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Abstract

In representation theory, commutative algebra and algebraic geometry, it is an important problem to
understand when the triangulated category DZ

sg(R) = CMZ
0 R admits a tilting (respectively, silting)

object for a Z-graded commutative Gorenstein ring R =
⊕

i>0 Ri . Here DZ
sg(R) is the singularity

category, and CMZ
0 R is the stable category of Z-graded Cohen–Macaulay (CM) R-modules, which

are locally free at all nonmaximal prime ideals of R.
In this paper, we give a complete answer to this problem in the case where dim R = 1 and R0 is a

field. We prove that CMZ
0 R always admits a silting object, and that CMZ

0 R admits a tilting object if
and only if either R is regular or the a-invariant of R is nonnegative. Our silting/tilting object will be
given explicitly. We also show that if R is reduced and nonregular, then its a-invariant is nonnegative
and the above tilting object gives a full strong exceptional collection in CMZ

0 R = CMZR.

2010 Mathematics Subject Classification: 13C14 (primary); 16E35 (secondary)

1. Introduction

1.1. Background. The study of maximal Cohen–Macaulay (CM) modules
is one of the central subjects in commutative algebra and representation
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theory [5, 14, 54, 66, 72]. When the ring R is Gorenstein, the category

CM R = {X ∈ mod R | Exti
R(X, R) = 0 for all i > 1}

of CM R-modules forms a Frobenius category, and therefore its stable category
CMR has a natural structure of a triangulated category [28]. The Verdier
quotient Dsg(R) = Db(mod R)/Kb(proj R) introduced by Buchweitz [11] and
Orlov [61] is canonically triangle equivalent to CMR, and hence is enhanced
by the Frobenius category CM R. When R is a hypersurface, it is also triangle
equivalent to the stable category of matrix factorizations [20]. It has increasing
importance in algebraic geometry and physics.

Tilting theory controls triangle equivalences between derived categories of
rings and plays a significant role in various areas of mathematics (see for
example, [3]). Tilting theory also gives a powerful tool to study the stable
categories of Gorenstein rings. For example, for a finite-dimensional algebra Λ
of finite global dimension, there is a triangle equivalence

modZT (Λ) ' Kb(projΛ) (1.1)

for the stable category modZT (Λ) of the Z-graded modules over the trivial
extension algebra T (Λ) [28]. This is an important result, which gives a large
family of representation-finite self-injective algebras (see for example, [67]). The
second classical example is a triangle equivalence

modZ
∧
(kn) ' Kb(projΛ)

for the exterior algebra
∧
(kn) and the Beilinson algebra Λ [8, 9]. The third

classical example is a triangle equivalence

CMZR ' Kb(mod k Q) (1.2)

for the stable category of Z-graded CM modules over a Z-graded simple surface
singularity R and the path algebra k Q of the Dynkin quiver Q of the same
type [22, 23, 45]. Each of the above triangle equivalences follows from the fact
that the stable category has a tilting object (see Definition 4.1). In fact, under
mild assumptions, a triangulated category admits a tilting object if and only if it
is triangle equivalent to Kb(projΛ) for some ring Λ (Proposition 4.2). Recently,
the class of silting objects was introduced to complete the class of tilting objects
in the study of t-structures [49] and mutation [1]. We will see that they also play
an important role in the study of the stable categories of Gorenstein rings.

It is well known in CM representation theory that the subcategory

CM0 R = {X ∈ CM R | Xp ∈ proj Rp for all p ∈ Spec R with dim Rp < dim R}
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behaves much nicer than CM R since it enjoys Auslander–Reiten–Serre duality,
and hence it has almost split sequences if R is complete local [5, 72] (cf.
Proposition 4.6). Therefore, for a Z-graded Gorenstein ring R, we consider the
Frobenius category

CMZ
0 R := {X ∈ modZ R | X ∈ CM0 R as an ungraded R-module}. (1.3)

There are a number of Z-graded Gorenstein rings R such that the stable categories
CMZ

0 R admit tilting objects; see for example, [2, 15, 16, 21, 24, 25, 31, 33, 38, 39,
44–46, 50–53, 55, 59, 68–71] and a survey article [36]. The following problem is
important in representation theory, commutative algebra and algebraic geometry.

PROBLEM 1.1. Let R =
⊕

i>0 Ri be a Z-graded Gorenstein ring such that R0 is
a field. When does the stable category CMZ

0 R of Z-graded CM R-modules have a
tilting object?

When dim R = 0, CMZ
0 R = modZR always has a tilting object. In fact, the

third author gave a much more general result [71], which also implies the triangle
equivalence (1.1) as a special case.

The aim of this paper is to give a complete answer to Problem 1.1 when
dim R = 1. Surprisingly to us, it is determined by the a-invariant of R. Our results
are summarized as follows.

THEOREM 1.2 (Theorems 1.4 and 1.6). Let R =
⊕

i>0 Ri be a Gorenstein ring
in dimension one such that R0 is a field. Then CMZ

0 R always has a silting object.
Moreover, CMZ

0 R has a tilting object if and only if either R is regular or the
a-invariant of R is nonnegative.

In particular, the Grothendieck group K0(CMZ
0 R) is a free abelian group of

finite rank (Corollary 1.7). To prove Theorem 1.2, we interpret CMZ
0 R as a

thick subcategory of the singularity category DZ
sg(R) = Db(modZ R)/Kb(projZ R)

(Proposition 4.8) and give analogues of Orlov’s semiorthogonal decompositions
[62] of Db(modZ R) (Theorem 3.1).

1.2. Our results. Throughout this subsection, we assume the following.

(R1) R is a Z-graded commutative Gorenstein ring of Krull dimension one.

(R2) R =
⊕

i>0 Ri and k := R0 is a field.

Let S be the set of all homogeneous non-zero-divisors in R, and K := RS−1

the Z-graded total quotient ring of R. There exists then an integer p > 0 such

https://doi.org/10.1017/fms.2020.28 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.28


R.-O. Buchweitz, O. Iyama and K. Yamaura 4

that K (p) ' K as a graded R-module (Lemma 4.11(b)). Moreover, dim R = 1
implies that K = R[r−1

] holds for each homogeneous non-zero-divisor r of
positive degree (Lemma 4.10).

Let modZ R be the category of Z-graded finitely generated R-modules,
modZ

0 R be the category of Z-graded R-modules of finite length, and projZ R
be the category of Z-graded finitely generated projective R-modules. For
X ∈ modZ R and n ∈ Z, let

X>n = X>n−1 :=
⊕
i>n

X i .

Let qgr R = modZ R/modZ
0 R be the quotient category. This is equivalent to

the category of coherent sheaves on the quotient stack [(Spec R \ {R>0})/k∗] [62,
Proposition 2.17]. Let Db(qgr R) be the bounded derived category of qgr R, and
let per(qgr R) be its thick subcategory generated by projZ R. Our starting point
is the following result on the geometric side, where we refer to [35] for the notion
of exceptional collections.

THEOREM 1.3. Under the setting (R1) and (R2), the following holds true.

(a) qgr R has a progenerator U :=
⊕p

i=1 K (i)>0 =
⊕p

i=1 K>i(i), and
per(qgr R) has a tilting object U.

(b) We have an equivalence qgr R ' modΛ and a triangle equivalence
per(qgr R) ' Kb(projΛ) for Λ := Endqgr R(U ).

(c) We have

Λ ' EndZ
R(U ) =


K0 K−1 · · · K2−p K1−p

K1 K0 · · · K3−p K2−p
...

...
. . .

...
...

K p−2 K p−3 · · · K0 K−1

K p−1 K p−2 · · · K1 K0

 . (1.4)

(d) Λ is a finite-dimensional self-injective k-algebra.

(e) If R is reduced, then Λ is a semisimple k-algebra. Otherwise, Λ has infinite
global dimension.

(f) If R is reduced, then any ordering in the isomorphism classes of
indecomposable direct summands of U gives a full strong exceptional
collection in per(qgr R). Otherwise, per(qgr R) does not have a full strong
exceptional collection.
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Now we discuss tilting objects on the algebraic side. Just as we were
considering per(qgr R) on the geometric side rather than Db(qgr R), we consider
the subcategory CMZ

0 R of CMZ R in (1.3). This can be described as

CMZ
0 R = {X ∈ CMZ R | K ⊗R X ∈ proj K } (1.5)

(Proposition 4.15). Moreover, CMZ
0 R = CMZ R holds if and only if R is reduced.

There exists an integer a ∈ Z such that Ext1
R(k, R(a)) ' k in modZ R. We

call a the a-invariant (−a the Gorenstein parameter) of R [10, 26]. It can be
characterized as the smallest integer a such that R>a = K>a (Lemma 4.11(a)).
When R has a nonnegative a-invariant, CMZ

0 R always has a tilting object by the
following result.

THEOREM 1.4. Under the setting (R1) and (R2), assume moreover that the a-
invariant a of R is nonnegative. Then the following holds true.

(a) CMZ
0 R has a tilting object

V :=
a+p⊕
i=1

R(i)>0 =

a+p⊕
i=1

R>i(i).

(b) We have a triangle equivalence CMZ
0 R ' Kb(projΓ ) for Γ := EndZ

R(V ).

(c) We have Γ ' EndZ
R(V ). Moreover, these algebras are isomorphic to

R0 0 · · · 0 0 0 0 · · · 0 0
R1 R0 · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
... · · ·

...
...

