homology group 
H2q2+2(Br(quq2y,Z) admits an epimorphism onto Euclidean space, where BT(quq2) is the 
Haefliger classifying space for subfoliations of codimension (q\,qi) (as defined in [7]). 

Throughout the paper all objects are of type C°°. 

2. Deformations of secondary classes for subfoliations. In this section, using the 
techniques of [3], [4] and [7], we discuss the rigidity and deformations of secondary 
characteristic classes for subfoliations. 

For any manifold M, TM denotes the tangent bundle of M, and A*(M) the algebra of 
differential forms on M. If (F\, F2)is a subfoliation (q\, #2)-codimensional on M, then Qt 

denotes the normal bundle vFt = TM/ F/ of Fhi = 1,2, (2o the quotient bundle F\j F2, 
and v(F\, F2) the normal bundle Q\ © Q0 of (F\, F2). If V l and V ° are two connections 
on a vector bundle E over M with structure group GL(#) = GL(q; R), and if 

<t> =?«, A -.-A yit®d{ • • •4 ' € A(yi, . . . ,^)®fl[ci , . . . ,Cf] 
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is an element (here the yia are the relative suspensions of the Chern polynomials cia G 
l(GL(q)) = R[cx,...,cq] with ^ < < is), then </> (V \ V °) denotes the differential 
form 

A(V \ V°)(Ci,) A • • • A A(V \V°)(cis) A a(Qlyi A • • • A cq(Q}y« € A*(A#), 

where Q1 is the curvature of V l and A(V \ V°)(qa) = 7r*(c;a(£I)), where £2 is the 
curvature of the connection V = tV l + (1 — t)V ° on the vector bundle E x [0,1] over 
M x [0,1] and 7r*: Ar(M x [0,1]) —> Ar-1(M) denotes integration over the fiber of the 
disc bundle M x [0,1] over M. 

Let (Fi, F2) and (F, Fi) be subfoliations on M of codimension (m + #1, m + q2) and 
(ra,m + gO respectively with d — q2 — q\ ^ 0 and m ^ 1. Let TV be a leaf of F 
and /AT: N —> M the canonical immersion. Then the subfoliation (Fi, F2) induces on N a 
(#i,#2)-codimensional subfoliation (F\N,F2N) = (^1 |w,^2 |A0- Analogously, the exact 
sequences of vector bundles 

0 — Qo — Ô2 — £1 — 0 
0 -> F /F i -> Ô! -+ vF -> 0 

associated to (F\,F2) and (F,Fi) respectively with i/F = FM/F, induce the following 
exact sequences of vector bundles over N: 

0 —• ôow = F\N/ FIN —• Ô2 |/v ~* Gi IN ~~*" 0 
0 — QIN = TN/FIN — & |„ _> vN ^ 0 

where i/N = i/F \N is the normal bundle of the leaf N of F. It is easy to verify that the 
vector bundle (F/ F\ ) 0 go over M is canonically (Fi, F2)-foliated and that the canonical 
(Fiyy, F2Ar)-foliated bundle structure of the normal bundle v(F\N,F2N) = Q\N ® QON 
of the subfoliation (F\N, F2N) on N is induced by the canonical (F\, F2)-foliated bundle 
structure of (F/ Fi ) 0 g0-

LEMMA 2.1. The following diagram is commutative 

H\W0r)
 A ^ 2 ) / /^ (M) 

//*(M)7) ^ S ^ H*DR(N) 

where A*(F, ,F2)
 flW^ A*(FW,F2N)

 are tne characteristic homomorphisms of (Fi,F2) an J 
(FIA^, F2AT) respectively (as defined in [3]), W0r (resp. W0i) is the complex correspond­
ing to the pair (m + q\,m + q2) (resp. (q\,q2)), and W(dp)* denotes the homomorphism 
induced by the canonical inclusion 

p:GL(qi) x GL(d) -> (GL(m) x GL(^0) x GL(d) -> GL(m + 4O x GL(d). 

