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This paper mainly concerns the KAM persistence of the mapping
F : T

n × E → T
n × R

n with intersection property, where E ⊂ R
n is a connected

closed bounded domain with interior points. By assuming that the frequency
mapping satisfies certain topological degree condition and weak convexity condition,
we prove some Moser-type results about the invariant torus of mapping F with
frequency-preserving under small perturbations. To our knowledge, this is the first
approach to Moser’s theorem with frequency-preserving. Moreover, given perturbed
mappings over T

n, it is shown that such persistence still holds when the frequency
mapping and perturbations are only continuous about parameter beyond Lipschitz
or even Hölder type. We also touch the parameter without dimension limitation
problem under such settings.

Keywords: frequency-preserving; invariant torus; mapping with intersection property
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1. Introduction

The celebrated KAM theory is established by Kolmogorov [15], Arnold [1] and
Moser [22]. It mainly concerns the stability of motions or orbits in dynamical
systems under small perturbations and indeed has a long history of over 60 years.
So far, as well known, KAM theory has been widely spread to various systems, such
as volume-preserving flows due to Broer et al [3], generalized Hamiltonian systems
due to Parasyuk [24] and Li and Yi [18, 19], finitely differentiable Hamiltonians
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due to Salamon [30], Bounemoura [2] and Koudjinan [16], Gevrey Hamiltonians
due to Popov [25] and multiscale dynamical systems due to Qian et al [26]. For
other related results, see for instance, [5–7, 27, 29, 32, 38]. In studying discrete
dynamical systems, Moser [22] first studied the persistence of invariant tori of twist
mappings, namely of the following form

G :

{
θ1 = θ + ω(r) + F (θ, r),
r1 = r + G(θ, r),

where dω(r)/dr > 0, the perturbations were only finitely differentiable with respect
to (θ, r) (explicitly shown to be C333) and 2π-periodic about θ. He stated a differ-
entiable invariant curve theorem, which also is of great importance for the study
of stability of periodic solutions. An analytic invariant curve theorem was provided
in [34] by Siegel and Moser. Concentrating on finitely differentiable case, Svanidze
established a KAM theorem for twist mappings in [35]. The version of class Cα

with α > 4 and the optimal situation of class Cα with α > 3 about mappings on
the annulus were due to Rüssmann [28] and Herman [12, 13], respectively. For
relevant works on the existence of invariant tori of voluming-preserving mappings,
see Cheng and Sun [4] (3-dimensional), Feng and Shang [10], Shang [33] and Xia
[37] (n � 3). Cong et al [8] gave the persistence of the invariant tori when consider-
ing mappings with the intersection property, which has different numbers of action
and angular variables. Levi and Moser [17] gave a Lagrange proof of the invari-
ant curve theorem for twist mappings using the method introduced by Moser [23].
The invariant curve theorem for quasi-periodic reversible mappings was studied by
Liu [20]. For some reversible mappings, see Sevryuk’s book [31]. Recently, Yang
and Li [39], and Zhao and Li [40] have extended the existence of invariant tori to
resonance surfaces of twist mappings and multiscale mappings, respectively. Apart
from above, Liu and Xing [21] presented a new proof of Moser’s theorem for twist
mappings with a parameter.

Among the KAM theory for Hamiltonian systems, the preservation of prescribed
frequency is also important in studying invariance of dynamics under small pertur-
bations, see Salamon [30] for instance, especially without certain nondegeneracy
such as Kolmogorov or Rüssmann conditions, see Du et al [9] and Tong et al [36].
However, as generally known, the frequency of dynamical systems may have a drift
effect by the perturbations during the KAM iteration, and therefore it is indeed
difficult to achieve frequency-preserving. To the best of our knowledge, there are
no KAM results for twist mappings on this aspect, no one knows whether the pre-
scribed frequency could be preserved for an invariant torus. In this paper, we will
touch this question. To this end, it is necessary to propose some transversality
conditions involving topological degree condition as well as certain weak convex-
ity condition to overcome the drift of frequency, see [9, 36] and the references
therein. Based on them, we will establish the KAM persistence with frequency-
preserving for twist mappings with intersection property. The so-called intersection
property is that any torus close to the invariant torus of the unperturbed system
intersects its image under the mapping. More precisely, denote by T

n = R
n/2πZ

n

the n-dimensional torus, and let E ⊂ R
n be a connected closed bounded domain

with interior points. Then consider the twist mapping F : T
n × E → T

n × R
n with
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intersection property

F :

{
θ1 = θ + ω(r) + εf(θ, r, ε),
r1 = r + εg(θ, r, ε),

(1.1)

where the perturbations f and g are real analytic about (θ, r) on T
n × E, ω is

assumed to be only continuous about r on E, and ε is a sufficiently small scalar.
By introducing parameter translation technique, we prove in theorem 3.1 the per-
sistence of invariant tori of such a family of twist mappings with the frequency
unchanged under small perturbations, and as a byproduct, this gives rise to the
first result for Moser’s theorem with frequency-preserving. Moreover, using simi-
lar approach, we also investigate the perturbed mapping F : T

n × Λ → T
n with

parameter

F : θ1 = θ + ω(ξ) + εf(θ, ξ, ε), (1.2)

provided with Λ the same as E, and ε is a sufficiently small scalar. The perturbation
f is analytic about θ on T

n, and only continuity with respect to the parameter
ξ ∈ Λ is assumed for f and ω. Under such weak settings, we show the unexpected
frequency-preserving KAM persistence via transversality conditions in theorem 3.3.
As an explicit example, one could deal with irregular perturbations, such as nowhere
differentiable systems.

This paper is organized as follows. Section 2 introduces some basic notations
on modulus of continuity. In § 3, we state theorem 3.1 with frequency-preserving
for twist mapping (1.1) satisfying the intersection property. When n = 1, we
obtain Moser’s invariant curve theorem with frequency-preserving, see corollary 3.2.
Theorem 3.3 concerns mapping (1.2) with only angular variables, and shows the
persistence of invariant torus with frequency-preserving, where the perturbation
f(θ, ξ, ε) is real analytic about θ, continuous about the parameter ξ and the
frequency ω(ξ) is also continuous about ξ. To emphasize the weak regularity, we pro-
vide corollary 3.4 with nowhere Hölder about parameter. Some discussions involving
parameter without dimensional limitation problem are also given in § 3. The one
cycle of KAM steps from ν-th to (ν + 1)-th step is shown in § 4. In more detail,
instead of digging out a series of decreasing domains for frequency, we construct
a translation to keep frequency unchanged during the iterative process. In addi-
tion, we have to construct a conjugate mapping to overcome the loss of intersection
property. Finally, § 5 is devoted to the proof of our main results.

2. Preliminaries

To describe only continuity, we first introduce some definitions in this section,
involving the modulus of continuity and the norm based on it.

Definition 2.1. A modulus of continuity is denoted as 	(x), which is a strictly
monotonic increasing continuous function on R

+ that satisfies

lim
x→0+

	(x) = 0,
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and

lim
x→0+

x

	(x)
< +∞.

Definition 2.2. Let a modulus of continuity 	 be given. A function f(x) is said
to be 	 continuous about x, if

|f(x) − f(y)| � 	(|x − y|), ∀ 0 < |x − y| � 1.

It is well known that a mapping defined on a bounded connected closed set
in a finite dimensional space must admit a modulus of continuity, see [11, 14].
For example, for a function f(x) defined on [0, 1] ⊂ R

1, it automatically admits a
modulus of continuity

	f (x) := sup
x′,y′∈[0,1],0<|x′−y′|�x

|f (x′) − f (y′)| , 0 < x � 1.

We therefore only concentrate on modulus of continuity throughout this paper,
especially in theorem 3.3.