Ra−2 Ra−3 · · · R0 0 0 0 · · · 0 0
Ra−1 Ra−2 · · · R1 R0 0 0 · · · 0 0
Ka Ka−1 · · · K2 K1 K0 K−1 · · · K2−p K1−p

Ka+1 Ka · · · K3 K2 K1 K0 · · · K3−p K2−p
...

...
...

...
...

...
...

. . .
...

...

Ka+p−2 Ka+p−3 · · · K p K p−1 K p−2 K p−3 · · · K0 K−1

Ka+p−1 Ka+p−2 · · · K p+1 K p K p−1 K p−2 · · · K1 K0


. (1.6)

(d) Γ is an Iwanaga–Gorenstein k-algebra, that is, inj.dimΓΓ = inj.dimΓ Γ

<∞.

(e) R is reduced if and only if Γ has finite global dimension.
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The above V is an analogue of the tilting object in modZ A given in [71] for a
Z-graded finite-dimensional self-injective algebra.

As a special case of Theorem 1.4, we obtain the following result for reduced
rings.

COROLLARY 1.5. Under the setting (R1) and (R2), assume moreover that R is
reduced and not regular. Then the following holds true.

(a) The a-invariant a of R is nonnegative.

(b) CMZR has a tilting object

V :=
a+p⊕
i=1

R(i)>0 =

a+p⊕
i=1

R>i(i).

(c) We have a triangle equivalence CMZR ' Db(modΓ ), where Γ := EndZ
R(V )

is a finite-dimensional k-algebra with finite global dimension.

(d) There exists an ordering in the isomorphism classes of indecomposable direct
summands of V , which forms a full strong exceptional collection in CMZR.

Note that, for the case of hypersurfaces, a different tilting object with a much
nicer endomorphism algebra was constructed in [30] before this paper.

Now we discuss the case when R has a negative a-invariant. In this case, the
following result shows that CMZ

0 R never has a tilting object except for the trivial
case, where we denote by thick P the smallest thick subcategory containing P .
We refer to Section 2.4 for a concrete example.

THEOREM 1.6. Under the setting (R1) and (R2), assume moreover that the a-
invariant a of R is negative. Then the following holds true.

(a) CMZ
0 R has a silting object

⊕a+p
i=1 R(i)>0.

(b) We have a triangle equivalence CMZ
0 R ' Kb(projΛ)/ thick P, where Λ is

given by (1.4) and P is the projective Λ-module corresponding to the first
−a rows.

(c) CMZ
0 R has a tilting object if and only if R is regular.

As an application of our results, we calculate the Grothendieck groups of the
triangulated categories per(qgr R) and CMZ

0 R. We decompose K into a product
K = K 1

× · · · × K m of rings K i , which are ring-indecomposable. For each 1 6
i 6 m, let pi be the smallest positive integer satisfying K i(pi) ' K i in modZ K .
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COROLLARY 1.7. Under the setting (R1) and (R2), the following holds true.

(a) The Grothendieck group of per(qgr R) is a free abelian group of rank∑m
i=1 pi .

(b) The Grothendieck group of CMZ
0 R is a free abelian group of rank a +∑m

i=1 pi .

Another application is the following observation, which shows that our category
CMZ

0 R is a rich source of triangulated categories.

COROLLARY 1.8. Let A be a Z-graded commutative artinian Gorenstein ring
such that A = A>0 and A0 is a field. Then there exists a ring R satisfying (R1)
and (R2) such that CMZ

0 R is triangle equivalent to Kb(projZ/aZ A), where a is the
a-invariant of A and we regard A as a (Z/aZ)-graded ring naturally.

Conventions. All modules are right modules. The composition of morphisms
(respectively, arrows) f : X → Y and g : Y → Z is denoted by g f . We denote by
k an arbitrary field.

2. Examples

2.1. Hypersurface singularities. In this subsection, we study hypersurface
singularities in dimension one with standard grading. In the rest, let k be an
arbitrary field,

R = k[x, y]/( f ) with deg x = deg y = 1, and Γ = EndZ
R(V )

for the tilting object V given in Theorem 1.4. Then a = n−2 holds for n := deg f ,
and there is a triangle equivalence

CMZ
0 R ' Kb(projΓ ).

We show that Γ has self-injective dimension at most 2 and possibly infinite global
dimension. More precisely, we prove the following results in Section 4.6.

THEOREM 2.1. Under the above setting, the following holds true.

(a) Γ is an Iwanaga–Gorenstein k-algebra with inj.dimΓΓ = inj.dimΓ Γ 6 2.

(b) Assume n > 4. Then there is no Iwanaga–Gorenstein k-algebra Γ ′ that is
derived equivalent to Γ and satisfies inj.dimΓ ′Γ ′ = inj.dimΓ ′ Γ

′ 6 1.
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In the rest, we assume f =
∏m

i=1 f ni
i , where fi = αi x + βi y is a linear form such

that ( fi) 6= ( f j) for all i 6= j , and ni is a positive integer.

(c) Let K i be the Z-graded total quotient ring of Ri
= k[x, y]/( f ni

i ) for 1 6
i 6 m. Then K>0 ' K 1

>0 × · · · × K m
>0 holds and K i

>0 is indecomposable in
CMZ R.

(d) Let (α′i : β
′

i ) ∈ P1
k be a point different from (αi : βi). Then Γ is presented by

the quiver

K 1
>0 b1

pp

K 2
>0 b2

pp

R(1)>0

x --

y
11 R(2)>0

x ,,

y
22 · · · · · ·

x --

y
11 R(a)>0

a1

==

a2

66

am−1

((
am

!!

...

K m−1
>0 bm−1

ii

K m
>0 bm

pp

with relations

xy = yx, bni
i = 0, ai(αi x + βi y) = bi ai(α

′

i x + β
′

i y).

(e) n1 = · · · = nm = 1 holds if and only if gl.dim Γ < ∞ if and only if
gl.dim Γ 6 2.

In (e), one can show that Γ is derived equivalent to k×k if n = 2, a path algebra
of type D4 if n = 3, and a canonical algebra of type (2, 2, 2, 2) of n = 4 (see [30]
and Proposition 2.4(a)). Also note that if n > 4, then Γ is not derived equivalent
to a hereditary k-algebra by (b) above.

2.2. Simple curve singularities. In this subsection, we study simple curve
singularities. They are precisely the ADE singularities when the base field is
algebraically closed and the characteristic is different from 2, 3 and 5 [54,
Section 9]. Our result is the following.

THEOREM 2.2. Let R = k[x, y]/( f ) be an ADE singularity over an arbitrary
field k with minimal grading given by the list below. Then CMZR is triangle
equivalent to Db(mod k Q), where Q is a Dynkin quiver of the following
type.
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R An Dn E6 E7 E8

f xn+1
− y2 xn−1

− xy2 x4
− y3 x3 y − y3 x5

− y3

(deg x, deg y)

(
1,

n + 1
2

)
n is odd

(2, n + 1) n is even

(2, n − 2) n is odd(
1,

n
2
− 1

)
n is even

(3, 4) (2, 3) (3, 5)

Q
D n+3

2
n is odd

An n is even
A2n−3 n is odd

Dn n is even
E6 E7 E8

This is an analogue of (1.2) in dimension 2. The difference of types of R and Q
was observed in [17] (see also [54, 72]). We will prove Theorem 2.2 in Section 4.7.

Our Theorem 2.2 immediately recovers the following well-known results.

COROLLARY 2.3. Let R = k[x, y]/( f ) be as in Theorem 2.2, and R̂ the
completion of R at R>0.

(a) [4] There are only finitely many indecomposable objects in CMZ R up
to isomorphisms and degree shift. The stable Auslander–Reiten quiver of
CMZ R is ZQ (see [28]).

(b) [19, 27, 42] There are only finitely many indecomposable objects in CM R̂
up to isomorphisms.

Proof. (a) is immediate from Theorem 2.2. (b) follows from (a) and [7,
Theorem 5].

2.3. Curve singularities Tpq . Drozd–Greuel classified commutative
noetherian rings in dimension one, which are CM-tame in terms of Tpq

singularities [18]. Recall that Tpq singularities over an algebraically closed
field k whose characteristic is different from 2 have the form k[x, y]/( f ), where
f = x p

+ λx2 y2
+ yq with p 6 q and λ ∈ k\{0, 1}.

In this subsection, we deal with Z-graded Tpq singularities such that the
variables x and y are homogeneous. This is precisely the case when (p, q, deg x,
deg y) is either (4, 4, 1, 1) or (3, 6, 2, 1). Our result below covers a slightly more
general class of rings. Recall that a canonical algebra of type (2, 2, 2, 2) is given
by the following quiver with relations for λ ∈ k\{0, 1} [65].

•
b1

%%
•

b2 **
b1a1 + b2a2 + b3a3 = 0

•

a1
99

a2
44

a3 ++
a4 ''

• b1a1 + λb2a2 + b4a4 = 0.
•

b3
33

•
b4

77

https://doi.org/10.1017/fms.2020.28 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.28


R.-O. Buchweitz, O. Iyama and K. Yamaura 10

This algebra is derived equivalent to the weighted projective line of type
(2, 2, 2, 2) [22].

We will prove the following result in Section 4.8.

PROPOSITION 2.4. Let k be an arbitrary field and R = k[x, y]/( f ), where

(a) f =
∏4

i=1(x − αi y) and (deg x, deg y) = (1, 1); or

(b) f =
∏3

i=1(x − αi y2) and (deg x, deg y) = (2, 1).

