
Proceedings of the Edinburgh Mathematical Society (2010) 53, 125–141 c©
DOI:10.1017/S0013091507001393 Printed in the United Kingdom

SUPERLINEAR ELLIPTIC EQUATION FOR
FULLY NONLINEAR OPERATORS WITHOUT
GROWTH RESTRICTIONS FOR THE DATA

MARIA J. ESTEBAN1, PATRICIO L. FELMER2 AND ALEXANDER QUAAS3

1Ceremade UMR CNRS 7534, Université Paris Dauphine,
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Abstract We deal with existence and uniqueness of the solution to the fully nonlinear equation

−F (D2u) + |u|s−1u = f(x) in R
n,

where s > 1 and f satisfies only local integrability conditions. This result is well known when, instead of
the fully nonlinear elliptic operator F , the Laplacian or a divergence-form operator is considered. Our
existence results use the Alexandroff–Bakelman–Pucci inequality since we cannot use any variational
formulation. For radially symmetric f , and in the particular case where F is a maximal Pucci operator,
we can prove our results under fewer integrability assumptions, taking advantage of an appropriate
variational formulation. We also obtain an existence result with boundary blow-up in smooth domains.
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1. Introduction

The problem we study in this paper is the solvability of the differential equation

−F (D2u) + |u|s−1u = f(x) in R
N , (1.1)

when F is a fully nonlinear, uniformly elliptic operator, s > 1 and f has only local
integrability properties, but without assuming any growth condition at infinity.

When F (D2u) is replaced by the Laplace operator, Brezis showed in [3] that whenever
s > 1 one can find a (unique) solution to the above problem assuming only local integra-
bility of f . This very weak assumption is sufficient when the nonlinearity is increasing
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and superlinear, as in the case of |u|s−1u with s > 1. This result was extended to the
case of a general quasilinear operator, including the p-Laplace operator, and to parabolic
equations by Boccardo et al . in [1] and [2], respectively (see also [16], where more gen-
eral nonlinearities are considered). In all these works, the existence of the solution is
obtained by using in a crucial way the variational structure of the equation by choosing
appropriate test functions to obtain a priori estimates.

On the operator F we assume uniform ellipticity, that is

M−
λ,Λ(M − N) � F (M) − F (N) � M+

λ,Λ(M − N) for all N, M ∈ SN

and F (0) = 0. Here 0 < λ � Λ, M+
λ,Λ and M−

λ,Λ are the extremal Pucci operators as
defined in [4] and SN is the set of N × N symmetric matrices. We assume throughout
that F satisfies this condition. Whenever no confusion arises we will simply write M+

and M−, omitting the parameters. In order to find a solution to (1.1), we have to work
in the viscosity solution framework and we cannot use test functions and integration by
parts to derive a priori estimates. The use of the viscosity theory forces us to work in the
LN (RN ) framework and, indeed, the presence of the |u|s−1u term in the equation allows
us also to prove the existence of a unique LN -viscosity for (1.1) whenever f ∈ LN

loc(R
N ).

Since there is no available theory for the viscosity solution when f ∈ L1
loc(R

N ), at this
point we cannot expect to obtain results under this weaker condition as they do in [3].
However, in view of our results in § 3 for the radially symmetric case, one may expect to
find solutions when f has less than LN -integrability, but at this point we are not able to
do it. Our first theorem is the following.

Theorem 1.1. Assume that s > 1. For every function f ∈ LN
loc(R

N ), (1.1) possesses a
unique solution in the LN -viscosity sense and if f � 0 a.e., then u(x) � 0 for all x ∈ R

N .

The formal definition of the solution is given in § 2.
It is well known that in the case of superlinear problems one can find solutions which

blow up at the boundary of a bounded domain. This has been shown for various cases of
linear and nonlinear second-order elliptic operators in divergence form (see, for instance,
the work by Keller [13], Loewner and Nirenberg [17], Kondrat’ev and Nikishkin [14],
Dı́az and Letelier [11], Dı́az and Dı́az [10], Del Pino and Letelier [9] and Marcus and
Veron [18]).

In the case of fully nonlinear operators, the techniques used to prove Theorem 1.1 can
also be used to prove the following theorem on the existence of solutions in a bounded
set, with blow-up on the boundary. The simplest situation is the following.

Theorem 1.2. Let s > 1 and let Ω ⊂ R
N be a bounded domain in R

N . Assume that
f ∈ LN

loc(Ω) and for some g ∈ LN (Ω) we have f � g. Then the equation

−F (D2u) + |u|s−1u = f in Ω, (1.2 a)

lim
x→∂Ω

u(x) = ∞ (1.2 b)

possesses at least one solution in the LN -viscosity sense.
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Here we only address this simple situation, but the same kind of results should also
hold true under more general assumptions. Moreover, the asymptotic study of the blow-
up rate, when f ∈ LN (Ω) or when f itself blows up at the boundary, is an interesting
problem due to the nonlinearity of the differential operator.