Next we will introduce the comparison relation between the strength and the
weakness of modulus of continuity.

Definition 2.3. Assume 	1, 	2 are two modulus of continuity. We say 	1 is to
be not weaker than 	2 if

lim
x→0+

	1(x)
	2(x)

< +∞,

and denote it as 	1 � 	2 (or 	2 � 	1).

Remark 2.4.

(a) If the function f is real analytic about x on a bounded closed connected set,
then f is naturally continuously differentiable with x of order one. Obviously,
one has |f(x) − f(y)| � c|x − y| for some c > 0 independent of x, y, that is,
there exists a modulus of continuity 	1(x) = x with

|f(x) − f(y)| � c	1(|x − y|), ∀ 0 < |x − y| � 1.

(b) The classical α-Hölder case corresponds to modulus of continuity 	α
H(x) = xα

with some 0 < α < 1, and the Logarithmic Lipschitz case 	LL(x) ∼ (− log x)−1

as x → 0+ is weaker than arbitrary α-Hölder continuity, that is, 	α
H(x) �

	LL(x). Both of them characterize regularity weaker than that of Lipschitz.

It needs to be pointed out that, the regularity of the majority of functions is
indeed very weak from the perspective of Baire category, such as nowhere differ-
entiable. In fact, the nowhere differentiable regularity could be even worse. More
precisely, we present the following theorem constructing very weak continuity, one
can see details from theorem 7.2 in [36].
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Theorem 2.5. Given a modulus of continuity 	1, there exists a function f (actu-
ally, a family) on R and a modulus of continuity 	2 � 	1, such that f is 	2

continuous, but nowhere 	1 continuous.

Remark 2.6. These kind of functions are usually constructed by trigonometric
series admitting self-similarity, similar to Weierstrass function and so on.

Remark 2.7. As a direct application, we can construct a family of functions, which
are nowhere Lipschitz or even nowhere Hölder continuous.

Finally, in order to specify the norm based on the modulus of continuity, we need
to give the domains of the variables in detail. Throughout this paper, let

D(h) := {θ ∈ C
n : Re θ ∈ T

n, |Im θ| � h},
G(s) := {r ∈ C

n : Re r ∈ E, |Im r| � s}

be the complex neighbourhoods of T
n and E for given h, s > 0. For each vector

r = (r1, · · · , rn) ∈ R
n, we denote by |r| the l1-norm of r:

|r| = |r1| + · · · + |rn|.

Also, for ease of notation, we write D(h, s) := D(h) × G(s). Next we introduce the
norm defined as follows.

Definition 2.8. For the perturbation function f(θ, r, ε), which is real analytic
about (θ, r) ∈ D(h, s), one can also claim that f(θ, r, ε) is 	1(x) = x continuous
about r due to remark 2.4, define its norm as follows

||f ||D(h,s) := |f |D(h,s) + [f ]�1 ,

where

|f |D(h,s) = sup
(θ,r)∈D(h,s)

|f(θ, r)|,

and

[f ]�1 = sup
θ∈D(h)

sup
r′,r′′∈G(s)

0<|r′−r′′|�1

|f(θ, r′, ε) − f(θ, r′′, ε)|
	1(|r′ − r′′|) .

Remark 2.9. As to weaker continuity described by certain modulus of continuity
	 � 	1, one only needs to change 	1 to 	 in the norm accordingly.

3. Main results

This section is divided into two parts, namely stating our main KAM results as
well as giving some further discussions.
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3.1. Frequency-preserving KAM

Before starting, let us make some preparations. Following remark 2.4, there
exists a modulus of continuity 	1(x) = x such that f and g are automatically
	1 continuous about r. Besides, the following assumptions are crucial to our KAM
theorems.

(A1) Let p ∈ R
n be given in advance and denote by E◦ the interior of E. Assume

that

deg (ω(·), E◦, p) �= 0. (3.1)

(A2) Assume that ω(r∗) = p with some r∗ ∈ E◦ by (3.1), and

|〈k, ω(r∗)〉 − k0| � γ

|k|τ , ∀ k ∈ Z
n\{0}, k0 ∈ Z, |k0| � M0|k|,

where γ > 0, τ > n − 1 is fixed, and M0 is assumed to be the upper bound
of |ω| on E.

(A3) Assume that B(r∗, δ) ⊂ E◦ with δ > 0 is a neighbourhood of r∗. There exists
a modulus of continuity 	2 such that

|ω(r′) − ω(r′′)| � 	2(|r′ − r′′|), r′, r′′ ∈ B(r∗, δ), 0 < |r′ − r′′| � 1.

Via these assumptions, we are now in a position to present the following KAM
theorem for twist mapping with intersection property, which is the first frequency-
preserving result on Moser’s theorem to the best of our knowledge.

Theorem 3.1. Consider mapping (1.1) with intersection property. Assume that
the perturbations are real analytic about (θ, r), and the frequency ω is continuous
about r. Moreover, (A1)–(A3) hold. Then there exists a sufficiently small ε0, a
transformation W when 0 < ε < ε0. The transformation W is a conjugation from
F to F̂ , and F̂ (θ, r) = (θ + ω(r∗), r − r̃) is the integrable rotation on T

n × E with
frequency ω(r∗) = p, where r̃ is the translation about the action r resulting from the
transformation W , and the constant r̃ → 0 as ε → 0. That is, the following holds:

W ◦ F̂ = F ◦ W .

When n = 1, consider the area-preserving mapping of form (1.1), which obvi-
ously satisfies the intersection property. Actually, if a closed curve does not
intersect its image under the mapping, the areas enclosed by these two curves
will be different. Correspondingly, we obtain Moser’s invariant curve theorem with
frequency-preserving as stated in the following corollary.

Corollary 3.2. Consider mapping (1.1) for n = 1. Assume that the perturbations
are real analytic about (θ, r), and the frequency ω is continuous and strictly mono-
tonic concerning r. Moreover, (A2) and (A3) hold. Then there exists a sufficiently
small ε0, a transformation W when 0 < ε < ε0. The transformation W is a con-
jugation from F to F̂ , and F̂ (θ, r) = (θ + ω(r∗), r − r̃) is the integrable rotation
on T × E with frequency ω(r∗) = p for p ∈ ω(E◦)◦ fixed, where r̃ is the translation
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about r resulting from the transformation W , and the constant r̃ → 0 as ε → 0.
That is, the following holds:

W ◦ F̂ = F ◦ W .

Besides concentrating on twist mappings with action-angular variables, Herman
[12, 13] first considered the smooth mappings that contain only angular variables.
It inspires us to investigate the perturbed mappings on T

n as well. We therefore
consider the following mapping F : T

n × Λ → T
n defined by

θ1 = θ + ω(ξ) + εf(θ, ξ, ε), (3.2)

where θ ∈ T
n = R

n/2πZ
n, ξ ∈ Λ ⊂ R

n is a parameter, Λ is a connected closed
bounded domain with interior points, and ε is a sufficiently small scalar. Assume
that the perturbation f(θ, ξ, ε) is real analytic about θ, continuous about the
parameter ξ and the frequency ω(ξ) is continuous about ξ. We will prove that
mapping (3.2) has an invariant torus with the frequency unchanged during the iter-
ation process. Moreover, the assumptions (B1)–(B3) corresponding to (A1)–(A3)
are respectively

(B1) Let q ∈ R
n be given in advance and denote by Λ◦ the interior of the parameter

set Λ. Assume that

deg (ω(·),Λ◦, q) �= 0. (3.3)

(B2) Assume that ω(ξ∗) = q with some ξ∗ ∈ Λ◦ by (3.3), and

|〈k, ω(ξ∗)〉 − k0| � γ

|k|τ , ∀ k ∈ Z
n\{0}, k0 ∈ Z, |k0| � M1|k|,

where τ > n − 1, γ > 0 and M1 is assumed to be the upper bound of |ω| on
Λ.