PROOF. Let Z(U>JJ>) = y^ A y[tl) C*D c ^ c ^ G W0// be a cocycle of the Vey ba­
sis (see [4]). Denote by <j> (resp. by (/>') the element y^ ® C(/) = y,, A • • • A yis (g> 
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c*l ' "Cm+q, G A(yuy3,...) <g> R[cuc2,.. .,cm+qi] (resp. y ^ <g> c ^ = )£ A • • • A yf
f <g> 

<?{-'<?£ e A(y'l,y
,
3,...)®R[c'l,c'2,...,c'd])v/ithil < < is md i\ < < ij,, 

where the y; (resp. the yj) are the relative suspensions of the odd Chern polynomials c,- G 
/(GL(m + ^ ) ) = /?[c!,...,cm+<?1] (resp. c\ G /(GL(J)) - R[dl9... ,</,]), degc, = 
degc- = 2/ and deg yt = degyj = 2/ — 1. Then Zo/,//) = </> • </>' G WO/'. Consider now 
the exact sequence of vector bundles 

0 - > F / F i - ^ G i - ^ i / F - > 0 

associated to (F,Fi). By Theorem 3.3 in [3], we can choose basic connections V/, Vi, 
V F (analogously, Riemannian connections V/r, Vf, V/) on F/F\, Q\ and i/F respec­
tively, and such that they are compatible with the homomorphisms / and 7r (in the sense 
of [3]). Therefore, V = VF 0 V/ is a basic connection and V / r = Vf 0 V/ r is a 
Riemannian connection on vF 0 (F/ Fi) (in the sense of [3]). 

Let a i , . . . , am+qi be a local framing of Q\ such that 7r (<TI ) , . . . , n (am ) is a local framing 
of i/F and crm+i,..., am+qi is a local framing of Fj F\. An easy computation shows that 
with respect to the local framing au..., am+qx, the local connection forms 6\ and 0f of 
Vi and Vf are given by 

* = ( v ; ( ] -
ar_\er

F o i 1 " I * er J ' 
respectively, where 0F and Of (resp. 0/ and 0/r are the local connection forms of V F 
and Vf (resp. of V{ and V{r) with respect to the local framing Tr(a\),..., 7r(am) (resp. 
am+\,..., am+qi ). Hence we have 

(2.2) 4>(VuV{) = $(Vf,V'r)eA*(M). 

Now, let Vo be a basic connection and V0
r a Riemannian connection on go- Then 

Vb — Vi 0 Vo (resp. V r = Vf 0 V0
r) is a basic connection (resp. a Riemannian 

connection) on v(Fu F2) — Q\ 0 ôo> and we can use V b and V r to compute the char­
acteristic homomorphism A3|C(F1,F2) of (F\,F2) (see [3]). From (2.2) it follows that the 
cohomology class A*(F1^2)b(MW)] ^ FIpR(M) *S represented by the closed form 

<MVi,Vf) A </>'(V0,V0
r) = </>(V',V'r) A </>'(Vo,V0

r) G A*(M). 

Next, consider the canonical immersion i^-.N —• M. Then V# = / # (VF) (resp. 
V^ = /#(V/)) is the natural flat connection (resp. a Riemannian connection) on i/N, 
and V^ = V\N 0 Vow (resp. V N — V{N 0 V0^)is a basic connection (resp. a Rieman­
nian connection) on i/(F\N,F2N) = Giw 0 Gcw» where Vi# = i*N(VJ), VON = ^(Vo), 
Vfy = /#(V/r) and VQ^ = ÎN(VQ). Whence, we can use V# and V ^ to compute the 
characteristic homomorphism A*(F1Af,F̂ ) of (Fi#, F2^). Denote by V# (resp. by V^) the 

https://doi.org/10.4153/CMB-1992-024-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1992-024-3