At this point we bring to the attention of the reader the work of Labutin [15], who
studies the local behaviour of solutions to the same type of equations as ours, without
the right-hand side, establishing removability of singularities.

In the second part of this paper we analyse the case of radially symmetric data f .
Here we can prove the existence and uniqueness of solutions under weaker integrability
assumptions on f but only in the particular case when F is the maximal Pucci operator.
The reason for this is that in the radial case we can rewrite (1.1) as a divergence-form
quasilinear ordinary differential equation, for which one can define the notion of a weak
solution. In this case we are back to integration-by-parts techniques.

The comparison between radial solutions and positivity results, however, is not made
directly. This is because the coefficient of the second-order derivative in the equation
depends on the solution and its first derivative in a nonlinear way. Thus, when comparing
two solutions, we do not have an obvious common factor for the second derivative of the
difference or, if we have it, we do not control its integrability at the origin. An ad hoc
argument has to be found to make a comparison in this case (see Lemma 3.6).

Theorem 1.3. Assume that s > 1 and that f is a radially symmetric function satis-
fying ∫ R

0
rN+−1|f(r)| dr < ∞ (1.3)

for all R > 0. Here
N+ :=

λ

Λ
(N − 1) + 1,

with λ and Λ being the parameters defining the Pucci operator M+
λ,Λ. Then (1.1) with

F = M+
λ,Λ has a unique weak radially symmetric solution and if f is non-negative, then

u is also non-negative.

The formal definition of a radially symmetric weak solution and the proof of Theo-
rem 1.3 are given in § 3. See also Remark 3.7, where we discuss the assumptions on f in
this case.

Remark 1.4. In all our results, the power function |u|s−1u could be replaced with
nonlinear functions which are superlinear at infinity. However, for simplicity, throughout
the paper we will only deal with the pure power case [1,3,16]. Let us also stress that the
assumption s > 1 is essential for our results to hold, as we can see from the discussion
in [1].

2. The general case with f ∈ LN
loc(R

N)

We devote this section to proving Theorem 1.1 by an approximation procedure together
with a local estimate based on a truncation argument and the application of the
Alexandroff–Bakelman–Pucci inequality.
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We start by recalling the notion of solution suitable when the right-hand side in (1.1)
is only in Lp

loc(R
N ). Following the work by Caffarelli et al . [6], we first notice that the

framework requires p > N − ε0, where ε0 > 0 depends on the ellipticity constants λ and
Λ. Thus, the case p = N , which is our framework, is covered by the theory. Even though
the context of the definitions in [6] is much more general, for the purposes of this paper
we only consider a ‘semilinear’ case (1.1)

−F (D2u) + G(u) = f(x) in R
N , (2.1)

where G is an increasing continuous odd function. According to [6] we have the following
definition.

Definition 2.1. Assume that f ∈ Lp
loc(R

N ). Then we say that a continuous function
u : R

N → R is an Lp-viscosity subsolution (supersolution) of (2.1) in R
N if for all

ϕ ∈ W 2,p
loc (RN ) and a point x̂ ∈ R

N at which u − ϕ has a local maximum and minimum,
respectively, one has

ess lim inf
x→x̂

(−F (D2ϕ(x)) + G(u(x)) − f(x)) � 0 (2.2)

and

ess lim sup
x→x̂

(−F (D2ϕ(x)) + G(u(x)) − f(x)) � 0. (2.3)

Moreover, u is an Lp-viscosity solution of (2.1) if it is both and Lp-viscosity subsolution
and an Lp-viscosity supersolution.

In what follows we say that u is a C-viscosity (sub- or super-) solution of (2.1) when
in the definition above we replace the test-function space W 2,p

loc (RN ) by C2(RN ). In this
case the limits (2.2) and (2.3) become simple evaluation at x̂, as given in [7].

As we mentioned above, the idea is to consider a sequence of approximate problems
and then take the limit at the end. So, given f ∈ LN

loc(R
N ), we assume that {fn} is a

sequence of C∞(RN ) functions so that, for every bounded set Ω,

lim
n→∞

∫
Ω

|fn − f |N dx = 0. (2.4)

The sequence {fn} is easily constructed by mollification and a diagonal argument.
The following is a basic existence and regularity result we need in our construction of

a solution to (1.1).