If R is reduced, then CMZR is triangle equivalent to Db(mod C), where C is a
canonical algebra of type (2, 2, 2, 2) with λ = (α1−α4)(α2−α3)(α1−α3)

−1(α2−

α4)
−1 for (a) and λ = (α2 − α3)(α1 − α3)

−1 for (b).

Consequently, CMZR is triangle equivalent to Db(cohX), where X is the
weighted projective line of type (2, 2, 2, 2). It will be interesting to find out a
direct explanation of this equivalence.

2.4. Nonreduced examples. In this subsection, let k be an arbitrary field and

R = k[x, y]/(y2) with deg x = n > 1 and deg y = 1.

When n > 2, this gives a typical example of rings with negative a-invariant. It is
known as a Bass order in a non-semisimple algebra [34] and as a CM-countable
ring [12, 54].

PROPOSITION 2.5. Under the above setting, the following holds true.

(a) The a-invariant of R is 1− n, and we have K (n) ' K .

(b) per(qgr R) is triangle equivalent to Kb(projΛ) for Λ := k Q/(z2), where Q
is the following quiver with Q0 = Z/nZ.

n 1

2

3

45

6

n − 1

z //
z
��

z��

z��
z
ooz

__

z ??

(c) The Auslander–Reiten quiver of per(qgr R) ' Kb(projΛ) has n connected
components. For i ∈ Z/nZ, let P i

= eiΛ for the idempotent ei ∈ Λ
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corresponding to the vertex i , and for a, b ∈ Z with b > 0, let X i
a,b be the

complex

· · · → 0→ P i z
−→ P i+1 z

−→ P i+2 z
−→ · · ·

z
−→ P i+b−1 z

−→ P i+b
→ 0→ · · ·

whose nonzero degrees are a, a + 1, . . . , a + b. Then the following is a
connected component for i ∈ Z/nZ.

X i+2
2,0

""
X i+1

1,0
""

X i
0,0

##
X i−1
−1,0

##
X i−2
−2,0

· · · X i+1
1,1

""

<<

X i
0,1

;;

##
X i−1
−1,1

;;

##
X i−2
−2,1

;;

##
· · ·

X i+1
1,2

<<

""
X i

0,2

<<

""
X i−1
−1,2

;;

##
X i−2
−2,2

;;

##
X i−3
−3,2

· · · X i
0,3

<<

X i−1
−1,3

;;

X i−2
−2,3

;;

X i−3
−3,3

;;

· · ·

...
...

...
...

...

(d) CMZ
0 R is triangle equivalent to Kb(projΛ)/ thick P, where P =

⊕n−1
i=1 P i .

(e) CMZ
0 R has a silting object R(1)>0, and has a tilting object if and only if

n = 1. It is triangle equivalent to the perfect derived category per k[w]/(w2)

for the differential graded (DG) algebra k[w]/(w2) with degw = 1− n and
zero differential.

(f) The Auslander–Reiten quiver of CMZ
0 R has n connected components. For

i > 0 and j ∈ Z, let Ri
:= R + 〈x−`y | 1 6 ` 6 i〉k and Ri, j

= Ri( j). Then
the following is a connected component for j ∈ Z/nZ.

R1, j−2n

%%
R1, j−n

%%
R1, j

$$
R1, j+n

$$
R1, j+2n

· · · R2, j−2n

%%

99

R2, j−n

::

$$
R2, j

::

$$
R2, j+n

::

$$
· · ·

R3, j−3n

99

%%
R3, j−2n

99

%%
R3, j−n

::

$$
R3, j

::

$$
R3, j+n

· · · R4, j−3n

99

R4, j−2n

::

R4, j−n

::

R4, j

::

· · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

We will give a proof of Proposition 2.5 in Section 4.9. Note that the Auslander–
Reiten quivers of per(qgr R) and CMZ

0 R are isomorphic, but they are not triangle
equivalent.
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3. Realizing Verdier quotients as thick subcategories

Throughout this subsection, we assume that A is a Z-graded Iwanaga–
Gorenstein ring, that is,

• A is a noetherian ring on each side with inj.dim AA <∞ and inj.dimA A <∞.

We denote by modZ A the category of Z-graded finitely generated (right)
A-modules, by projZ A the category of Z-graded finitely generated projective
A-modules, and by modZ

0 A the category of Z-graded A-modules of finite length.
Under certain conditions, it is known [41, 62] that two Verdier quotients

Db(modZ A)/Kb(projZ A) and Db(modZ A)/Db(modZ
0 A) can be realized as thick

subcategories of Db(modZ A). The aim of this section is to give an analogous
result for the thick subcategory

DA := thick{projZ A,modZ
0 A} ⊆ Db(modZ A),

and its Verdier quotients DA/Kb(projZ A) and DA/Db(modZ
0 A).

For a subset I of Z, let modI A be the full subcategory of modZ A consisting
of all X satisfying X i = 0 for all i ∈ Z \ I . For an integer ` ∈ Z, let mod>` A :=
mod[`,∞) A, mod6` A := mod(−∞,`] A and so on. Then Db(mod>` A) can be
regarded as a thick subcategory of Db(modZ A). Let

D>`
A = D>`−1

A := DA ∩ Db(mod>` A).

Let mod>`
0 A := mod>` A ∩ modZ

0 A, mod6`
0 A := mod6` A ∩ modZ

0 A =
mod6` A and so on. Similarly, let projI A be the full subcategory of projZ A
consisting of all P , which are generated by homogeneous elements of degrees
in I . Let proj>` A := proj[`,∞) A, proj6` A := proj(−∞,`] A and so on.

Since A is Iwanaga–Gorenstein, we have a duality [57, Corollary 2.11]

(−)∗ := RHomA(−, A) : Db(modZ A) ' Db(modZ Aop).

We consider the following three conditions.

(A1) A =
⊕

i>0 Ai and gl.dim A0 <∞.

(A2) A0 is an artinian ring.

(A3) There exists a ∈ Z such that (−)∗ restricts to a duality (−)∗ : Db(mod0 A)'
Db(moda Aop).
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For example, our R satisfying (R1) and (R2) satisfies these conditions for the
a-invariant a of R.

Let X and Y be full subcategories in a triangulated category T . We denote
by X ∗ Y the full subcategory of T whose objects consist of Z ∈ T such that
there is a triangle X → Z → Y → X [1] with X ∈ X and Y ∈ Y . When
HomT (X ,Y) = 0 holds, we write X ∗ Y = X ⊥ Y . For full subcategories
X1, . . . ,Xn , we define X1 ∗ · · · ∗Xn and X1 ⊥ · · · ⊥ Xn inductively.

We are ready to state the following main result in this section.

THEOREM 3.1. Let A be a Z-graded Iwanaga–Gorenstein ring satisfying A =
A>0, and ` an integer.

(a) If condition (A1) is satisfied, then we have a semiorthogonal decomposition

DA = Kb(proj<` A) ⊥ (D>`
A ∩ (D>−`

Aop )
∗) ⊥ Kb(proj>` A).

The natural functor DA → DA/Kb(projZ A) restricts to a triangle
equivalence

D>`
A ∩ (D>−`

Aop )
∗
' DA/Kb(projZ A).

(b) If conditions (A2) and (A3) are satisfied, then we have a semiorthogonal
decomposition

DA = Db(mod>`
0 A) ⊥ (D>`

A ∩ (D>a−`
Aop )∗) ⊥ Db(mod<`0 A).

The natural functor DA → DA/Db(modZ
0 A) restricts to a triangle

equivalence

D>`
A ∩ (D>a−`

Aop )∗ ' DA/Db(modZ
0 A).

(c) Assume that conditions (A1), (A2) and (A3) are satisfied. If a > 0, then we
have a semiorthogonal decomposition

D>`−a
A ∩ (D>a−`

Aop )∗ = (D>`
A ∩ (D>a−`

Aop )∗) ⊥ Db(mod[`−a,`−1] A).

If a 6 0, then we have a semiorthogonal decomposition

D>`
A ∩ (D>a−`

Aop )∗ = Kb(proj[`,`−a−1] A) ⊥ (D>`−a
A ∩ (D>a−`

Aop )∗).

Immediately, we obtain the following analogue of Orlov’s semiorthogonal
decompositions [62].
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COROLLARY 3.2. Assume that (A1), (A2) and (A3) are satisfied. For ` ∈ Z,
there exist fully faithful triangle functors F` : DA/Kb(projZ A) → DA and G` :

DA/Db(modZ
0 A)→ DA and a semiorthogonal decomposition

G`(DA/Db(modZ
0 A)) ' Kb(proj[`,`−a−1] A) ⊥ F`(DA/Kb(projZ A)) if a < 0,

F`(DA/Kb(projZ A)) ' G`(DA/Db(modZ
0 A)) if a = 0,

F`(DA/Kb(projZ A)) ' G`(DA/Db(modZ
0 A)) ⊥ Db(mod[`−a,`−1] A) if a > 0.

We refer to [56] for analogous results to Theorem 3.1.
The rest of this section is devoted to proving Theorem 3.1 and Corollary 3.2.

We start with the following easy observation.

LEMMA 3.3. Let T be a triangulated category and T = X ⊥ Y a
semiorthogonal decomposition.

(a) If Z is a thick subcategory of T such that X ⊆ Z , then Z = X ⊥ (Y ∩Z).