(B3) Assume that B(ξ∗, δ) ⊂ Λ◦ with δ > 0 is the neighbourhood of ξ∗. There
exists a modulus of continuity 	2 with 	1 � 	2 such that

|ω(ξ′) − ω(ξ′′)| � 	2(|ξ′ − ξ′′|), ξ′, ξ′′ ∈ B(ξ∗, δ), 0 < |ξ′ − ξ′′| � 1.

Similar to theorem 3.1, we have the following theorem on T
n, where the

parameter-dependence for the perturbations is shown to be only continuous. This
result is new, and unexpected, thanks to the parameter translation technique
introduced in [9, 36] as we forego.

Theorem 3.3. Consider mapping (3.2). Assume that the perturbation f(θ, ξ, ε) is
real analytic about θ on D(h), 	1 continuous about ξ on Λ and ω is continuous
about ξ on Λ. Moreover, (B1)–(B3) hold. Then there exists a sufficiently small ε0,
a transformation U when 0 < ε < ε0. The transformation U is a conjugation from
F to F̂ , and F̂ (θ) = θ + ω(ξ∗) is the integrable rotation on T

n × Λ with frequency
ω(ξ∗) = q. That is, the following holds:

U ◦ F̂ = F ◦ U . (3.4)

https://doi.org/10.1017/prm.2023.74 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.74


1480 C. Liu, Z. Tong and Y. Li

The main difference between theorems 3.1 and 3.3 is that the analyticity of the
perturbation f about r can be used in theorem 3.1 to ensure that f is at least Lip-
schitz continuous about r, that is, there exists a modulus of continuity 	1(x) = x.
In fact, it prohibits us from extending r to complex strips in the KAM scheme
if f is assumed to be only continuous about r. However, for theorem 3.3 we con-
sider the case where there is no action variable r but only parameter ξ. In this
situation, the perturbation f being continuous about ξ is enough, and we will
employ condition (B3) directly in the proof of frequency-preserving. Explicitly, the
parameter-dependence for f could be very weak, such as the arbitrary α-Hölder
continuity 	α

H(x) = xα with any 0 < α < 1, then 	2 in (B3) being the Logarith-
mic Lipschitz type 	LL(x) ∼ (− log x)−1 as x → 0+ allows for theorem 3.3 due to
remark 2.4. Actually, in view of theorem 2.5, we could deal with the case which
admits extremely weak regularity, at least nowhere differentiable. In order to show
the wide applicability of theorem 3.3, we directly give the following corollary.

Corollary 3.4. Consider mapping (3.2), where the perturbation f(θ, ξ, ε) is
assumed to be real analytic about θ on D(h) and continuous about ξ on Λ, but
nowhere Hölder continuous, the frequency mapping ω(ξ) is continuous about ξ on
Λ. Besides, assume that (B1)-(B3) hold with certain 	2 weaker than the modulus
of continuity 	1 automatically admitted by f with respect to ξ. Then the conjugacy
(3.4) in theorem 3.3 holds as long as ε > 0 is sufficiently small.

Remark 3.5. One could construct explicit applications following example 7.5 in
[36] and we omit here for simplicity.

3.2. Further discussions

Here we make some further discussions, including how to touch the param-
eter without dimension limitation problem under our approach, as well as the
importance of the weak convexity in preserving prescribed frequency.

3.2.1. Parameter without dimension limitation The parameter without dimension
limitation problem, as is known to all, is fundamental and difficult in KAM theory,
especially using the classical digging frequency method. More precisely, both the
angular variable and the action variable have dimensions of n, but the dimension
of the parameter may be less than n. We will touch this question by employing our
parameter translation technique. To this end, let us start with a discussion of the
topological conditions (A1) and (B1).

As can be seen in the proof, these conditions are proposed to ensure that the
new parameters r̂ν+1 and ξν+1 could be found in the next KAM step, while the
prescribed frequencies remain unchanged due to frequency equations (4.18) and
(5.8), see (4.19) and (5.9) respectively. Here we have used the fact that the non-
zero Brouwer degree does not change under small perturbations from the KAM
iteration, and therefore the solvability of the frequency equations [(4.18) and (5.8)]
remains. Actually, the continuity of the frequency mapping ω(ξ) with respect to
parameter ξ is enough to guarantee this, see the new range conditions that can
replace the topological conditions (A1) and (B1) below:
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(A1*) Let p = ω(r∗) ∈ Ω̃ ⊂ R
n satisfy the Diophantine condition in (A2), where Ω̃

is an open set of ω(Ω), and Ω ⊂ E ⊂ R
n is open.

(B1*) Let q = ω(ξ∗) ∈ Ω̃ ⊂ R
n satisfy the Diophantine condition in (B2), where Ω̃

is an open set of ω(Ω), and Ω ⊂ Λ ⊂ R
m is open. Here 1 � m � +∞ could

be different from n.

One notices that ω−1(Ω̃) is also an open set due to the continuity of ω. As a
result, as long as the perturbations in KAM are sufficiently small, the solvability
of the frequency equations (4.18) and (5.8) do not change thanks to the continuity
of ω (note that we avoid the boundary of range), and the uniform convergence of
{rν} and {ξν} could still be obtained by Cauchy theorem through weak convexity
conditions (A3) and (B3). Besides, the Brouwer degree requires that the domain of
definition and range of mapping should be of the same dimension, while the range
condition (A1*) and (B1*) removes this limitation. Consequently, we directly give
the following conclusion.

Theorem 3.6. Replace (A1) and (B1) with (A1*) and (B1*) respectively, leaving
the other assumptions unchanged. Then the frequency-preserving KAM persis-
tence in theorem 3.1, corollary 3.2, theorem 3.3 and corollary 3.4 is still allowed.
Especially, for theorem 3.3 and corollary 3.4 related to perturbed mapping with
parameter, the dimension of parameter could be different from that for angular
variable.

3.2.2. Weak convexity We end this section by making some comments on our weak
convexity conditions (A3) and (B3). Such conditions were firstly proposed in [9, 36]
to keep the prescribed frequency in Hamiltonian systems unchanged, and were
shown to be unremovable in the sense of frequency-preserving, see the counterex-
ample constructed in [9]. Although the KAM theorems of the mapping form are
somewhat different from the former, the weak convexity conditions still ensure
frequency-preserving KAM persistence, as shown in theorems 3.1 and 3.3.

4. KAM steps

In this section, we will show details of one cycle of KAM steps. Throughout this
paper, c is used to denote an intermediate positive constant, and c1 − c4 are positive
constants. All of them are independent of the iteration process.

4.1. Description of the 0-th KAM step

For sufficiently large integer m, let ρ be a constant with 0 < ρ < 1, and assume
η > 0 such that (1 + ρ)η > 2. Define

γ = ε
1

4(n+m+2) .

The parameters in the 0-th KAM step are defined by

h0 = h, s0 = s, γ0 = γ, μ0 = ε
1

8η(m+1) ,
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D(h0) = {θ ∈ C
n : Re θ ∈ T

n, |Im θ| � h0},
G(s0) = {r ∈ C

n : Re r ∈ E, |Im r| � s0},

where 0 < s0, h0, γ0, μ0 � 1, and denote D0 := D(h0, s0) = D(h0) × G(s0) for
simplicity.

The mapping at 0-th KAM step is

F0 :

{
θ1
0 = θ0 + ω0(r0) + f0(θ0, r0, ε),

r1
0 = r0 + g0(θ0, r0, ε),

where ω0(r0) = ω(r∗) = p, f0(θ0, r0, ε) = εf(θ0, r0, ε), and g0(θ0, r0, ε) = εg(θ0,
r0, ε). The following lemma states the estimates on perturbations f0 and g0.