Lemma 2.2. For every n ∈ N there is a solution un ∈ C1(Bn) of the equation

−F (D2un) +
1
n

un + |un|s−1un = fn(x) in Bn, (2.5)

where Bn = B(0, n) is the ball centred at 0 and with radius n.
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Proof. We observe that there is a constant Mn so that

−Ms
n � fn(x) � Ms

n for all x ∈ Bn

and then v− = −Mn and v+ = Mn are the subsolution and subsolution of (2.5), respec-
tively. Then we can use the existence theorem [7, Theorem 4.1] for viscosity solutions
of (2.5) to find un a C-viscosity solution. We observe that the hypotheses of Theorem 4.1
are fully satisfied by our operator, which is proper and satisfies the other hypothesis with
γ = 1/n [7]. Noticing that un solves the equation

F (D2un) = gn (2.6)

for the continuous function gn(x) = un(x)/n + |un(x)|sun(x) − fn(x), we have un ∈
C1,β(Bn), for certain β > 0, by applying the regularity theory of Caffarelli [5]. �

Our next lemma is a version of Kato’s inequality for C-viscosity solutions of (2.1) with
continuous right-hand side.

Lemma 2.3. Assume Ω ⊂ R
N and u, v, f : Ω → R are continuous functions and let

H(x) = G(u(x)) − G(v(x)). If u − v is a C-viscosity solution of equation

−F (D2(u − v)) + H(x) � f in Ω, (2.7)

then (u − v)+ is a C-viscosity solution of

−F (D2(u − v)+) + H+ � f+ in Ω. (2.8)

Proof. If x ∈ Ω satisfies u(x) − v(x) > 0 or u(x) − v(x) < 0, then obviously u − v

satisfies (2.8) at x. If u(x)−v(x) = 0, then we choose a test function ϕ so that (u−v)+−ϕ

has a local maximum at x, but then (u − v) − ϕ has a local maximum at x and then we
may use (2.7) to obtain

−F (D2ϕ(x)) � f+

so that (2.8) is satisfied in x, since H(x) = 0. �

Now we give a generalization of Kato’s inequality [12] for C-viscosity solutions of (2.1).

Lemma 2.4. If we assume that u, f : Ω → R are continuous functions and u is a
C-viscosity solution of equation

−F (D2u) + G(u) = f in Ω, (2.9)

then |u| satisfies

−M+(D2|u|) + G(|u|) � |f | in Ω (2.10)

in the C-viscosity sense.
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Proof. We first use v = 0 in Lemma 2.3 to get that u+ is a subsolution with f+ as
right-hand side, and then observe that

−M+(D2(−u)) + G(−u) � f−,

since F � M+ and M− � M+, which yields that u− is a subsolution with f− as
right-hand side. We conclude that |u| = max{u+, u−} satisfies (2.10). �

The following lemma contains the crucial local estimate for solutions of (2.5). This
result was proved by Brezis [3] in the context of the Laplacian and says that solutions
have local estimates independent of the global behaviour of f . The approach in [3] (see
also [1]) is to use suitable test functions and integration by parts. This cannot be done
here, since the differential operator does not have divergence form. For this result the
fact that s > 1 is essential.

Lemma 2.5. Let s > 1 and let g be continuous in Ω ⊂ R
N , an open set. Suppose

that g � 0 in Ω and u is a C1(Ω) non-negative C-viscosity solution of

−M+(D2u) +
1
n

u + |u|s−1u � g in Ω.

Then, for all R > 0 and R′ > R such that BR′ ⊂ Ω,

sup
BR

u � C(1 + ‖g‖LN (BR′ )), (2.11)

where C = C(s, R, R′, N, λ, Λ) does not depend on g or n.

Proof. Let ξ(x) = (R′)2 −|x|2 and β = 2/(s−1) and consider v = ξβu. Now we want
to find the equation satisfied by v. Suppose that v−ϕ has a local maximum, v(x̂) = ϕ(x̂),
Dv(x̂) = Dϕ(x̂) and ϕ ∈ C2. Then u− ξ−βϕ has a local maximum at x̂. Therefore, ξ−βϕ

is a test function for u and so

−M+(D2ϕ) +
1
n

ϕ + ξ−2|ϕ|s−1ϕ � ξβg + I + II + III, (2.12)

where

I := −βξ−1vM−(D2ξ), (2.13)

II := β(β + 1)ξ−2vM+(Dξ ⊗ Dξ), (2.14)

III := −βξ−1M−(Dξ ⊗ Dϕ + Dϕ ⊗ Dξ). (2.15)

So v satisfies the equation

−M+(D2v) +
1
n

ξ−2v + v|v|s−1 � ξβg + I + II + III (2.16)

in B(R′) in the C-viscosity sense. Here in I, II and III we replace Dϕ by Dv.
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In what follows we write Ω+ = {x ∈ Ω | v(x) > 0}. Consider the contact set for the
function v, which is defined as

Γ+
v = {x ∈ BR′ | ∃p ∈ R

N with v(y) � v(x) + 〈p, y − x〉 for all y ∈ BR′}.