170 D. DOMINGUEZ 

connection V# © Vi# (resp. the Riemannian connection V^ 0 V[N) on i/N © Q\N. By 
(2.2) we have then 

(2.3) i*N(<j>(VuV{) A c/>'(Vo,V00) - </>(V;,V;0 A ^(Vcw.V^) G A*(AO-

In order to compute the differential form <j) ( V#, V^) we consider the restriction ho-
momorphism 

/(GL(m + ci)) - ^ /(GL(m)) 0 l(GUqù) 

R[c\,..., cm+(?1 ] —• JRCc7!,..., <4] ® R[c\,..., cqx ] 

given by 

(2.4) Pi*c,- = ^cJ.Ci_/, i = l , . . . , m+ ^1 

with CQ = 1, co = 1, d{ — 0 for / > m, and a = 0 G /(GL(0i)) for / > 0i, where the a 
and c' denote the Chern polynomials. By (2.4) we have 

/ 
(2. 5) P*C2i-\ = ]£(4*-lc2(i-*) + 4(i-*)c2*-l), 

/ = 1, . . . , [(m + 0i + 1)/ 2]. Now, denote by Q!N, QN and Qiw the curvatures of V#, V# 
and Viw respectively. Since £1^ = 0, it follows from (2.4) that 

(2.6) C{j)(Q!N) = ^ ( O I A O , 

where £(/) G /(GL(ra + 0i)) on the left, and C(j) € /(GL(0i)) on the right. On the other 
hand, using (2.5), we obtain by an easy computation the formula 

A(V;, V£)(c2l--i) = £ A(V/v, V J X c ^ i ) A c2(/_,)(Qi^) 
(2.7) *:= 1 

+ A(ViN, Viryv)(c2/-i) + exact. 

Now, if 2k— 1 =5 m, and if 2/— l+/?i > ra+0i or 2/— \+p > m+q2, then2(/—fc)+/?i > 0i 
or 2(/ — £)+ /?> 02» where 2p\ = degC(/>, 2/?2 = degc^ and/7 = p\ +P2- Hence, by 
(2.3), (2.6) and (2.7) it follows that 

rN(AHFuF2)lz(U'jj')]) = M(V; ,V£) A (^ ' (VO^VQ^)] 

= [( A A(VIJV, V ^ X c j ) A c0)(^iN) A 0'(V(w, V ^ ) ] 

a=l 

= A*(Fw,F2W)(W(dp)*[z(lyl/7)]). • 

REMARKS. 1 ) In the previous results, the leaf NofF can be replaced by any (n — m)-
dimensional integral manifold of F, where n is the dimension of the manifold M. 
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2) A similar result holds for subfoliations with trivialized normal bundle (in the sense 
of [3]). 

Let / : M —> X be a submersion, where X is a manifold of dimension m ^ 1. Con­
sider now the case where F is the tangent bundle T(f) along the fibers off. Then the 
(m + q\,m + ^2)-codimensional subfoliation (Fi, F2) on M can be considered as a defor­
mation of the subfoliations (F\x, Fix) — (F\NX, ^INX) of codimension (quqi) on the fibers 
Nx — f~l(x), x E/(M) C X. Then, from Lemma 2.1 we obtain the following result. 

THEOREM 2.8. For every x E/(Af) C X} the following diagram is commutative 

H*(WOP) A ^ 2 ) H*DRm 

1 WW>* 1 '"* 
H*(W0d A * ^ ? ) H*DR(NX) 

where W(dp)* is as in Lemma 2.1 and ix'.Nx = f~l(x) —> M denotes the canonical 
inclusion. 

Let N be a manifold and X an m-dimensional connected manifold with m ^ 1. Assume 
now that M = N xX and that/: M —* X is the canonical projection. Then the homomor-
phism /*: H*DR{M) —• H*DR(N) induced by the canonical inclusion ix:N = N x {x} = 
f~l(x) —> M = N x X does not depend on the choice of JC G X. From Theorem 2.8 it 
follows then that the classes 

A*(F1JC,FJ(") € //^(AO for uelm W(dp)* C tf*(M>/) 

do not depend on the choice of x G X. Hence, we have 

COROLLARY 2.9. The classes A*(FI^F2X)(M), u elm W(dp)*> are rigid for m ^ 1. 