Lemma 4.1. Assume ε0 is sufficiently small so that

ε
3
4 (||f ||D0 + ||g||D0) � sm

0 ε
1

8η(m+1) ,

for 0 < ε < ε0. Then

||f0||D0 + ||g0||D0 � γn+m+2
0 sm

0 μ0.

Proof. Following γn+m+2
0 = ε

1
4 and μ0 = ε

1
8η(m+1) , one has

γn+m+2
0 sm

0 μ0 = sm
0 ε

1
4 ε

1
8η(m+1)

� sm
0 ε

1
4 ε

1
8η(m+1) s−m

0 ε
3
4 ε−

1
8η(m+1) (||f ||D0 + ||g||D0)

= ε(||f ||D0 + ||g||D0)

= ||f0||D0 + ||g0||D0 . �

4.2. Description of the ν-th KAM step

We now define the parameters appear in ν-th KAM step as:

hν =
hν−1

2
+

h0

4
, sν =

sν−1

2
, μν = μ1+ρ

ν−1, Dν = D(hν , sν).

After ν KAM steps, the mapping becomes

Fν :

⎧⎪⎨
⎪⎩

θ1
ν = θν + ω0(r0) + fν(θν , rν , ε),

r1
ν = rν −

ν∑
i=0

r∗i + gν(θν , rν , ε),

where
ν∑

i=0

r∗i is the translation about r0. Moreover,

||fν ||Dν
+ ||gν ||Dν

� γn+m+2
0 sm

ν μν . (4.1)
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Define

hν+1 =
hν

2
+

h0

4
,

sν+1 =
sν

2
,

μν+1 = μ1+ρ
ν ,

Kν+1 = ([log
1
μν

] + 1)3η,

Di = D(hν+1 +
i − 1

4
(hν − hν+1), isν+1), i = 1, 2, 3, 4,

Dν+1 = D(hν+1, sν+1),

D̂ν+1 = D(hν+2 +
3
4
(hν+1 − hν+2), sν+2),

Γ(hν − hν+1) =
∑

0<|k|�Kν+1

|k|τe−|k|hν−hν+1
4 � 4τ τ !

(hν − hν+1)τ
.

For simplicity of notation, we also denote

D3 := D∗ × G∗ := D(hν+1 +
1
2
(hν − hν+1)) × G(3sν+1),

D4 := D∗∗ × G∗∗ := D(hν+1 +
3
4
(hν − hν+1)) × G(4sν+1).

4.2.1. Truncation. The Fourier series expansion of fν(θν+1, rν+1, ε) is

fν(θν+1, rν+1, ε) =
∑

k∈Zn

fk,ν(rν+1) ei〈k,θν+1〉, (4.2)

where fk,ν(rν+1) =
∫

Tn fν(θν+1, rν+1, ε) e−i〈k, θν+1〉 dθν+1 is the Fourier coefficient
of fν . The truncation and remainder of fν(θν+1, rν+1, ε) are respectively

TKν+1fν(θν+1, rν+1, ε) =
∑

0<|k|�Kν+1

fk,ν ei〈k,θν+1〉,

RKν+1fν(θν+1, rν+1, ε) =
∑

|k|>Kν+1

fk,ν ei〈k,θν+1〉.

Thus, fν has an equivalent expression of the form

fν(θν+1, rν+1, ε) = f0,ν(rν+1) + TKν+1fν(θν+1, rν+1, ε) + RKν+1fν(θν+1, rν+1, ε).

Furthermore, we have the following estimate.
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Lemma 4.2. If

(H1)
∫ +∞

Kν+1

ln e−l
hν−hν+1

4 dl � μν ,

then there exists a constant c1 such that

||RKν+1fν ||D3 � c1γ
n+m+2
0 sm

ν μ2
ν .

Proof. Since the Fourier coefficients decay exponentially, one has

|fk,ν |G∗ � |fν |D4 e−|k|(hν+1+
3
4 (hν−hν+1))

� γn+m+2
0 sm

ν μν e−|k|(hν+1+
3
4 (hν−hν+1)),

then

|RKν+1fν |D3 �
∑

|k|>Kν+1

|fk,ν |G∗ e|k|(hν+1+
1
2 (hν−hν+1))

�
∑

|k|>Kν+1

|fν |D4 e−|k|hν−hν+1
4

� γn+m+2
0 sm

ν μν

∑
|k|>Kν+1

e−|k|hν−hν+1
4

� γn+m+2
0 sm

ν μν

∫ +∞

Kν+1

ln e−l
hν−hν+1

4 dl

� γn+m+2
0 sm

ν μ2
ν .

Moreover,

[RKν+1fν ]�1

= sup
θν+1∈D∗

sup
r′

ν+1,r′′
ν+1∈G∗

r′
ν+1 
=r′′

ν+1

|RKν+1fν(θν+1, r
′
ν+1, ε) −RKν+1fν(θν+1, r

′′
ν+1, ε)|

	1(|r′ν+1 − r′′ν+1|)

= sup
θν+1∈D∗

sup
r′

ν+1,r′′
ν+1∈G∗

r′
ν+1 
=r′′

ν+1

×

∣∣∣∣∣ ∑
|k|>Kν+1

fk,ν(r′ν+1) ei〈k,θν+1〉 −
∑

|k|>Kν+1

fk,ν(r′′ν+1) ei〈k,θν+1〉
∣∣∣∣∣

	1(|r′ν+1 − r′′ν+1|)

� sup
θν+1∈D∗

sup
r′

ν+1,r′′
ν+1∈G∗

r′
ν+1 
=r′′

ν+1

∑
|k|>Kν+1

|fk,ν(r′ν+1) − fk,ν(r′′ν+1)| e|k|(hν+1+
1
2 (hν−hν+1))

	1(|r′ν+1 − r′′ν+1|)

� sup
θν+1∈D∗∗

sup
r′

ν+1,r′′
ν+1∈G∗∗

r′
ν+1 
=r′′

ν+1
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×
|fν(θν+1, r

′
ν+1, ε) − fν(θν+1, r

′′
ν+1, ε)|

∑
|k|>Kν+1

e−|k|hν−hν+1
4

	1(|r′ν+1 − r′′ν+1|)

� [fν ]�1

∑
|k|>Kν+1

e−|k|hν−hν+1
4

� [fν ]�1

∑
|k|>Kν+1

kn e−|k|hν−hν+1
4

� [fν ]�1

∫ +∞

Kν+1

ln e−l
hν−hν+1

4 dl

� γn+m+2
0 sm

ν μ2
ν ,

i.e.,

||RKν+1fν ||D3 = |RKν+1fν |D3 + [RKν+1fν ]�1 � c1γ
n+m+2
0 sm

ν μ2
ν . �

Similarly, we get

||RKν+1gν ||D3 � c1γ
n+m+2
0 sm

ν μ2
ν .