We observe that Γ+
v ⊂ Ω+ ∩ BR′ and that if v̄ is the concave envelope of v in B̄R′ , then

for x ∈ BR′ we have v(x) = v̄(x) if and only if x ∈ Γ+
v . The function v̄, being concave,

satisfies
v̄(y) � v(x) + 〈Dv(x), y − x〉

for all x ∈ Γ+
v and y ∈ B̄R′ . Choosing adequately y ∈ ∂BR′ we obtain

|Dv(x)| � v(x)
R′ − |x| for all x ∈ Γ+

v . (2.17)

Now we claim that the function v satisfies

−M+(D2v) + ξ−2v(|v|s−1 − C) � ξβg for all x ∈ Γ+
v .

Notice that in Γ+
v we have I, II � Cξ−2v and

III � cξ−1|Dv| � c(R′ + |x|)ξ−2v � Cξ−2v,

where we used (2.17). Here c and C are constants depending on R′ and s. Therefore, the
claim follows.

Now we define w = max{v − C1/(p−1), 0} in BR′ and we observe that Γ+
w ⊂ Γ+

v and
Γ+

w ⊂ {x ∈ BR′ | w > 0}. Consequently,

−M+(D2w) � ξβg a.e. in Γ+
w .

Thus, from the Alexandroff–Bakelman–Pucci inequality (see, for example, [4]),

sup
BR′

w � C‖ξβg‖LN (BR′ ),

but then
c sup

BR

u � sup
BR′

v � sup
BR′

w + C1/(p−1) � C(1 + ‖g‖LN (BR′ )),

where c and C represent generic constants depending only on s, R, R′, N , λ and Λ but
not on g or n, as desired. �

Remark 2.6. Observe that in this estimate the constant C does not even depend
on the possibly arbitrary values of u on ∂Ω. This fact is very important in the study of
solutions of this equation having blow-up on the boundary of Ω, as we see in Theorem 1.2.

Proof of Theorem 1.1 (existence). We start with a sequence of smooth functions
{fn} such that, for every bounded set Ω, (2.4) holds. Then we use Lemma 2.2 to construct
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a sequence of solutions {un} of (2.5). According to Lemmas 2.4 and 2.5, for every 0 <

R < R′ < n we have
sup
BR

|un| � C(1 + ‖f‖LN (B′
R)),

where C does not depend on f or n. With this inequality in hand we look at (2.5) and
use [4, Proposition 4.10] to obtain, for every bounded open set Ω,

‖un‖Cα(Ω) � C,

where C depends not on n, but only on f , Ω and the other parameters. By a diagonal
procedure, we then obtain a subsequence of solutions of equation

−F (D2un) + cnun + |un|s−1un = fn,

which we continue to call {un}, such that un converges uniformly over every bounded
subset of R

N . Here the equation holds in B1/cn
, with cn → 0 as n → ∞, and fn has been

redefined. Then using [6, Theorem 3.8] we conclude that u is an LN -viscosity solution
of (1.1), completing the proof of the existence part of the Theorem 1.1. �

The next lemma gives the positivity part of Theorem 1.1.

Lemma 2.7. Assume that s > 1. If f � 0 a.e. and u solves (1.1) in the LN -viscosity
sense, then u � 0 in R

N and if f � 0 a.e., then u � 0 in R
N .

Proof. We proceed as in [3], considering the function defined by Osserman in [19]:

U(x) =
CRβ

(R2 − |x|2)β
in BR, R > 0,

where β = 2/(s − 1) and Cs−1 = 2βΛ max{N, β + 1}. Since U ′ and U ′′ are positive, we
see that M+(D2U) = Λ∆U and then a direct computation gives that

−M+(D2U) + Us � 0 in BR. (2.18)

From this, the equation for u and the non-positivity of f we obtain

−M+(D2(u − U)) + |u|s−1u − Us � 0.

We observe that this inequality is in the LN -viscosity sense. However, since f was
dropped, it also holds in the C-viscosity sense. Then by Lemma 2.3 we find that

−M+(D2(u − U)+) + (|u|s−1u − Us)+ � 0,

whence we get
−M+(D2(u − U)+) � 0 in BR.

We observe that the function u − U is negative in the set R − δ � |x| < R, for some
sufficiently small δ > 0. Then, by the Alexandroff–Bakelman–Pucci maximum principle,
(u−U)+ = 0, which implies that u−U � 0 in BR. From here, taking the pointwise limit
as R → ∞, we find that u � 0.