(b) If Z is a thick subcategory of T such that Y ⊆ Z , then Z = (X ∩Z) ⊥ Y .

(c) If T = X ′ ⊥ Y ′ is a semiorthogonal decomposition such that X ⊆ X ′
(or equivalently, Y ⊇ Y ′), then we have a semiorthogonal decomposition
T = X ⊥ (Y ∩X ′) ⊥ Y ′.

Proof. (a) and (b) are easy. By (a), we have X ′ = X ⊥ (Y ∩ X ′) and hence
T = X ′ ⊥ Y ′ = X ⊥ (Y ∩X ′) ⊥ Y ′.

We need the following elementary observation (for example, [62, 2.3]).

PROPOSITION 3.4. Let A be a Z-graded Iwanaga–Gorenstein ring satisfying
(A1). Then there exists a semiorthogonal decomposition K(projZ A) =
K(proj<` A) ⊥ K(proj>` A), which gives Kb(projZ A) = Kb(proj<` A) ⊥
Kb(proj>` A) and Db(modZ A) = Kb(proj<` A) ⊥ Db(mod>` A).

Now we prove Theorem 3.1(a).

Proof of Theorem 3.1(a). We have Db(modZ A)= Kb(proj<` A)⊥ Db(mod>` A)
by Proposition 3.4. Applying Lemma 3.3(a) to X := Kb(proj<` A) ⊆ Z := DA,
we have

DA = Kb(proj<` A) ⊥ (DA ∩ Db(mod>` A)) = Kb(proj<` A) ⊥ D>`
A . (3.1)
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Replacing ` by 1− `, we have DAop = Kb(proj6−` Aop) ⊥ D>−`
Aop . Applying (−)∗,

we have

DA = (D>−`
Aop )

∗
⊥ Kb(proj6−` Aop)∗ = (D>−`

Aop )
∗
⊥ Kb(proj>` A). (3.2)

Since D>`
A ⊇ Kb(proj>` A), applying Lemma 3.3(c) to (3.1) and (3.2) gives DA =

Kb(proj<` A) ⊥ (D>`
A ∩ (D>−`

Aop )∗) ⊥ Kb(proj>` A) as desired. The last assertion
follows from

DA/Kb(projZ A)
Prop. 3.4
= DA/(Kb(proj<` A) ⊥ Kb(proj>` A)) ' D>`

A ∩ (D>−`
Aop )

∗.

We also need the following elementary observation (for example, [62, 2.3]).

PROPOSITION 3.5. Let A be a Z-graded Iwanaga–Gorenstein ring satisfying
A = A>0 and (A2). Then there exist semiorthogonal decompositions Db(modZ

0 A)
= Db(mod>`

0 A) ⊥ Db(mod<`0 A) and Db(modZ A) = Db(mod>` A) ⊥ Db

(mod<`0 A).

Now we prove Theorem 3.1(b) and (c).

Proof of Theorem 3.1(b)(c). We have Db(modZ A) = Db(mod>` A) ⊥
Db(mod<`0 A) by Proposition 3.5. Applying Lemma 3.3(b) to Y :=

Db(mod<`0 A) ⊆ Z := DA, we have

DA = (DA ∩ Db(mod>` A)) ⊥ Db(mod<`0 A) = D>`
A ⊥ Db(mod<`0 A). (3.3)

Replacing ` by a− `+ 1, we have DAop = D>a−`
Aop ⊥ Db(mod6a−`

0 Aop). Applying
(−)∗, we have

DA = Db(mod6a−`
0 Aop)∗ ⊥ (D>a−`

Aop )∗
(A3)
= Db(mod>`

0 A) ⊥ (D>a−`
Aop )∗. (3.4)

SinceD>`
A ⊇ Db(mod>`

0 A), applying Lemma 3.3(c) to (3.3) and (3.4) gives DA =

Db(mod>`
0 A) ⊥ (D>`

A ∩ (D>a−`
Aop )∗) ⊥ Db(mod<`0 A) as desired. The last assertion

follows from

DA/Db(modZ
0 A)

Prop.3.5
= DA/(Db(mod>`

0 A) ⊥ Db(mod<`0 A)) 'D>`
A ∩(D>a−`

Aop )∗.

(c) Assume a > 0. Then D>`−a
A = D>`

A ⊥ Db(mod[`−a,`−1] A) holds. Since
Db(mod[`−a,`−1] A)= Db(mod[a+1−`,2a−`] Aop)∗ ⊆ (D>a−`

Aop )∗, the assertion follows
from Lemma 3.3(b).

Assume a 6 0. Then D>`
A = Kb(proj[`,`−a−1] A) ⊥ D>`−a

A holds. Since
Kb(proj[`,`−a−1] A) = Kb(proj[a+1−`,−`] Aop)∗ ⊆ (D>a−`

Aop )∗, the assertion follows
from Lemma 3.3(a).
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4. Proof of our results

4.1. Preliminaries. We start with recalling the central notion of tilting objects.

DEFINITION 4.1. Let T be a triangulated category with suspension functor
[1]. A full subcategory of T is thick if it is closed under cones, [±1] and
direct summands. We call an object T ∈ T tilting (respectively, silting) if
HomT (T, T [i]) = 0 holds for all integers i 6= 0 (respectively, i > 0), and the
smallest thick subcategory of T containing T is T .

The principal example of tilting objects appears in Kb(projΛ) for a ring Λ. It
has a tilting object given by the stalk complexΛ concentrated in degree zero, and
a certain converse holds in the sense of Proposition 4.2. More generally, tilting
objects in Kb(projΛ) are precisely tilting complexes [64] of Λ, where tilting
Λ-modules [28] are special examples. Note that there are some variations of the
definitions of tilting objects [3, 48], for example, the last condition thick T = T
is sometimes replaced by the condition ‘if X ∈ T satisfies HomT (T, X [i]) = 0
for all i ∈ Z, then X = 0’. If T has arbitrary coproducts, then T is assumed to be
compact and ‘thick subcategory’ in the last condition is replaced by ‘localizing
subcategory’.

Recall that a triangulated category is called algebraic if it is triangle equivalent
to the stable category of a Frobenius category. Let us recall the following well-
known result due to Keller [47] (see [51] for a detailed proof).

PROPOSITION 4.2 [47]. Let T be an algebraic triangulated category with a
tilting object T . There exists a triangle equivalence F : T → Kb(proj EndT (T ))
up to direct summands such that F(T ) = EndT (T ). It is a triangle equivalence if
T is idempotent complete.

Let k be a field and D the k-dual. For a finite-dimensional k-algebra Λ, we
denote by

ν = −
L
⊗Λ(DΛ) : Kb(projΛ) ' Kb(injΛ)

the Nakayama functor. If Λ is Iwanaga–Gorenstein, then ν is an autoequivalence
of Kb(projΛ) = Kb(injΛ). The following result due to Happel is also well known.

PROPOSITION 4.3 [28]. Let Λ be a finite-dimensional k-algebra. Then we have
a functorial isomorphism

D HomD(ModΛ)(X, Y ) ' HomD(ModΛ)(Y, νX)
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for any X ∈ Kb(projΛ) and Y ∈ D(ModΛ). In particular, if Λ is Iwanaga–
Gorenstein, then Kb(projΛ) has a Serre functor ν.

Now we prove the following general observation.

PROPOSITION 4.4. Let T be a Hom-finite k-linear algebraic triangulated
category with Serre functor S. Let T ∈ T be a tilting object and Λ := EndT (T ).
Then the following holds true.

(a) Λ is an Iwanaga–Gorenstein k-algebra.

(b) There are a triangle equivalence F : T ' Kb(projΛ) up to direct summands
and the following commutative diagram up to an isomorphism of functors.

T F //

S
��

Kb(projΛ)
ν
��

T F // Kb(projΛ)

Proof. (a) By Proposition 4.2, we may regard T as a full triangulated subcategory
of Kb(projΛ) and T = Λ. Then we have isomorphisms

HomT (−,SΛ) ' D HomT (Λ,−) = D HomD(ModΛ)(Λ,−)|T

' HomD(ModΛ)(−, DΛ)|T .

By Yoneda’s lemma, there is a morphism f : SΛ → DΛ in D(ModΛ), which
induces an isomorphism HomT (−,SΛ) → HomD(ModΛ)(−, DΛ)|T . Then the
cone C ∈ D(ModΛ) of f satisfies HomD(ModΛ)(T ,C) = 0. Since Λ ∈ T , we
have C = 0. Thus DΛ ' SΛ belongs to T , and therefore proj.dim(DΛ)Λ <∞.
On the other hand, since T op also has a Serre functor, we have proj.dimΛ(DΛ) <
∞. Thus Λ is Iwanaga–Gorenstein.

(b) This is immediate from Proposition 4.3 and the uniqueness of Serre functors.

As an application of Proposition 4.4, we give a direct proof of the observation
below. Note that it was known to experts as a consequence of [29, Theorem 3.4]
and [63, Theorem I.2.4].

PROPOSITION 4.5 [13, Corollary 3.9]. Let Λ be a finite-dimensional k-algebra.
Then Kb(projΛ) has a Serre functor if and only if Λ is Iwanaga–Gorenstein.

Proof. The ‘if’ part is Proposition 4.3, and the ‘only if’ part is Proposition 4.4.
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In the rest of this subsection, let R be a Z-graded Gorenstein ring in dimension
d such that R = R>0 and k := R0 is a field, and a the a-invariant of R.