4.2.2. Transformation For Fν on Dν+1, introduce a transformation Uν+1 := id +
(Uν+1, Vν+1) that satisfies

Uν+1 ◦ F̄ν+1 = Fν ◦ Uν+1, (4.3)

where id denotes the identity mapping. Since

Uν+1 :

{
θ1

ν = θ1
ν+1 + Uν+1(θ1

ν+1, r
1
ν+1),

r1
ν = r1

ν+1 + Vν+1(θ1
ν+1, r

1
ν+1),

and

F̄ν+1 :

⎧⎪⎨
⎪⎩

θ1
ν+1 = θν+1 + ω0(r0) + f̄ν+1(θν+1, rν+1, ε),

r1
ν+1 = rν+1 −

ν∑
i=0

r∗i + ḡν+1(θν+1, rν+1, ε),

with r∗0 = 0, from the left side of (4.3), we can derive that

θ1
ν = θ1

ν+1 + Uν+1(θ1
ν+1, r

1
ν+1)

= θν+1 + ω0(r0) + f̄ν+1(θν+1, rν+1, ε)

+ Uν+1

(
θν+1 + ω0(r0) + f̄ν+1, rν+1 −

ν∑
i=0

r∗i + ḡν+1

)
,

r1
ν = r1

ν+1 + Vν+1(θ1
ν+1, r

1
ν+1)
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= rν+1 −
ν∑

i=0

r∗i + ḡν+1(θν+1, rν+1, ε)

+ Vν+1

(
θν+1 + ω0(r0) + f̄ν+1, rν+1 −

ν∑
i=0

r∗i + ḡν+1

)
.

Also, one has

Fν :

⎧⎪⎨
⎪⎩

θ1
ν = θν + ω0(r0) + fν(θν , rν , ε),

r1
ν = rν −

ν∑
i=0

r∗i + gν(θν , rν , ε),

and

Uν+1 :

⎧⎪⎪⎨
⎪⎪⎩

θν = θν+1 + Uν+1

(
θν+1, rν+1 −

ν∑
i=0

r∗i

)
,

rν = rν+1 + Vν+1

(
θν+1, rν+1 −

ν∑
i=0

r∗i

)
.

By the right side of (4.3), we obtain

θ1
ν = θν + ω0(r0) + fν(θν , rν , ε)

= θν+1 + Uν+1

(
θν+1, rν+1 −

ν∑
i=0

r∗i

)
+ ω0(r0)

+ fν(θν+1 + Uν+1, rν+1 + Vν+1, ε),

r1
ν = rν −

ν∑
i=0

r∗i + gν(θν , rν , ε)

= rν+1 + Vν+1

(
θν+1, rν+1 −

ν∑
i=0

r∗i

)
−

ν∑
i=0

r∗i

+ gν(θν+1 + Uν+1, rν+1 + Vν+1, ε).

Therefore, (4.3) implies that

ω0(r0) + f̄ν+1(θν+1, rν+1, ε) + Uν+1

(
θν+1 + ω0(r0) + f̄ν+1, rν+1 −

ν∑
i=0

r∗i + ḡν+1

)

= Uν+1

(
θν+1, rν+1 −

ν∑
i=0

r∗i

)
+ ω0(r0) + fν(θν+1 + Uν+1, rν+1 + Vν+1, ε), (4.4)

ḡν+1(θν+1, rν+1, ε) + Vν+1

(
θν+1 + ω0(r0) + f̄ν+1, rν+1 −

ν∑
i=0

r∗i + ḡν+1

)

= Vν+1

(
θν+1, rν+1 −

ν∑
i=0

r∗i

)
+ gν(θν+1 + Uν+1, rν+1 + Vν+1, ε). (4.5)
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Following the iteration process before, the ω0(r0) on the right side of (4.4) is actually

ω0(r0) = ω0(rν) +
ν−1∑
i=0

f0,i(rν).

Since the frequency ω0 is continuous about r, there exists a modulus of continu-
ity 	∗ such that

|ω0(rν) − ω0(rν+1)|
	∗(|rν − rν+1|)

� [ω0]�∗ < +∞. (4.6)

The perturbation f is 	1 continuous about r with 	1 � 	∗ due to 	1(x) = x, one
has

|f0,i(rν) − f0,i(rν+1)|
	1(|rν − rν+1|)

� [f0,i]�1 < +∞, 0 � i � ν − 1. (4.7)

Consequently, from (4.6) and (4.7), we may deduce that

ω0(rν) = ω0(rν+1) + O(	∗(|Vν+1|)),

and

f0,i(rν) = f0,i(rν+1) + O(	1(|Vν+1|)).
It allows the actions rν and rν+1 in (4.4) to be unified and the KAM iteration
process to continue. Therefore, (4.4) and (4.5) are equal to the following

Uν+1

(
θν+1 + ω0(r0) + f̄ν+1, rν+1 −

ν∑
i=0

r∗i + ḡν+1

)

− Uν+1

(
θν+1 + ω0(r0), rν+1 −

ν∑
i=0

r∗i

)

+ Uν+1

(
θν+1 + ω0(r0), rν+1 −

ν∑
i=0

r∗i

)
− Uν+1

(
θν+1, rν+1 −

ν∑
i=0

r∗i

)

+ ω0(r0) + f̄ν+1(θν+1, rν+1, ε)

= ω0(rν+1) +
ν−1∑
i=0

f0,i(rν+1) + O(	∗(|Vν+1|)) + O(	1(|Vν+1|))

+ fν(θν+1 + Uν+1, rν+1 + Vν+1, ε) − fν(θν+1, rν+1, ε)

+ f0,ν(rν+1) + TKν+1fν(θν+1, rν+1, ε)

+ RKν+1fν(θν+1, rν+1, ε),

Vν+1

(
θν+1 + ω0(r0) + f̄ν+1, rν+1 −

ν∑
i=0

r∗i + ḡν+1

)

− Vν+1

(
θν+1 + ω0(r0), rν+1 −

ν∑
i=0

r∗i

)
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+ Vν+1

(
θν+1 + ω0(r0), rν+1 −

ν∑
i=0

r∗i

)

− Vν+1

(
θν+1, rν+1 −

ν∑
i=0

r∗i

)
+ ḡν+1(θν+1, rν+1, ε)

= gν(θν+1 + Uν+1, rν+1 + Vν+1, ε) − gν(θν+1, rν+1, ε) + g0,ν(rν+1)

+ TKν+1gν(θν+1, rν+1, ε) + RKν+1gν(θν+1, rν+1, ε).

The transformation Uν+1 = id + (Uν+1, Vν+1) needs to satisfy the homological
equations

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Uν+1

(
θν+1 + ω0(r0), rν+1 −

ν∑
i=0

r∗i

)
− Uν+1

(
θν+1, rν+1 −

ν∑
i=0

r∗i

)
= TKν+1fν (θν+1, rν+1, ε) ,

Vν+1

(
θν+1 + ω0(r0), rν+1 −

ν∑
i=0

r∗i

)
− Vν+1

(
θν+1, rν+1 −

ν∑
i=0

r∗i

)
= TKν+1gν (θν+1, rν+1, ε) .

(4.8)

The new perturbations are respectively

f̄ν+1(θν+1, rν+1, ε) = fν(θν+1 + Uν+1, rν+1 + Vν+1, ε) − fν(θν+1, rν+1, ε)

+ RKν+1fν(θν+1, rν+1, ε) + O(	∗(|Vν+1|)) + O(	1(|Vν+1|))

+ Uν+1

(
θν+1 + ω0(r0), rν+1 −

ν∑
i=0

r∗i

)

− Uν+1

(
θν+1 + ω0(r0) + f̄ν+1, rν+1 −

ν∑
i=0

r∗i + ḡν+1

)
,

(4.9)

ḡν+1(θν+1, rν+1, ε) = gν(θν+1 + Uν+1, rν+1 + Vν+1, ε) − gν(θν+1, rν+1, ε)

+ g0,ν(rν+1) + RKν+1gν(θν+1, rν+1, ε)

+ Vν+1

(
θν+1 + ω0(r0), rν+1 −

ν∑
i=0

r∗i

)

− Vν+1

(
θν+1 + ω0(r0) + f̄ν+1, rν+1 −

ν∑
i=0

r∗i + ḡν+1

)
.