In the case when f � 0 we proceed similarly, but rely on Lemma 2.3, with the operator
M−, to obtain that u + U � 0 in BR. From here the result follows. �
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Proof of Theorem 1.1 (uniqueness). If u1 and u2 are solutions of (1.1), then the
continuous function w = u1 − u2 satisfies

−M+(D2w) + |u1|s−1u1 − |u2|s−1u2 � 0

in the C-viscosity sense (see, for example, [8, Proposition 2.1]). Next we use Lemma 2.3
to obtain

−M+(D2w+) + (|u1|s−1u1 − |u2|s−1u2)+ � 0

and, using the fact that

||a|s−1a − |b|s−1b| � δ|a − b|s for all a, b ∈ R

for certain δ > 0, we conclude that

−M+(D2w+) + δ(w+)s � 0. (2.19)

Using Lemma 2.7 we obtain that u1 − u2 � 0. Interchanging the roles of u1 and u2, we
complete the proof. �

Next we give an existence theorem for explosive solutions, whose proof follows easily
from the estimate given in Lemma 2.5. We keep it in the simplest form, but we believe
it may be extended to more general situations.

Proof of Theorem 1.2. We first consider an increasing sequence of smooth functions
{fn} ⊂ LN (Ω) such

lim
n→∞

∫
Ω

|fn − f |N = 0.

Then we find un, a solution to the problem

−F (D2un) + |un|s−1un = fn in Ω,

un = n in ∂Ω.

Letting wn = un+1 − un, we see that wn satisfies

−M+(D2wn) + |un+1|s−1un+1 − |un|s−1un � fn+1 − fn.

Then we may use the Alexandroff–Bakelman–Pucci inequality to obtain un+1 � un in Ω

for all n ∈ N. By arguments similar to those given in the proof of Theorem 1.1 (existence),
using Lemma 2.5, we obtain a subsequence (which we continue to call {un}) such that
un converges uniformly to a solution u of (1.2 a). Moreover, u � un in Ω for all n, so
that lim infx→∂Ω u � n for all n, and so u also satisfies (1.2 b). �

Remark 2.8. The argument given above allows to prove the existence of a solution
to (1.2 a) assuming that f ∈ LN

loc(Ω). Naturally, in this case we do not know about the
behaviour of the solution on the boundary.
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3. The radial case

In this section we consider only the particular case when F is a maximal Pucci operator
M+. This operator can be written in a very simple way when we are dealing with radially
symmetric functions. Since the eigenvalues of D2u are u′′ of multiplicity 1 and u′/r with
multiplicity N − 1 and defining θ(s) = Λ if s � 0 and θ(s) = λ if s < 0, then we easily
see that, for every u radially symmetric,

M+(D2u)(r) = θ(u′′(r))u′′(r) + θ(u′(r))(N − 1)
u′(r)

r
.

Then we see that (1.1) in the classical sense becomes

−θ(u′′(r))u′′ − θ(u′(r))(N − 1)
u′

r
+ |u|s−1u = f(r), (3.1)

for a radial function f . In order to write this equation in a simpler form, we make some
definitions. First we observe that for solutions of (3.1) we have

θ(u′′(r)) = θ

{
− θ(u′(r))(N − 1)

u′

r
+ |u|s−1u − f(r)

}
,

which is more convenient as we see. We define

Θ(r, u(r), u′(r)) = θ

{
− θ(u′(r))(N − 1)

u′

r
+ |u|s−1u − f(r)

}
,

the ‘dimension’

N(r, u(r), u′(r)) =
θ(u′(r))

Θ(r, u(r), u′(r))
(N − 1) + 1

and the weights

ρ(r, u(r), u′(r)) = exp
{ ∫ r

1

N(τ, u(τ), u′(τ)) − 1
τ

dτ

}

and

ρ̃(r, u(r), u′(r)) =
ρ(r, u(r), u′(r))
Θ(r, u(r), u′(r))

.

If we define
N+ =

λ

Λ
(N − 1) + 1 and N− =

Λ

λ
(N − 1) + 1

we see that N+ � N(r, u(r), u′(r)) � N− and also

rN−−1 � ρ(r, u(r), u′(r)) � rN+−1 if 0 � r � 1

and
ρ

Λ
� ρ̃ � ρ

λ
.
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With these definitions we find that (3.1) is equivalent to

−(ρu′)′ + ρ̃|u|s−1u = ρ̃f(r). (3.2)

When no confusion arises we omit the arguments in the functions ρ and ρ̃. In particular,
when we write ρv′ we mean ρ(r, v(r), v′(r))v′(r) and so on. What is interesting about (3.2)
is that it allows us to define a weaker notion of solution which extends the LN -viscosity
sense to more general f . With this new notion we can prove a theorem for the existence
of radial solutions of (1.1) with a weaker condition on f than in the non-radial case of § 2
(see Remark 3.7).

We consider the set of test functions defined as

H = {ϕ : [0,∞) → R | ∃φ ∈ W 1,∞
0 (RN ) such that φ(x) = ϕ(|x|)},

where W 1,∞
0 (RN ) denotes the space of functions in W 1,∞(RN ) with compact support.