The following Auslander–Reiten–Serre duality is basic.

PROPOSITION 4.6 [6, 39]. Under the above setting, there is a functorial
isomorphism

HomZ
R(X, Y ) ' DHomZ

R(Y, X (a)[d − 1])

for any X ∈ CMZ R and Y ∈ CMZ
0 R.

The results above give the following important observation.

THEOREM 4.7. Under the above setting, we assume that CMZ
0 R has a tilting

object U.

(a) Λ := EndZ
R(U ) is an Iwanaga–Gorenstein ring.

(b) There are a triangle equivalence F : CMZ
0 R ' Kb(projΛ) and the following

commutative diagram up to an isomorphism of functors.

CMZ
0 R F //

(a)��

Kb(projΛ)

ν[1−d]
��

CMZ
0 R F // Kb(projΛ)

Proof. The assertion is immediate from Propositions 4.2, 4.4 and 4.6.

We give an analogue of Buchweitz’s description of CMZR [11] for CMZ
0 R.

PROPOSITION 4.8. Under the above setting, let DR := thick{projZ R,
modZ

0 R} ⊆ Db(modZ R). Then the triangle equivalence Db(modZ R)/Kb

(projZ R) ' CMZR restricts to a triangle equivalence

DR/Kb(projZ R) ' CMZ
0 R.

Proof. For any Z-graded prime ideal p of R, the following diagram is
commutative up to an isomorphism of functors.

Db(modZ R)/Kb(projZ R)
∼

F //

(−)p��

CMZR

(−)p��
Db(modZ Rp)/Kb(projZ Rp) ∼

Fp // CMZRp
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Let X ∈ DR . For any p 6= R>0, we have Xp ∈ Kb(projZ Rp) and hence F(X)p =
Fp(Xp) = 0. Thus F(X) ∈ CMZ

0 R holds, and hence F restricts a fully faithful
triangle functor DR/Kb(projZ R)→ CMZ

0 R. This is dense by [60, Theorem 2.2].

4.2. Basic properties of Z-graded modules. In this subsection, we assume
that R is a ring satisfying (R1) and (R2). Recall that K is the Z-graded total
quotient ring of R. Since R is Cohen–Macaulay, each associated prime ideal of
R is minimal. By prime avoidance, there exists a homogeneous non-zero-divisor
r ∈ R with positive degree p > 0.

We start with the following easy observations.

LEMMA 4.9. (a) The inclusion functor Mod>0 R→ModZ R has a right adjoint
functor (−)>0.

(b) The restriction functor ModZ K → ModZ R has a left adjoint functor
K ⊗R −.

(c) For any X ∈ modZ K , we have K ⊗R (X>0) = X.

LEMMA 4.10. We have K = R[r−1
]. In particular, for i � 0, we have r : Ri '

Ri+p and Ri = Ki .

Proof. To prove K = R[r−1
], it suffices to show that each homogeneous non-zero-

divisor x ∈ K ′ := R[r−1
] is invertible. A bijection between Z-graded prime ideals

p of R such that r /∈ p and Z-graded prime ideals of K ′ is given by p 7→ pK ′. If x
is not invertible, then there exists a Z-graded prime ideal p of R such that x ∈ pK ′

and r /∈ p. Since p ( R>0 and dim R = 1, p is a minimal prime ideal of R and
hence consists of zero-divisors, a contradiction to x ∈ pK ′. Thus K = R[r−1

]

holds.
Since R/Rr is artinian, the remaining assertions follow.

To give basic properties, recall that, for X, Y ∈ modZ R and n > 0, Extn
R(X, Y )

is a Z-graded R-module whose degree i part is Extn
R(X, Y )i = Extn

modZ R
(X, Y (i)).

LEMMA 4.11. (a) We have Ra ( Ka and R>a+1 = K>a+1.

(b) For any i ∈ Z, we have K (i) ' K (i + p) and K (i)>0 ' K (i + p)>0.

(c) For any i ∈ Z, K (i)>0 ∈ modZ R holds.

Proof. (a) Since Ext1
modZ R(k(−a), R) = Ext1

R(k, R)a 6= 0, there is a nonsplit short
exact sequence 0→ R → X → k(−a)→ 0. Since X ∈ CMZ R, we can regard
X ⊂ K and hence Ra ( Xa ⊆ Ka .
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If R>a+1 6= K>a+1, then K/R has k(−i) as a simple submodule for some i >
a + 1. Thus there is a nonsplit short exact sequence 0→ R→ X → k(−i)→ 0,
and hence Ext1

R(k, R)i = Ext1
modZ R(k(−i), R)0 6= 0, a contradiction.

(b) The multiplication map r : K (i)→ K (i + p) is an isomorphism.
(c) The assertion follows from (a) and (b).

Now we show the following easy observations.

PROPOSITION 4.12. (a) K is an injective object in modZ K .

(b) K (i)>0 is an injective object in mod>0 R for any i ∈ Z.

Proof. (a) Let X ∈ modZ K . Then we have X>0 ∈ modZ R by Lemma 4.11(c).
Since dim R = 1, we have X>0 ∈ CMZ R. Thus Ext1

K (X, K ) ' K ⊗R Ext1
R(X>0,

R) = K ⊗R 0 = 0 by Lemma 4.9(c).
(b) We have isomorphisms of functors on mod>0 R:

HomZ
R(−, K (i)>0)

Lem.4.9(a)
= HomZ

R(−, K (i)) Lem.4.9(b)
= HomZ

K (K ⊗R −, K (i)).

This is an exact functor since K is a flat R-module and K (i) is an injective object
in modZ K by (a). Thus K (i)>0 is injective in mod>0 R.

Using an isomorphism Ext1
R(−, R(a))' D of functors on modZ

0 R→modZ
0 R,

we show the following key observations.

LEMMA 4.13. (a) For all integers i, j ∈ Z satisfying j < i and j 6 a, we have

HomZ
R(R(i)>0, R( j)>0) = HomZ

R(R(i)>0, R( j)) = 0.

(b) Assume a > 0. For all i > 0 and X ∈ CM>0 R, we have HomZ
R(R(i)>0, X)

= HomZ
R(R(i)>0, X).

Proof. (a) The first equality follows from Lemma 4.9(a).
We show the second equality. Consider an exact sequence 0 → R(i)>0 →

R(i)→ M→ 0 with M := R(i)/R(i)>0 ∈mod<0 R. Applying HomR(−, R( j)),
we have an exact sequence

HomZ
R(R(i), R( j))→ HomZ

R(R(i)>0, R( j))→ Ext1
R(M, R( j))0.

Since j < i , we have HomZ
R(R(i), R( j)) = R j−i = 0. Moreover,

Ext1
R(M, R( j))0 = Ext1

R(M, R(a)) j−a = (DM) j−a = 0

holds by DM ∈ mod>0 R and j − a 6 0. Thus HomZ
R(R(i)>0, R( j)) = 0 holds.
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(b) Clearly HomZ
R(R( j), X) = 0 for any j > 0, and HomZ

R(R(i)>0, R( j)) = 0
holds for any j 6 0 by (a). Thus the assertion follows.

For X ∈ mod R, let NP(X) := {p ∈ Spec R | Xp /∈ proj Rp} be the
nonprojective locus of X . Clearly, NP(X) = Supp Ext1

R(X,ΩX) holds.

LEMMA 4.14. For X ∈modZ R, each minimal element in NP(X) is Z-graded. In
particular, X ∈ proj R if and only if Xp ∈ proj Rp for each Z-graded prime ideal
p of R.

Proof. For p ∈ Spec R, we denote by p∗ ∈ Spec R the ideal generated by all
homogeneous elements in p. Since E := Ext1

R(X,ΩX) is a Z-graded R-module,
p ∈ Supp E if and only if p∗ ∈ Supp E [10, 1.5.6]. Thus each minimal element
p ∈ NP(X) satisfies p = p∗.

We give the following description of the category CMZ
0 R in (1.3).

PROPOSITION 4.15. CMZ
0 R = {X ∈ CMZ R | K ⊗R X ∈ proj K }.

Proof. Since dim R = 1, X ∈ CMZ R belongs to CMZ
0 R if and only if Xp ∈

proj Rp for each minimal prime ideal p of R. Applying Lemma 4.14 to K ⊗R X ∈
modZ K , this is equivalent to K ⊗R X ∈ proj K since Z-graded prime ideals of
K correspond bijectively to minimal prime ideals of R.

4.3. Proofs of Theorem 1.3 and Corollaries 1.7 and 1.8. Theorem 1.3
follows easily from the following standard observations.

PROPOSITION 4.16. (a) P =
⊕p

i=1 K (i) is a progenerator of modZ K such that
EndZ

R(P) ' Λ.

(b) There is an equivalence HomZ
R(P,−) : modZ K ' modΛ.

(c) U =
⊕p

i=1 K (i)>0 is a progenerator in qgr R. Therefore U is a tilting object
in per(qgr R).

(d) Λ is a finite-dimensional self-injective k-algebra.

(e) If R is reduced, then Λ is a semisimple k-algebra. Otherwise, Λ has infinite
global dimension.

https://doi.org/10.1017/fms.2020.28 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.28


R.-O. Buchweitz, O. Iyama and K. Yamaura 22

Proof. (a) Since {K (i) | i ∈ Z} is a progenerator of modZ K and K (i+ p)' K (i)
holds for any i ∈ Z, P is a progenerator. Since EndR(P) = EndK (P), we have
EndZ

R(P) = EndZ
K (P) ' Λ.