(4.10)

The homological equations (4.8) are uniquely solvable on Dν+1. Let us start by
considering the first equation in (4.8). Formally, denote Uν+1(θν+1, rν+1 −

∑ν
i=0 r∗i )
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as

Uν+1

(
θν+1, rν+1 −

ν∑
i=0

r∗i

)
=

∑
0<|k|�Kν+1

Uk,ν+1 ei〈k,θν+1〉,

taking it into the first equation in (4.8), one has∑
0<|k|�Kν+1

Uk,ν+1 ei〈k,θν+1+ω0(r0)〉 −
∑

0<|k|�Kν+1

Uk,ν+1 ei〈k,θν+1〉

=
∑

0<|k|�Kν+1

fk,ν ei〈k,θν+1〉.

By comparing the coefficients above, we have

Uk,ν+1(ei〈k,ω0(r0)〉 − 1) = fk,ν . (4.11)

The details of estimating (4.11) can be seen in the following lemma.

Lemma 4.3. Equation (4.11) has a unique solution Uk,ν+1 on G(sν+1) satisfying
the following estimate

||Uk,ν+1||G∗ � c2||fν ||D4γ
−1
0 |k|τ e−|k|(hν+1+

3
4 (hν−hν+1)).

Proof. We notice that the coefficients fk,ν decay exponentially, i.e.,

||fk,ν ||G∗∗ � ||fν ||D4 e−|k|(hν+1+
3
4 (hν−hν+1)).

It is well known that | sin φ| � 2
π |φ| when −π

2 � φ � π
2 . There exists a k0 ∈ Z

satisfying | 〈k, ω0(r0)〉−k0
2 | � π

2 such that

||ei〈k,ω0(r0)〉 − 1||2G∗∗ = || cos〈k, ω0(r0)〉 + i sin〈k, ω0(r0)〉 − 1||2G∗∗

= || cos〈k, ω0(r0)〉 − 1||2G∗∗ + || sin〈k, ω0(r0)〉||2G∗∗

� 4|| sin 〈k, ω0(r0)〉
2

||2G∗∗

= 4|| sin 〈k, ω0(r0)〉 − k0

2
||2G∗∗ .

As a consequence,

||ei〈k,ω0(r0)〉 − 1||G∗∗ � 2|| sin 〈k, ω0(r0)〉 − k0

2
||G∗∗

� 4
π
|| 〈k, ω0(r0)〉 − k0

2
||G∗∗

� c||〈k, ω0(r0)〉 − k0||G∗∗

� cγ0

|k|τ .
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Therefore,

||Uk,ν+1||G∗ � ||fk,ν ||G∗∗

||ei〈k,ω0(r0)〉 − 1||G∗∗

� c2||fν ||D4γ
−1
0 |k|τ e−|k|(hν+1+

3
4 (hν−hν+1)). (4.12)

In the same way, we get

Vk,ν+1(ei〈k,ω0(r0)〉 − 1) = gk,ν .

Thus,

||Vk,ν+1||G∗ � ||gk,ν ||G∗∗

||ei〈k,ω0(r0)〉 − 1||G∗∗

� c2||gν ||D4γ
−1
0 |k|τ e−|k|(hν+1+

3
4 (hν−hν+1)). (4.13)

�

4.2.3. Translation In the usual iteration process, one has to find out a decreasing
series of domains that the Diophantine condition fails. To avoid this, we will con-
struct a translation to keep the frequency unchanged in this section. Consider the
translation

Vν+1 : θν+1 → θν+1, rν+1 → rν+1 + r∗ν+1 := r̂ν+1,

where r̂ν+1 ∈ Bcμν
(r̂ν). The action has a shift under the translation Vν+1, but the

angular variable is unchanged. To make the frequency-preserving, it requests that

ω0(r̂ν+1) +
ν∑

i=0

f0,i(r̂ν+1) − ω0(r0) + ω0(r0) = ω0(r0),

i.e.,

ω0(r̂ν+1) +
ν∑

i=0

f0,i(r̂ν+1) = ω0(r0).

We will demonstrate the equation in the following subsection. After the translation
Vν+1, the mapping F̄ν+1 becomes Fν+1 = F̄ν+1 ◦ Vν+1, i.e.,

Fν+1 :

⎧⎪⎨
⎪⎩

θ1
ν+1 = θν+1 + ω0(r0) + fν+1(θν+1, r̂ν+1, ε),

r̂1
ν+1 = r̂ν+1 −

ν∑
i=0

r∗i + gν+1(θν+1, r̂ν+1, ε).

The corresponding new perturbations are

fν+1(θν+1, r̂ν+1, ε) = fν(θν+1 + Uν+1, r̂ν+1 + Vν+1, ε) − fν(θν+1, r̂ν+1, ε)

+ RKν+1fν(θν+1, r̂ν+1, ε) + O(	∗(|Vν+1|)) + O(	1(|Vν+1|))
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+ Uν+1

(
θν+1 + ω0(r0), r̂ν+1 −

ν∑
i=0

r∗i

)

− Uν+1

(
θν+1 + ω0(r0) + fν+1, r̂ν+1 −

ν∑
i=0

r∗i + gν+1

)
,

(4.14)

and

gν+1(θν+1, r̂ν+1, ε) = gν(θν+1 + Uν+1, r̂ν+1 + Vν+1, ε) − gν(θν+1, r̂ν+1, ε)

+ g0,ν(r̂ν+1) + RKν+1gν(θν+1, r̂ν+1, ε)

+ Vν+1

(
θν+1 + ω0(r0), r̂ν+1 −

ν∑
i=0

r∗i

)

− Vν+1

(
θν+1 + ω0(r0) + fν+1, r̂ν+1 −

ν∑
i=0

r∗i + gν+1

)
.

(4.15)

4.2.4. Frequency-preserving In this section, we will show that the frequency is
unchanged during the iteration process under the conditions (A1) and (A3). The
topological degree condition (A1) states that we can find a r̂ν+1 such that the fre-
quency remains preserved. Besides, the weak convexity condition (A3) ensures that
{r̂ν} is a Cauchy sequence. The following lemma is crucial to our consideration.

Lemma 4.4. Assume that

(H2)

∥∥∥∥∥
ν∑

i=0

f0,i

∥∥∥∥∥
G(sν+1)

� cμ
1
2
0 .

Then there exists a r̂ν+1 ∈ Bcμν
(r̂ν) such that

ω0(r̂ν+1) +
ν∑

i=0

f0,i(r̂ν+1) = ω0(r0). (4.16)

Proof. The proof is an induction on ν. Obviously, ω0(r0) = ω0(r0) when ν = 0. Now
assume that for some ν � 1, one has

ω0(r̂j) +
j−1∑
i=0

f0,i(r̂j) = ω0(r0), r̂j ∈ Bcμj−1(r̂j−1) ⊂ B(r0, δ), 1 � j � ν.

(4.17)
We need to find out a r̂ν+1 in the neighbourhood of r̂ν that satisfies

ω0(r̂ν+1) +
ν∑

i=0

f0,i(r̂ν+1) = ω0(r0). (4.18)
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Since μ
1
2
0 is sufficiently small and the condition (A1) holds, we have

deg

(
ω0(·) +

ν∑
i=0

f0,i(·), B(r0, δ), ω0(r0)

)
= deg (ω0(·), B(r0, δ), ω0(r0)) �= 0,

(4.19)

where ω0(r0) = p, and p ∈ R
n is given in advance. This shows that there exists at

least a r̂ν+1 ∈ B(r0, δ) with some δ > 0 such that (4.16) holds. Remark 2.4 tells us
that there exists a modulus of continuity 	1(x) = x such that f is 	1 continuous
about r, and following (4.1), one has

[f0,i]�1 � cμi, 0 � i � ν,

i.e.,

|f0,i(r̂ν+1) − f0,i(r̂ν)| � cμi	1(|r̂ν+1 − r̂ν |), 0 � i � ν.