Definition 3.1. We say that u : [0, R] → R is a weak solution of (3.2) with Dirichlet
boundary condition at r = R, if u is absolutely continuous in (0, R], u(R) = 0,

∫ R

0
ρ|u|s dr < ∞,

∫ R

0
ρ|u′| dr < ∞ (3.3)

and ∫ R

0
ρu′ϕ′ + ρ̃|u|s−1uϕ dr =

∫ R

0
ρ̃fϕ dr for all ϕ ∈ H. (3.4)

Now we state our theorem (which is a more complete version of Theorem 1.3).

Theorem 3.2. Assume that s > 1 and that f is a radial function satisfying

∫ R

0
rN+−1|f(r)| dr < ∞ for all R > 0. (3.5)

Then (3.2) has a unique weak solution u and if f is non-negative, then u is also non-
negative.

Additionally, for any 1 < q < 2s/(s + 1),
∫ r

0
ρ|u′|q dr < ∞ for all R > 0. (3.6)

Moreover, the function ρu′ is differentiable a.e. in (0,∞) and consequently satisfies

lim
r→0

(ρu′)(r) = 0, lim
r→0

∫ r

0
ρ|u′| dr = 0. (3.7)

In order to prove the above theorem we will perform an approximation procedure as in
the general case. Because the problem is radial and has a divergence-form formulation,
we can get better estimates and pass to the limit, under weaker assumptions on f .
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By regularizing f and using a diagonal procedure, we may find a sequence of radial
smooth functions {fn} such that, for all 0 < R,

lim
n→∞

∫ R

0
rN+−1|fn(r) − f(r)| dr = 0. (3.8)

Moreover, we may assume that there exists a function g : (0,∞) → R such that |fn(r)| �
g(r) for all r > 0 and

∫ R

0
rN+−1|g(r)| dr < +∞ for all R > 0.

First we have an existence result for the approximate problems.

Lemma 3.3. For every n there is a solution un in C2[0, n] satisfying un(n) = 0, (3.3)
with R = n and

∫ n

0
ρnu′

nϕ′ + ρ̃n(cnun + |un|s−1un)ϕ =
∫ n

0
ρnfnϕ for all ϕ ∈ H, (3.9)

where ρn(r) = ρ(r, un(r), u′
n(r)) (similarly for ρ̃n) and {cn} is a positive sequence con-

verging to zero.

Proof. We may use the same argument of Lemma 2.2 together with the Da Lio and
Sirakov symmetry result [8]. �

Now we get some estimates following the ideas in [1].

Lemma 3.4. Let {un} be the sequence of solutions found in Lemma 3.3. Then, for
all 0 < R and m ∈ (0, s − 1), there is a constant C depending on R, m, s, N , λ and Λ,
but not on f or n, such that for all n ∈ N we have

∫ R

0
ρn|un|s ds � C

(
1 +

∫ 2R

0
rN+−1|f | dr

)
(3.10)

and ∫ 2R

0

ρn|u′
n|2 dr

(1 + |un|)m+1 � C

(
1 +

∫ R

0
rN+−1|f | dr

)
. (3.11)

Proof. We consider the function φ defined as

φ(t) =
∫ t

0

dt

(1 + s)m+1 , t � 0,

and extended as an odd function to negative t, which is smooth and bounded. We also
consider a cut-off function θ : [0,∞) → R being smooth, with support in [0, 2R], equal
to 1 in [0, R], 0 � θ � 1 and |θ′| � 2/R.
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We define v = φ(u)θα, where α > 2s/(s−1−m). Omitting the index n in what follows,
using v as a test function, we obtain

∫ 2R

0

mρ|u′|2θα dr

(1 + |u|)1+m
+

∫ 2R

0
ρ̃|u|s−1uφ(u)θα dr

�
∫ 2R

0
ρ̃fφ(u)θα dr − α

∫ 2R

0
ρu′φ(u)θα−1θ′ dr (3.12 a)

� C

( ∫ 2R

0
rN+−1|f | dr +

∫ 2R

0
ρ|u′|θα−1 dr

)
, (3.12 b)

where we drop the term with cn in the first inequality. Using Young’s inequality, for some
ε > 0, we have

∫ 2R

0
ρ|u′|θα−1 dr � ε

∫ 2R

0

mρ|u′|2θα

(1 + |u|)1+m
dr +

1
4ε

∫ 2R

0
ρ(1 + |u|)1+mθα−2 dr (3.13)

and again
∫ 2R

0
ρ(1 + |u|)1+mθα−2 dr

� ε2
∫ 2R

0
ρ(1 + |u|)sθα dr +

C

ε2

∫ 2R

0
ρθ(α(s−m−1)−2s)/(s−m−1) dr

� C

(
ε−2 + ε2

∫ 2R

0
ρ|u|sθα dr

)
, (3.14)

where C is a generic constant independent of ε. Here we used our choice of α.
Next we observe that |t|s � |t|s−1tφ(t)/φ(1) + 1 for all t ∈ R. Using this in (3.14), and

then this result and (3.13) in (3.12 b), with the choice of a sufficiently small ε we finally
obtain the desired inequalities. �

Corollary 3.5. For all q ∈ (1, 2s/(s + 1)) and for every 0 < R there is a constant, as
in Lemma 3.4, such that

∫ R

0
ρn|u′

n|q dr � C

(
1 +

∫ 2R

0
rN+−1|f | dr

)
. (3.15)

Proof. By the Hölder inequality we find
∫ R

0
ρ|u′|q dr �

( ∫ R

0

ρ|u′|2 dr

(1 + |u|)1+m

)q/2( ∫ R

0
ρ(1 + |u|)q(1+m)/(2−q) dr

)(2−q)/2

. (3.16)

Then by our choice of m in Lemma 3.4 it is possible to choose q > 1 such that

(m + 1)q
2 − q

< s

and then we obtain the result from Lemma 3.4. With the adequate choice of m we can
cover the range of q. �
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Proof of Theorem 3.2 (existence). We consider the sequence of {un} of the solu-
tion found in Lemma 3.3 satisfying (3.9). In what follows we show that this sequence
converges to a weak solution of (3.1).

Now, considering the estimates in Lemma 3.4, we see that the function ρnu′
n has weak

derivatives in any interval of the form (r0, R0) with 0 < r0 < R0. Since the function
ρn is differentiable a.e., we obtain then that un is twice differentiable a.e. and u′′

n is in
L1(r0, R0), because of the equation satisfied by un and estimates in Lemma 3.4. From
here we conclude that u′

n and un are uniformly bounded in (r0, R0). Using the equation
again we then conclude that u′′

n is bounded by an L1 function in (r0, R0), which implies
that u′

n is equicontinuous. By the Arzelà–Ascoli Theorem there exists a differentiable
function u in the interval (r0, R0) such that, up to a subsequence, un and u′

n converge
uniformly to u and u′, respectively, in the interval (r0, R0).

We may repeat this argument for any interval (r0, R0), so that by a diagonal pro-
cedure, we can prove that, up to a subsequence, {un} and {u′

n} converge pointwise
to a differentiable function u : (0,∞) → R. Notice that {ρn} converges pointwise to
ρ(r) = ρ(r, u(r), u′(r)).

Next we use the estimate (3.15) to prove that the sequence {ρnu′
n} is equi-integrable

in [0, R] and then it converges in L1[0, R] to ρu′ for all R > 0. Then it is only left to
prove that {ρ̃n|un|s} converges in L1[0, R]. For this purpose we introduce, as in [1], a
new function φ in R defined as φ(ν) = min{ν − t, 1} if ν � 0 and extended as an odd
function to all R, for a parameter t > 0. Then we consider inequality (3.12 a) with the
cut-off function φ(un)θ to get

∫
Et+1

n ∩(0,R)
ρ̃n|un|s dr �

∫
Et

n∩(0,2R)
ρ̃n|fn| dr + C

∫
Et

n∩(0,2R)
ρn|u′

n| dr,

where Et
n = {r > 0 | |un(r)| > t}. From (3.10) and (3.15) it follows that the second

integral approaches zero if t → ∞. From here the equi-integrability of ρn|un|s follows
and we conclude.

Finally, (3.7) is a consequence of the integrability properties just proved for un that
also hold for u. This finishes the proof. �

Now we prove the remaining part of Theorem 3.2, that is uniqueness and non-negativity
of weak solutions. For this purpose it would be natural to use comparison arguments.
However, these are a little delicate in this case. In fact, we may naturally define the notion
of weak subsolutions (supersolutions) by writing ‘�’ (‘�’) and using only non-negative
(non-positive) test functions in (3.4). It so happens that, if u is a weak subsolution and
v is a weak supersolution, we cannot be sure that w = u − v is a weak subsolution, since
we do not have good control of ρw′ at the origin.

We first consider the non-negativity of solutions of when f is non-negative. For this
purpose we need to find appropriate test functions.

Lemma 3.6. If u is a solution of (3.1) in the weak sense and f � 0 a.e. in [0,∞), then
u � 0 for all r > 0.
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Proof. As in the general case, we consider the function U given in the proof of
Lemma 2.7, which satisfies (2.18) in BR. On the other hand, by the regularity of u

given above, we have that u(x) = u(r) satisfies (1.1) a.e. We may subtract the equations
for U and u and get

−M+(D2(u − U)) + |u|s−1u − Us � 0 a.e. in BR.