(b) This is immediate from (a) and Morita theory.
(c) Consider the functors (−)>0 : modZ K → modZ R and K ⊗R − :

modZ R → modZ K . One can check that they induce mutually quasi-inverse
equivalences modZ K ' qgr R (for example, [32, Proposition 6.21]). Since
P ∈ modZ K corresponds to U ∈ qgr R, U is a progenerator in qgr R by (a).

(d) Since P is injective in modZ K by Proposition 4.12(a), Λ is injective in
modΛ by (b).

(e) R is reduced if and only if K is reduced if and only if any homogeneous
element of K is invertible. This is equivalent to that any object in modZ K is
projective, that is, gl.dim (modZ K ) = 0. By (b), this is equivalent to that Λ is
semisimple.

On the other hand, by a classical result of Eilenberg and Nakayama, a self-
injective algebra is either semisimple or of infinite global dimension. Thus the
last assertion follows from (d).

We give another proof of Theorem 1.3(a) by using Theorem 3.1. Note that U
can be written as

U =
a+p⊕

i=a+1

K (i)>0 =

a+p⊕
i=a+1

R(i)>0 ∈ Db(modZ R).

Theorem 1.3(a) is a direct consequence of the following result.

PROPOSITION 4.17. (a) U belongs to U := D>0
R ∩ (D>a

R )
∗.

(b) U is a tilting object in U ' per(qgr R).

Proof. (a) Since U ∈ D>0
R holds clearly, we only have to show U ∗ ∈ D>a

R . Fix
i > a + 1. Since R(i)>0 ∈ CMZ R, we have (R(i)>0)

∗
= HomR(R(i)>0, R).

Since HomZ
R(R(i)>0, R( j)) = 0 holds for any j 6 a by Lemma 4.13(a), we have

(R(i)>0)
∗
∈ D>a

R as desired.
(b) U ' per(qgr R) holds by Theorem 3.1(b). We have HomU (K (i)>0,

K ( j)>0[`]) = 0 for all ` 6= 0 by Proposition 4.12(b). It remains to show U =
thick U or, equivalently, per(qgr R) = thick U . For all i ∈ Z, the multiplication
map r : R(i)→ R(i+ p) is an isomorphism in qgr R since r is a non-zero-divisor
and hence R/r R is artinian. For all i with a < i 6 a+ p, R(i) belongs to thick U
since R(i) ' R(i)>0 holds in qgr R. Thus per(qgr R) = thick(projZ R) =
thick U holds.
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Now we prove Corollaries 1.7 and 1.8.

Proof of Corollary 1.7. (a) The isomorphism classes of indecomposable
projective objects in qgr R are given by K i( j) with 1 6 i 6 m and 0 6 j < pi .
Thus their number is

∑m
i=1 pi .

(b) This follows immediately from (a) and Corollary 3.2 since the Grothendieck
groups of Kb(proj[`,`−a−1] A) for a < 0 and Db(mod[`−a,`−1] A) for a > 0
are Z|a|.

Proof of Corollary 1.8. Let k = A0 and k[t] be a polynomial ring with deg t = a.
Then R = k[t] ⊗k A is a Z-graded ring satisfying (R1) and (R2), and the a-
invariant of R is 0 by [10, Corollary 3.6.14]. By Corollary 3.2 and Theorem 1.3,
we have a triangle equivalence CMZ

0 R ' per(qgr R) ' Kb(projΛ) for Λ in (1.4)
with p = a. Since K = k[t±1

] ⊗k A, it is clear that there is an equivalence
projZ/aZ A ' projΛ sending A(i) to the projective Λ-module given by its i th
row (see [37, Theorem 3.1]). Thus CMZ

0 R ' Kb(projΛ) ' Kb(projZ/aZ A).

4.4. Proofs of Theorem 1.4 and Corollary 1.5. In this subsection, we assume
that the a-invariant a of R is nonnegative unless otherwise stated. Let

V := D>−a
R ∩ (D>a

R )
∗
⊇ U = D>0

R ∩ (D>a
R )
∗.

Then we have

CMZ
0 R ' DR/Kb(projZ R)

Thm.3.1(a)
' V Thm.3.1(c)

= U ⊥ Db(mod[−a,−1] R).

We define a subalgebra of the a × a matrix algebra Ma(R) by

Ra
:= (Ri− j)16i, j6a.

PROPOSITION 4.18. The category mod[−a,−1] R is equivalent to mod Ra and has
a progenerator

⊕a
i=1(R/R>i)(i) ∈ mod[−a,−1] R. Thus Db(mod[−a,−1] R) has a

tilting object

W :=
a⊕

i=1

(R/R>i)(i)[−1] ∈ Db(mod[−a,−1] R).

Proof. We have an equivalence mod[−a,−1] R ' mod Ra sending
⊕
−1
i=−a X i to

[X−1 X−2 · · · X−a]. Since it sends
⊕a

i=1(R/R>i)(i) to Ra , the first assertion
follows. The second assertion is an immediate consequence.

We can glue the tilting objects U ∈ U and W ∈ Db(mod[−a,−1] R) as follows.

LEMMA 4.19. V = U ⊥ Db(mod[−a,−1] R) has a tilting object U ⊕W .
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Proof. Clearly U = thick U and Db(mod[−a,−1] R) = thick W imply V =
thick(U ⊕W ).

By Propositions 4.17 and 4.18, we have HomV(W,W [`]) = 0 and HomV(U,
U [`]) = 0 for all ` 6= 0. Since V = U ⊥ Db(mod[−a,−1] R), we have HomV(U,
W [`]) = 0 for all ` ∈ Z.

It remains to check HomV((R/R> j)( j)[−1], K (i)>0[`]) = 0 for all ` 6= 0. If
` < −1, then this is clear since (R/R> j)( j) and K (i)>0 are modules. If ` = −1,
then this follows from (R/R> j)( j) ∈ modZ

0 R and K (i)>0 ∈ CMZ R. Assume
` > 0. Since the syzygy of (R/R> j)( j) is R( j)>0, we have

HomV((R/R> j)( j)[−1], K (i)>0[`]) = Ext`R(R( j)>0, K (i)>0)0
Prop.4.12(b)
= 0.

We are ready to prove Theorem 1.4.

Proof of Theorem 1.4. (a) This follows from Lemma 4.19 since V ' U ⊕ W in
CMZ

0 R.
(b) This is immediate from (a) and Proposition 4.2.
(c) The triangle equivalence V ' CMZ

0 R sends
⊕a

i=1(R/R>i)(i)[−1] to⊕a
i=1 R(i)>0. Thus

EndZ
R

( a⊕
i=1

R(i)>0

)
' EndZ

R

( a⊕
i=1

(R/R>i)(i)
)
= Ra.

Hence the left upper entries of (1.6) are correct. The right upper entries are
also correct since HomZ

R(R(i)>0, R( j)>0) = 0 holds for all j 6 a < i by
Lemma 4.13(a). Finally, the lower entries are correct since for all a + 1 6 j 6
a + p, we have

HomZ
R(R(i)>0, R( j)>0)

Lem.4.13(b)
= HomZ

R(R(i)>0, R( j)>0)

Lem.4.11(a)
= HomZ

R(R(i)>0, K ( j)>0)

Lem.4.9(a)
= HomZ

R(R(i)>0, K ( j))
Lem.4.9(b)
= HomZ

K (K (i), K ( j)) = K j−i .

(d) This follows from Theorem 4.7(a).
(e) For the triangular matrix ring A =

[
B 0
M C

]
, it is well known that

max{gl.dim B, gl.dim C} 6 gl.dim A 6 gl.dim B + gl.dim C + 1

holds. Applying it repeatedly, we obtain gl.dim Ra < ∞. Since Γ has a form[
Ra 0
M Λ

]
, it follows that gl.dim Γ < ∞ if and only if gl.dim Λ < ∞. Thus the

assertion follows from Theorem 1.3(e).
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To prove Corollary 1.5, we prepare the following.

PROPOSITION 4.20. Under the setting (R1) and (R2), if a < 0 and R is reduced,
then R ' k[t].

Proof. Since R is reduced, K is a product k1
[t±1

1 ] × · · · × km
[t±1

m ] of Laurent
polynomial algebras over field extensions k i of k [10, Lemma 1.5.7]. Since a < 0,
we have R = K>0 by Lemma 4.11(a). Thus K0 = R0 = k holds, and therefore
K = k[t±1

] and R = K>0 = k[t].

We are ready to prove Corollary 1.5.

Proof of Corollary 1.5. (a) is shown in Proposition 4.20, and (b) and (c) are
immediate from Theorem 1.4. Now (d) is clear from the shape of Γ in (1.6).

4.5. Proof of Theorem 1.6. We start with the following general result for
‘silting reduction’ of triangulated categories.

PROPOSITION 4.21 [40, Theorem 4.8]. Let U be a triangulated category with a
silting object U. For any P ∈ add U, the Verdier quotient U/ thick P has a silting
object U.

In the rest, we assume a < 0. Now we prove Theorem 1.6.

Proof of Theorem 1.6. (a)(b) Let U = D>0
R ∩(D>a

R )
∗. By Theorem 3.1(a)(c), there

are triangle equivalences

CMZ
0 R ' D>−a

R ∩ (D>a
R )
∗
'

U
Kb(proj[0,−a−1] R)

=
U

thick P

for P =
⊕0

i=a+1 R(i). By Proposition 4.16(c), the triangulated category U has a
tilting object U =

⊕a+p
i=a+1 R(i)>0. Applying Proposition 4.21 to U and the direct

summand P of U , it follows that U is a silting object in U/ thick P ' CMZ
0 R.