Following definitions 2.1 and 2.3, and together with (A3), one has

lim
x→0+

x

	2(x)
< +∞,

this means 	1 � 	2. Equations (4.17) and (4.18) imply that

ω0(r̂ν+1) +
ν∑

i=0

f0,i(r̂ν+1) = ω0(r̂ν) +
ν−1∑
i=0

f0,i(r̂ν).

Then

|f0,ν(r̂ν+1)| = |ω0(r̂ν) − ω0(r̂ν+1) +
ν−1∑
i=0

(f0,i(r̂ν) − f0,i(r̂ν+1))|

� |ω0(r̂ν) − ω0(r̂ν+1)| −
ν−1∑
i=0

|f0,i(r̂ν) − f0,i(r̂ν+1)|

� 	2(|r̂ν − r̂ν+1|) − c

(
ν−1∑
i=0

μi

)
	1(|r̂ν − r̂ν+1|)

� 	2(|r̂ν − r̂ν+1|)
2

.

The last inequality holds since ε is sufficiently small such that c(
∑ν−1

i=0 μi) � 1
2 , and

	1 � 	2. Therefore,

|r̂ν − r̂ν+1| � 	−1
2 (2|f0,ν(r̂ν+1)|) � 	−1

2 (2cμν) � c	−1
1 (2cμν) � cμν , (4.20)

where the last inequality is due to definition 2.1, i.e., lim
x→0+

x
�1(x) < +∞. This implies

that {r̂ν} is a Cauchy sequence and r̂ν+1 ∈ Bcμν
(r̂ν). �
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4.2.5. Estimates on new transformations According to (4.12) and (4.13), the
estimates on transformations are given in the lemma below.

Lemma 4.5. Assume that there exists a constant c3 such that

(H3) c3γ
n+m+1
0 sm

ν μνΓ(hν − hν+1) � min
{

sν+1,
hν − hν+1

4

}
.

Then the followings hold.

(a) ||Uν+1 − id||D3 � c3γ
n+m+1
0 sm

ν μνΓ(hν − hν+1).

(b) Uν+1 : Dν+1 → Dν .

(c) Setting Wν+1 := Uν+1 ◦ Vν+1, one has Wν+1 : Dν+1 → Dν , and

||Wν+1 − id||Dν+1 � c3γ
n+m+1
0 sm

ν μνΓ(hν − hν+1).

Proof. (i) Since Uν+1(θν+1, rν+1 −
∑ν

i=0 r∗i ) =
∑

0<|k|�Kν+1

Uk,ν+1e
i〈k, θν+1〉, we get

||Uν+1||D3 � ||Uk,ν+1||G∗

∑
0<|k|�Kν+1

e|k|(hν+1+
1
2 (hν−hν+1))

� ||fν ||D4γ
−1
0

∑
0<|k|�Kν+1

|k|τ e−|k|hν−hν+1
4

� c3γ
n+m+1
0 sm

ν μνΓ(hν − hν+1). (4.21)

Besides,

||Vν+1||D3 � ||Vk,ν+1||G∗

∑
0<|k|�Kν+1

e|k|(hν+1+
1
2 (hν−hν+1))

� ||gν ||D4γ
−1
0

∑
0<|k|�Kν+1

|k|τ e−|k|hν−hν+1
4

� c3γ
n+m+1
0 sm

ν μνΓ(hν − hν+1). (4.22)

Thus, (i) is due to (4.1), (4.21) and (4.22).
(ii) By (θν+1, rν+1) ∈ D3, (H3) implies that

|θν − θν+1| = ||Uν+1||D3

� c3γ
n+m+1
0 sm

ν μνΓ(hν − hν+1)

� hν − hν+1

4
,

|rν − rν+1| = ||Vν+1||D3

� c3γ
n+m+1
0 sm

ν μνΓ(hν − hν+1)

� sν+1.

Thus, Uν+1 : Dν+1 ⊂ D3 → D4 ⊂ Dν .
(iii) now follows from (i) and (ii) immediately. �
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4.2.6. Estimates on the new perturbations In what follows, we are able to show the
estimates on the new perturbations.

Lemma 4.6. Assume that

(H4) γn+m+1
0 sm

ν μνΓ(hν − hν+1) � 	−1
∗ (γn+m+1

0 sm
ν μ2

ν).

Then there exists a constant c4 such that

||f̄ν+1||Dν+1 + ||ḡν+1||Dν+1

� c4γ
n+m+2
0 sm

ν μ2
ν(γn+m+1

0 sm
ν (hν+1 − hν+2)−1Γ(hν − hν+1)

+ γn+m+1
0 sm−1

ν Γ(hν − hν+1) + 1).

Moreover, if

(H5) 2mc4μ
1−ρ
ν (γn+m+1

0 sm
ν (hν+1 − hν+2)−1Γ(hν − hν+1)

+ γn+m+1
0 sm−1

ν Γ(hν − hν+1) + 1) � 1,

then

||fν+1||Dν+1 + ||gν+1||Dν+1 � γn+m+2
0 sm

ν+1μν+1.

Proof. Note that f̄ν+1 and ḡν+1 are solved by the implicit function theorem from
(4.9) and (4.10). Thus,

||f̄ν+1||Dν+1 � c||∂θν+1fν ||D̂ν+1
||Uν+1||Dν+1 + c||∂rν+1fν ||D̂ν+1

||Vν+1||Dν+1

+ c||RKν+1fν ||Dν+1 + c	∗(|Vν+1|), (4.23)

where 	1(|Vν+1|) � 	∗(|Vν+1|) is due to 	1 � 	∗.
The intersection property implies that there exists a θ0

ν+1 such that for each
r0
ν+1 ∈ G(sν+1), one has

ḡν+1(θ0
ν+1, r

0
ν+1, ε) = 0,

i.e.,

sup
θν+1∈D(hν+1)

||ḡν+1(θν+1, rν+1, ε)||

= sup
θν+1∈D(hν+1)

||ḡν+1(θν+1, rν+1, ε) − ḡν+1(θ0
ν+1, r

0
ν+1, ε)||

= osc
θν+1∈D(hν+1)

ḡν+1(θν+1, rν+1, ε)

= osc
θν+1∈D(hν+1)

(ḡν+1(θν+1, rν+1, ε) − h̄),

where h̄ is a function of rν+1, and osc
θν+1

denotes the oscillation about θν+1. Specially,

taking h̄ = g0,ν(rν+1), one has

1
2
||ḡν+1||Dν+1 � ||ḡν+1 − g0,ν ||Dν+1 .
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Therefore,

||ḡν+1||Dν+1 � c||ḡν+1 − g0,ν ||Dν+1

� c||∂θν+1gν ||D̂ν+1
||Uν+1||Dν+1 + c||∂rν+1gν ||D̂ν+1

||Vν+1||Dν+1

+ c||RKν+1gν ||Dν+1 . (4.24)

Following (4.23), (4.24), (H4) and estimates obtained earlier, we have

||f̄ν+1||Dν+1 + ||ḡν+1||Dν+1

� c||∂θν+1fν ||D̂ν+1
||Uν+1||Dν+1 + c||∂θν+1gν ||D̂ν+1

||Uν+1||Dν+1

+ c||∂rν+1fν ||D̂ν+1
||Vν+1||Dν+1 + c||∂rν+1gν ||D̂ν+1

||Vν+1||Dν+1

+ ||RKν+1fν ||Dν+1 + c||RKν+1gν ||Dν+1 + c	∗(|Vν+1|)

� c
γn+m+2
0 sm

ν μν

hν+1 − hν+2
· γn+m+1

0 sm
ν μνΓ(hν − hν+1)

+ c
γn+m+2
0 sm

ν μν

sν+1 − sν+2
· γn+m+1

0 sm
ν μνΓ(hν − hν+1)

+ cγn+m+2
0 sm

ν μ2
ν

� c4γ
n+m+2
0 sm

ν μ2
ν · γn+m+1

0 sm
ν (hν+1 − hν+2)−1Γ(hν − hν+1)

+ c4γ
n+m+2
0 sm

ν μ2
ν · γn+m+1

0 sm−1
ν Γ(hν − hν+1)

+ c4γ
n+m+2
0 sm

ν μ2
ν .