REMARK. This generalizes the result of Heitsch [11] on the rigidity of secondary 
characteristic classes of a foliation under one-parameter deformations. That is the case 
where F\ = F2, q\ — qi, m — 1 and/: M = N x R —• R is the canonical projection. 

Let A*: //*(M)7) -> i/*(£r; R) and A'*: //*(M)7/) —• H*(BV; R) be the universal char­
acteristic homomorphisms for subfoliations of codimension (#i, #2) and (m + qi,m + q2) 
respectively (as defined in [7]), where BT (resp. BF) denotes the Haefliger classifying 
space for subfoliations of codimension (q\, qi) (resp. (m+q\, m+qi)). Then the following 
is easily verified. 

THEOREM 2.10. There is a commutative diagram 

H*(W0r) -^-> H*(BT';R) 

[w(dPy [r 

//*(M)7) -^ H*(BT;R) 

with canonical vertical homomorphisms. 
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3. Results on H*(W0i). In order to see which classes of the Vey basis 6>///*(M)/) 

are rigid, we consider the homomorphism W(dp)*: H*(W0r) —> H*(W0i) induced by the 

DG-algebra homomorphism W(dp): WO// —• WO/ given by 

w(dpxc,)=ic' frl-\-<q-< 
p [O forqi + l ^ i^ m + q]f 

W(dp)(yi) = 
yt for 1 ^ / ^ q\, i odd, 
0 for q\ + 1 ^ / ^ m + q\, i odd 

W(dp)($ = Jifori Û i^ d, 

Widp)^) = yjor 1 ^ i è d, i odd. 

Then, from Theorem 2.8 and Corollary 2.9 we obtain for m — 1 the following result. 

THEOREM 3.1. Let the notation be as in [4]. Consider in H*(W0j) the cohomology 

classes [Z(Wjj')] of the cocycles Zaj'jj') = y^ A y ^ f S ) ^ ) ^ G WO/ of the Vey basis with 

degC(/) = 2/?i, d e g c ^ = 2/?2 andp — p\ + P2- Then we have 

(i)An R-basis of the rigid classes ofH*(WOi) is given by the elements [Z(u'jj')] of the 

Vey basis ofH*(WOi) satisfying 

/o + P\ = q\ + 2 or i'o +p = #2 + 2, and i'0 + /? ^ q2 + 2. 

(n) 77i£ elements [zaj'jj')] of the Vey basis of H*(W0i) satisfying at least one of the 

following conditions: 

(a) i0 +p\ = q\ + 1, I'O +/> = 42 + 1, i'0+p = qi + 1; 

(bj i'o +p i ^ <?I + 1, i'o +p = q2 + 1, i'o + p = <?2 + 1; 

(c) i'o +p i ^ <?i + 1, *o + Z7 = ^2 + 1; 

fjj lo + /? ^ #2 + 1, «o +P = #2 + 1 
are r/ze orc(y elements of the Vey basis ofH*(WOi) which do not belong to Im W(dp)* C 

H*(WOi). Thus these secondary classes are variable. 

COROLLARY 3.2. The Godbillon-Vey classes \yx <g> cf] G 7/2<7,+1(WO/), 

lVi ® ^ f "1 G //2«2+1(W07) and \yx A y\ ® ^ c f ' ] G //2«2+2(W07), O ^ j â tfi, 
for subfoliations of codimension (#1,02) are variable. 

REMARKS. 1) Similar results hold for subfoliations with trivialized normal bundle. 

2) For q\ = q2 = q,v/c have the result of Heitsch [11]. 

3) The computations for some examples of subfoliations with variable classes are 

given in [8]. 
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