(c) Assume that R is not regular and that CMZ
0 R has a tilting object T . Let

Λ = EndZ
R(T ). By Theorem 4.7, there is a triangle equivalence F : CMZ

0 R '
Kb(projΛ) sending T to Λ and making the following diagram commutative.

CMZ
0 R F //

(a)��

Kb(projΛ)
ν
��

CMZ
0 R F // Kb(projΛ)
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For all ` > 0, ν`(Λ) ∈ D60(modΛ) holds clearly, and hence H i(ν`(Λ)) = 0
holds for all i > 0.

On the other hand, take a surjective morphism f :
⊕n

j=1 R(−b j) → T in
modZ R, and let

s := min{b j | 1 6 j 6 n} 6 t := max{b j | 1 6 j 6 n}.

Then (Ω i T )<s = 0 holds for all i > 0. Since a < 0, there exists `� 0 such that
t < s − `a. Then for all i > 0, we have (Ω i T (`a))6t = 0 and hence

HomZ
R(T,Ω

i T (`a)) ⊂ HomZ
R

( n⊕
j=1

R(−b j),Ω
i T (`a)

)
=

n⊕
j=1

(Ω i T (`a))b j = 0.

Thus H−i(ν`(Λ)) = HomDb(modΛ)(Λ, ν
`(Λ)[−i]) = HomZ

R(T,Ω
i T (`a)) = 0

holds for all i > 0.
Therefore for ` � 0, ν`(Λ) is acyclic and hence zero in Db(modΛ). This is a

contradiction since ν is an autoequivalence.

4.6. Proof of Theorem 2.1. (a) Since Γ is Iwanaga–Gorenstein by
Theorem 1.4(d), it suffices to show proj.dimΓ (DΓ ) 6 2. Recall that Γ has
the following form.

Γ =



R0 0 · · · 0 0 0
R1 R0 · · · 0 0 0
...

...
. . .

...
...

...

Ra−2 Ra−3 · · · R0 0 0
Ra−1 Ra−2 · · · R1 R0 0
Ka Ka−1 · · · K2 K1 K0


.

For 1 6 i 6 a+1, let ei ∈ Γ be the element whose (i, i)-entry is 1 and the others
are 0, and let P i

= Γ ei be the projective Γ op-module corresponding to the i th
column.

First, we claim that the simple Γ op-module Si
= P i/radP i has projective

dimension at most 2 for 1 6 i 6 a. More precisely, we show that the sequence

0→ P i+2
t
[y −x]
−−−→ (P i+1)⊕2 [x y]

−−→ P i
→ Si

→ 0 (4.1)

is exact (where Pa+2
= 0). Indeed, there is an exact sequence

0→ k[x, y](−2)
t
[y −x]
−−−→ k[x, y](−1)⊕2 [x y]

−−→ k[x, y] → k → 0 (4.2)

https://doi.org/10.1017/fms.2020.28 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.28


Tilting theory for Gorenstein rings in dimension one 27

in modZ k[x, y]. By k[x, y]<n = R<n , the degree i-part

0→ Ri+2 → (Ri+1)
⊕2
→ Ri → 0

of (4.2) is exact for 1 6 i < a = n − 2. Moreover, applying −⊗k[x,y] K to (4.2),
we have exact sequences 0→ K (−2)→ K (−1)⊕2

→ K → 0 and

0→ Ki+2 → (Ki+1)
⊕2
→ Ki → 0

for i ∈ Z. Thus (4.1) is exact since each entry is exact by the above two exact
sequences.

By the above claim, any Γ op-module annihilated by ea+1 has projective
dimension at most 2. In particular, we have proj.dimΓ D(eiΓ ) 6 2 for 1 6 i 6 a.
Finally, there is an exact sequence

0→ t
[0 0 · · · 0 DK0] → D(ea+1Γ )→

t
[DKa DKa−1 · · · DK1 0] → 0.

The left term is isomorphic to Γ ea+1 since K0 is a self-injective k-algebra. The
right term has projective dimension at most 2 since it is annihilated by ea+1. Thus
proj.dimΓ D(ea+1Γ ) 6 2 holds, and we have the desired inequality.

(b) Since R is a hypersurface, [2] = (n) holds. Since R has a-invariant n−2, our
triangulated category CMZ

0 R has a Serre functor S = (n − 2) by Proposition 4.6.
Thus Sn

' [2(n − 2)] holds, and CMZ
0 R is a 2(n−2)

n -Calabi–Yau triangulated
category. If Γ ′ is derived equivalent to Γ , then Kb(projΓ ′) ' CMZ

0 R holds, and
hence 1 6 2(n−2)

n < inj.dimΓ ′Γ ′ by [31, Proposition 1.10(c)].
(c) Since Ri

= k[x, y]/( f ni
i ), we have a monomorphism R ⊆ R1

×· · ·× Rm of
Z-graded rings whose cokernel has finite length as an R-module. Thus we have an
isomorphism K ' K 1

×· · ·×K m of Z-graded rings. It restricts to an isomorphism
K>0 ' K 1

>0×· · ·×K m
>0 of Z-graded rings and of Z-graded R-modules. We show

that K i
>0 is indecomposable in CMZ R.

By our choice, gi = α′i x + β
′

i y ∈ k[x, y] is a non-zero-divisor of Ri , and
by Lemma 4.10, we have K i

= Ri
[g−1

i ] = k[hi , g±1
i ] for hi = fi/gi . We have

isomorphisms

K i
= K i

0[g
±1
i ] and K i

0 ' k[bi ]/(b
ni
i )

for the polynomial ring k[bi ], where bi corresponds to hi . Since EndZ
R(K

i
>0) =

(K i
>0)0 = K i

0 = k[bi ]/(b
ni
i ) is a local algebra, K i

>0 is indecomposable.

https://doi.org/10.1017/fms.2020.28 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.28


R.-O. Buchweitz, O. Iyama and K. Yamaura 28

(d) The Jacobson radical of Γ and its square are

radΓ =



0 0 0 · · · 0 0 0 0
R1 0 0 · · · 0 0 0 0
R2 R1 0 · · · 0 0 0 0
R3 R2 R1 · · · 0 0 0 0
...

...
...

. . .
...

...
...

...

Ra−2 Ra−3 Ra−4 · · · R1 0 0 0
Ra−1 Ra−2 Ra−3 · · · R2 R1 0 0
Ka Ka−1 Ka−2 · · · K3 K2 K1 radK0


,

rad2Γ =



0 0 0 · · · 0 0 0 0
0 0 0 · · · 0 0 0 0
R2 0 0 · · · 0 0 0 0
R3 R2 0 · · · 0 0 0 0
...

...
...

. . .
...

...
...

...

Ra−2 Ra−3 Ra−4 · · · 0 0 0 0
Ra−1 Ra−2 Ra−3 · · · R2 0 0 0
Ka Ka−1 Ka−2 · · · K3 K2 radK1 rad2 K0


.

Thus radΓ/rad2Γ is a direct sum of the following:

• ei+1(
radΓ
rad2Γ

)ei = R1 = 〈x, y〉k (1 6 i 6 a − 1).

• ea+1(
radΓ
rad2Γ

)ea =
K1

radK1
=

K 1
1

radK 1
1
× · · · ×

K m
1

radK m
1
=

k[b1]

(b1)
g1 × · · · ×

k[bm ]

(bm )
gm .

• ea+1(
radΓ
rad2Γ

)ea+1 =
radK0
rad2 K0

=
radK 1

0
rad2 K 1

0
× · · · ×

radK m
0

rad2 K m
0
=

(b1)

(b2
1)
× · · · ×

(bm )

(b2
m )

.

Thus we obtain the quiver of Γ as in the assertion. The proofs of relations are
direct and left to the reader.

(e) This is clear from (d) and (a).

4.7. Proof of Theorem 2.2. We prove Theorem 2.2 by applying Theorem 1.4
and a general recipe to calculate mutation [1] given by Mizuno [58, Theorem 1.2].
We denote by V and Γ the tilting object and its endomorphism algebra,
respectively, given in Theorem 1.4.

(A2n−1) Let R = k[x, y]/(x2n
− y2) with deg x = 1 and deg y = n, so a = n−1.

Then K = k[t±1
] × k[u±1

] with deg t = deg u = 1, x = t + u and y = tn
− un ,

so p = 1. Our V is (
⊕n−1

i=1 R(i)>0) ⊕ k[t] ⊕ k[u], and Γ is the path algebra
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of type Dn+1:

k[t]

R(1)>0
x // R(2)>0

x // · · · x // R(n − 2)>0
x // R(n − 1)>0

t 33

u
++ k[u].

(A2n) Let R = k[x, y]/(x2n+1
− y2) with deg x = 2 and deg y = 2n + 1, so

a = 2n − 1. Then K = k[t±1
] with deg t = 1, x = t2 and y = t2n+1, so p = 1.

Our V is
⊕2n

i=1 R(i)>0, and Γ is the path algebra of type A2n:

R(1)>0
x // R(3)>0

x // · · · x // R(2n − 3)>0
x // R(2n − 1)>0

t��
R(2)>0

x // R(4)>0
x // · · · x // R(2n − 2)>0

x // R(2n)>0.