If we set w = u − U , we see that

−(ρw′)′ + ρ̃(|u|s−1u − Us) � 0 a.e. in (0, R). (3.17)

Here the function ρ and ρ̃ are defined in the natural way with θ(r) = θ(w′(r)) and Θ

given by
Θ(r) = θ(w′′(r)) a.e. in (0, R).

We see that the function w is negative near R. If there exists 0 < r1 < r2 < R such
that w > 0 in (r1, r2) and w(r1) = w(r2) = 0, then we may choose the function ϕ, defined
as ϕ = w in (r1, r2) and ϕ ≡ 0 elsewhere, as a test function in (3.17) to get

∫ R

r0

ρ|w′|2 + ρ̃(|u|s−1u − Us)w dr � 0.

But each term in the left-hand side is positive; thus, w = 0 in (r1, r2).
Thus, either w(r) � 0 in (0, R) or there is r0 ∈ (0, R) such that w > 0 in (0, r0) and

w(r0) = 0. To see that the second case is impossible we just need to prove that
∫ r0

0
ρ(w)|w′| dr < ∞ and lim

r→0
(ρ(w)w′)(r) = 0, (3.18)

since in this case we may use the function ϕ, defined as ϕ = w in (r̄, r0) and ϕ ≡ w(r̄)
in (0, r̄), as a test function in (3.17) and get a contradiction.

Assuming (3.18) for the moment, we see that u � U in [0, R] and this is true for all
R > 0. Taking the limit as R → ∞, keeping r fixed, we conclude that u � 0 in [0,∞).

To complete the proof we prove (3.18). To see this, we first observe that there is a
r̄ ∈ (0, r0) such that w′(r̄) < 0, and then from inequality (3.17) we find that w′′(r) > 0
a.e. and w′(r) < 0 in r ∈ (0, r̄). A posteriori we see that w′′(r) > 0 a.e. and w′(r) < 0 in
r ∈ (0, r0) and consequently ρ(w) = rN+−1 there. Next we assume that u′ is negative at
some point in (0, r0), because otherwise the functions u and u′ would be bounded and
then w and w′ are bounded, yielding (3.18). Since u′′ > U ′′ > 0 in (0, r0), we see then
that u′ < 0 near the origin and consequently ρ(u) = rN+−1. Since (3.7) holds we see that
(3.18) holds. �

Proof of Theorem 1.1 (uniqueness). Let u1 and u2 be two solutions of (3.1) in the
weak sense. Then they satisfy (1.1) a.e. in R

N , with abuse of notation ui(x) = ui(|x|),
i = 1, 2. Then we define w = u1 − u2 and proceed as in the proof of Theorem 1.1 to
obtain that w satisfies (2.19) a.e. in R

N . Now we follow the proof of Lemma 3.6. �
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Remark 3.7. Let us consider a continuous function f in R
N \{xi | i = 1, . . . , k}, such

that near each singularity

f(x) ∼ ci

|x − xi|αi
, x ∼ xi, i = 1, . . . , k.

In order to apply Theorem 1.1 we need αi < 1 for all i = 1, . . . , k. In contrast, assuming
that f is radially symmetric with a singularity at the origin of the form

f(r) ∼ c

rα
, r ∼ 0, r > 0,

in order to apply Theorem 3.2, we only need α < N+. We observe that if λ/Λ → 0, then
N+ → 1, while if λ/Λ = 1, then N+ = N .

When we have a radial function f being in Lp
loc(R

N ) with p > N/N+, f satisfies our
hypothesis (3.5) and we may apply Theorem 3.2. This is particularly interesting if N and
N+ are close to each other.

Remark 3.8. Let f be a function in R
N and define

g(r) = max{|f(x)| | |x| = r}

and assume that g satisfies (3.5). This will be the case if f has a singularity of the form
r−α with α < N+.

Then we may construct a solution of (3.2). This solution is a ‘candidate’ for a super-
solution for (1.1) with f as a right-hand side. However, since the two notions of solutions
are not compatible, this is not possible.

Remark 3.9. In this section we have considered only the case of the Pucci operator
M+. However, these results can be adapted for the operator M− as well.
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Matemáticas Aplicadas and A.Q. was partly supported by FONDECYT Grant no.
1040794 and Proyecto Interno USM no. 12.05.24. This research was partly supported
by ECOS-CONICYT Project C05E09.

References

1. L. Boccardo, T. Gallouet and J. L. Vázquez, Nonlinear elliptic equations in RN

without growth restrictions on the data, J. Diff. Eqns 105(2) (1993), 334–363.
2. L. Boccardo, T. Gallouet and J. L. Vázquez, Solutions of nonlinear parabolic equa-

tions without growth restrictions on the data, Electron. J. Diff. Eqns 2001(60) (2001),
1–20.

3. H. Brezis, Semilinear equations in R
N without condition at infinity, Appl. Math. Optim.

12 (1984), 271–282.
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