(D2n+1) Let R = k[x, y]/(x2n
− xy2) with deg x = 2 and deg y = 2n − 1, so

a = 2n−1. Then K = k[t±1
]×k[u±1

] with deg t = 1, deg u = 2n−1, x = t2 and
y = t2n−1

+u, so p = 2n−1. Our V is (
⊕2n−1

i=1 R(i)>0)⊕k[t]⊕(
⊕2n−1

i=1 k[u](i)>0),
and Γ is

k[u](1)>0 k[u](3)>0 k[u](2n − 3)>0 k[u](2n − 1)>0

R(1)>0
x //

OO

R(3)>0
x //

OO

· · ·
x // R(2n − 3)>0

x //

OO

R(2n − 1)>0
t��

OO

R(2)>0
x //

��

R(4)>0
x //

��

· · ·
x // R(2n − 2)>0

x //

��

k[t]

k[u](2)>0 k[u](4)>0 k[u](2n − 2)>0.

This is derived equivalent to the path algebra of type A4n−1 by mutating the
summands k[u](i)>0 with 1 6 i 6 2n − 1:

• •55 66 •55 •33

R(1)>0
��

R(3)>0
��

· · · R(2n − 3)>0
��

R(2n − 1)>0

��

��

R(2)>0OO
R(4)>0OO

· · · R(2n − 2)>0 //
OO

k[t]

• •
)) ((

•
))

(D2n) Let R = k[x, y]/(x2n−1
− xy2) with deg x = 1 and deg y = n − 1, so

a = n−1. Then K = k[t±1
]×k[u±1

]×k[v±1
]with x = t+u, y = tn−1

−un−1
+v,
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deg t = deg u = 1 and deg v = n − 1, so p = n − 1. Our V is (
⊕n−1

i=1 R(i)>0)⊕

k[t] ⊕ k[u] ⊕ (
⊕n−1

i=1 k[v](i)>0), and Γ is

R(1)>0
x //

��

R(2)>0
x //

��

· · ·
x // R(n − 2)>0

x //

��

R(n − 1)>0 //

�� ))

k[t]

k[v](1)>0 k[v](2)>0 k[v](n − 2)>0 k[v](n − 1)>0 k[u].

This is derived equivalent to the path algebra of type D2n by mutating the
summands k[v](i)>0 with 1 6 i 6 n − 1:

R(1)>0OO
R(2)>0OO

· · · R(n − 2)>0OO
R(n − 1)>0OO

))

// k[t]

• •
)) ''

•
((

•
** k[u].

(E6) Let R = k[x, y]/(x4
− y3) with deg x = 3 and deg y = 4, so a = 5. Then

K = k[t±1
] with deg t = 1, x = t3 and y = t4, so p = 1. Our V is

⊕6
i=1 R(i)>0,

and Γ is
R(1)>0

x //

y
��

R(4)>0

t2
��

R(2)>0
x // R(5)>0

t // R(6)>0 R(3)>0.
xoo

This is derived equivalent to the path algebra of type E6 by mutating the summand
R(1)>0:

• ooOO R(4)>0

R(2)>0 // R(5)>0 R(6)>0
''

R(3)>0.oo

(E7) Let R = k[x, y]/(x3 y− y3) with deg x = 2 and deg y = 3, so a = 4. Then
K = k[t±1

] × k[u±1
] with deg t = 1, deg u = 2, x = t2

+ u and y = t3, so p = 2.
Our V is (

⊕4
i=1 R(i)>0)⊕ k[t] ⊕ k[u] ⊕ k[u](1)>0, and Γ is

k[u] R(1)>0
x //

y
��

R(3)>0
u //

t2
��

k[u](1)>0

R(2)>0
x // R(4)>0

t //

u
gg

k[t].

This is derived equivalent to the path algebra of type E7 by successively mutating
the summands R(1)>0 and k[u]:

• //vv
•OO R(3)>0 // k[u](1)>0

R(2)>0 // R(4)>0 k[t].
''
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(E8) Let R = k[x, y]/(x5
− y3) with deg x = 3 and deg y = 5, so a = 7. Then

K = k[t±1
] with deg t = 1, x = t3 and y = t5, so p = 1. Our V is

⊕8
i=1 R(i)>0,

and Γ is
R(1)>0

x //

y ''

R(4)>0
x // R(7)>0

t
��

R(2)>0
yoo

x
��

R(3)>0 x
// R(6)>0

t2
// R(8)>0 R(5)>0.x

oo

This is derived equivalent to the path algebra of type E8 by successively mutating
the summands R(1)>0, R(4)>0, R(8)>0 and R(2)>0:

• //gg •
vv R(7)>0 •//

R(3)>0 // R(6)>0 •

77

R(5)>0.//

4.8. Proof of Proposition 2.4. We prove Proposition 2.4 by applying
Theorem 1.4 and mutation [1, 58]. We omit the details of calculations.

(a) We apply Theorem 2.1. Let K i be the Z-graded total quotient ring of k[x,
y]/(x − αi y). Since a = 2 in this case, our V is (

⊕2
i=1 R(i)>0) ⊕ (

⊕4
i=1 K i

>0),
and Γ is presented by the quiver with relations

K 1
>0

K 2
>0

R(1)>0

x --

y
11 R(2)>0

a1
88

a2
33

a3 ++
a4 &&

ai (x − αi y) = 0 (1 6 i 6 4).

K 3
>0

K 4
>0

By mutating the summand R(2)>0, we obtain a tilting object in CMZR whose
endomorphism algebra is the following canonical algebra, where λ = (α1 −

α4)(α2 − α4)(α1 − α3)
−1(α2 − α4)

−1 (see also [43, Figure 1.1]).

K 1
>0

b1

$$
K 2
>0 b2 **

b1a1 + b2a2 + b3a3 = 0

R(1)>0

a1
88

a2
33

a3 ++
a4 &&

• b1a1 + λb2a2 + b4a4 = 0.

K 3
>0

b3

44

K 4
>0

b4

::
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(b) Let K i be the Z-graded total quotient ring of k[x, y]/(x − αi y2). Since
a = 3 in this case, our V is (

⊕3
i=1 R(i)>0)⊕ (

⊕3
i=1 K i

>0), and Γ is presented by
the quiver with relations

K 1
>0

R(1)>0 y
//

x

))
R(2)>0 y

// R(3)>0

a1 55

a2 //

a3 ))
K 2
>0 ai (x − αi y2) = 0 (1 6 i 6 3).

K 3
>0

By mutating the summand R(2)>0, we obtain a tilting object in CMZR whose
endomorphism algebra is presented by the quiver with relations

K 1
>0

K 2
>0 ai (x − αi y2) = 0 (1 6 i 6 3)

R(1)>0

x --

y2
11 R(3)>0

a1

88

a2
44

a3 **
a4

''

a4 y2
= 0.

K 3
>0
•

As in case (a), by mutating the summand R(3)>0, we obtain a tilting object in
CMZR whose endomorphism algebra is the following canonical algebra, where
λ = (α2 − α3)(α1 − α3)

−1.

K 1
>0

b1

$$
K 2
>0 b2 **

b1a1 + b2a2 + b3a3 = 0

R(1)>0

a1
88

a2
33

a3 ++
a4

''

• b1a1 + λb2a2 + b4a4 = 0.

K 3
>0

b3

44

•

b4

99

4.9. Proof of Proposition 2.5. We start with the following calculation of DG
algebras.

PROPOSITION 4.22. Let Λ be the algebra in Proposition 2.5(b), and P the
projective Λ-module in Proposition 2.5(d). Then there is a triangle equivalence
Kb(projΛ)/ thick P ' per k[w]/(w2) for the DG algebra in Proposition 2.5(e).

Proof. Let M be the complex

· · · → 0→ P1 z
−→ P2 z

−→ · · ·
z
−→ Pn−2 z

−→ Pn−1 z
−→ Pn

→ 0→ · · ·
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in Kb(projΛ) whose nonzero degrees are 1 − n, 2 − n, . . . , 0. Then
HomKb(projΛ)(P[i],M) = 0 holds for any i ∈ Z, and there is a triangle
N → Pn

→ M → N [1] with N ∈ thick P . Thus we have

Kb(projΛ) = thick(P ⊕ Pn) = thick(P ⊕ M) = (thick P) ⊥ (thick M),

and therefore Kb(projΛ)/ thick P ' thick M . By [47, Theorem 4.3], we have a
triangle equivalence thick M ' per EndΛ(M) for the endomorphism DG algebra
EndΛ(M) of M . One can easily verify

EndΛ(M)i =



HomΛ(Pn, P1) (i = 1− n)
n⊕

i=1

EndΛ(P i) (i = 0)

n−1⊕
i=1

HomΛ(P i , P i+1) (i = 1)

0 (otherwise),

and there is a quasi-isomorphism k[w]/(w2)→ EndΛ(M) of DG algebras given
by w 7→ (z : Pn

→ P1). Thus

Kb(projΛ)/ thick P ' thick M ' per EndΛ(M) ' per k[w]/(w2).

We are ready to prove Proposition 2.5.

Proof of Proposition 2.5. (a) is clear. (b) is shown in Theorem 1.3. (c) and (f) are
well known. (d) and the first sentence of (e) are shown in Theorems 1.4 (n = 1)
and 1.6 (n > 2). The last sentence of (e) follows from Proposition 4.22.
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