Finally, (H5) implies that

||fν+1||Dν+1 + ||gν+1||Dν+1 � γn+m+2
0 sm

ν+1μν+1. �

4.3. The preservation of intersection property

In the previous § 4.2.3, we have constructed a translation Vν+1 such that the fre-
quency ω0(r0) unchanged. The translation Vν+1 truns F̄ν+1 into Fν+1 = F̄ν+1 ◦
Vν+1 but drops the intersection property. For this purpose, we construct the con-
jugation of F̄ν+1 such that it has the same properties as F̄ν+1. Denote by F̂ν+1

the conjugation of F̄ν+1, that is, F̂ν+1 = V −1
ν+1 ◦ F̄ν+1 ◦ Vν+1, where

V −1
ν+1 : θ1

ν+1 → θ1
ν+1, r̂1

ν+1 → r̂1
ν+1 − r∗ν+1.

Therefore, F̂ν+1 has the form

F̂ν+1 :

⎧⎪⎨
⎪⎩

θ1
ν+1 = θν+1 + ω0(r0) + fν+1(θν+1, r̂ν+1, ε),

r̂1
ν+1 = r̂ν+1 −

ν+1∑
i=0

r∗i + gν+1(θν+1, r̂ν+1, ε).

It ensures that the mapping F̂ν+1 still has the intersection property. For ease of
notation, let Fν+1 := F̂ν+1 in (ν + 1)-th KAM step.
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5. Proof of the main results

In this section, we will show the proof of theorem 3.1, corollary 3.2 and theorem
3.3 successively.

5.1. Proof of theorem 3.1

5.1.1. Iteration lemma The iteration lemma guarantees the inductive construction
of the transformations in all KAM steps. Let s0, h0, γ0, μ0, F0, D0 be given in § 4.1,
and set K0 = 0, r∗0 = 0, 0 < ρ < 1 is a constant. We define the following sequences
inductively for all ν = 0, 1, 2, · · · .

hν+1 =
hν

2
+

h0

4
,

sν+1 =
sν

2
,

μν+1 = μ1+ρ
ν ,

Kν+1 = ([log
1
μν

] + 1)3η,

Dν+1 = D(hν+1, sν+1),

D̂ν+1 = D(hν+2 +
3
4
(hν+1 − hν+2), sν+2),

Γ(hν − hν+1) =
∑

0<|k|�Kν+1

|k|τ e−|k|hν−hν+1
4 � 4τ τ !

(hν − hν+1)τ
.

Lemma 5.1. Consider mapping (1.1) for ν = 0, 1, 2, · · · . If ε0 is sufficiently small
such that (H1) − (H5) hold, and

||fν ||Dν
+ ||gν ||Dν

� γn+m+2
0 sm

ν μν ,

then the iteration process described above is valid, and the following properties
hold.

(a) There exists a real analytic transformation Wν+1 := Uν+1 ◦ Vν+1 that satisfies
Wν+1 ◦ F̂ν+1 = F̂ν ◦ Wν+1, where

F̂ν+1 :

⎧⎨
⎩

θ1
ν+1 = θν+1 + ω0(r0) + fν+1(θν+1, r̂ν+1, ε),

r̂1
ν+1 = r̂ν+1 −

ν+1∑
i=0

r∗i + gν+1(θν+1, r̂ν+1, ε).

Also, the transformation Wν+1 has the estimate

||Wν+1 − id||Dν+1 � c3γ
n+m+1
0 sm

ν μνΓ(hν − hν+1). (5.1)

(b) {r̂ν} is a Cauchy sequence and

|r̂ν+1 − r̂ν | � cμν .
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(c) The estimate on new perturbations is

||fν+1||Dν+1 + ||gν+1||Dν+1 � γn+m+2
0 sm

ν+1μν+1.

Proof. The proof is an induction on ν. It is easy to see that we can take sufficiently
small ε0 to ensure that (H1) − (H5) hold. Since

F̂ν+1 = V −1
ν+1 ◦ F̄ν+1 ◦ Vν+1

= V −1
ν+1 ◦ (U −1

ν+1 ◦ F̂ν ◦ Uν+1) ◦ Vν+1,

and Wν+1 = Uν+1 ◦ Vν+1, we have that Wν+1 ◦ F̂ν+1 = F̂ν ◦ Wν+1. For the esti-
mate (5.1) in (i), see lemma 4.5. In addition, we notice that (ii) is due to (4.20),
and (iii) follows from lemma 4.6. �

5.1.2. Convergence Observe that

F̂ν+1 = W −1
ν+1 ◦ F̂ν ◦ Wν+1

= W −1
ν+1 ◦ W −1

ν ◦ F̂ν−1 ◦ Wν ◦ Wν+1

= · · ·

= W −1
ν+1 ◦ · · · ◦ W −1

1 ◦ F0 ◦ W1 ◦ · · · ◦ Wν+1. (5.2)

Denote

W ν+1 := W1 ◦ W2 ◦ · · · ◦ Wν+1,

then (5.2) implies that

W ν+1 ◦ F̂ν+1 = F0 ◦ W ν+1.

The transformation W ν+1 is convergent since

||W ν+1 − W ν ||Dν+1

= ||W1 ◦ · · · ◦ Wν ◦ Wν+1 − W1 ◦ · · · ◦ Wν ||Dν+1

� ||W ν ||Dν
||Wν+1 − id||Dν+1

�
ν∏

i=1

(1 + cγn+m+1
0 sm

i−1μi−1Γ(hi−1 − hi))cγn+m+1
0 sm

ν μνΓ(hν − hν+1)

� cγn+m+1
0 sm

ν μνΓ(hν − hν+1). (5.3)

Therefore, lim
ν→∞W ν := W , as well as F∞ = lim

ν→∞ F̂ν , we thus deduce that

W ◦ F∞ = F ◦ W .

https://doi.org/10.1017/prm.2023.74 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.74


1498 C. Liu, Z. Tong and Y. Li

It remains to consider the following convergence. By lemma 4.4, one has

ω0(r̂1) + f0,0(r̂1) = ω0(r0),

ω0(r̂2) + f0,0(r̂2) + f0,1(r̂2) = ω0(r0),

...

ω0(r̂ν) + f0,0(r̂ν) + · · · + f0,ν−1(r̂ν) = ω0(r0). (5.4)

Taking limits on both sides of (5.4), we obtain

ω0(r̂∞) +
∞∑

i=0

f0,i(r̂∞) = ω0(r0) = ω(r∗),

that is, for given r∗ ∈ E◦, the mapping F∞ on D∞ becomes the integrable rotation

F∞ :

{
θ1
∞ = θ∞ + ω(r∗),

r1
∞ = r∞ − r̃,

where ω(r∗) = p, and p is given in advance. Besides, r̃ =
∞∑

i=0

r∗i → 0 as ε → 0. This

completes the proof of the frequency-preserving KAM persistence in theorem 3.1.

5.2. Proof of corollary 3.2

This subsection is devoted to the proof of corollary 3.2. We will show that the
assumption on ω(r) here contains the transversality condition (A1). In fact, the
frequency mapping ω(r) is injective on E◦, and consequently, it is surjective from
E◦ to ω(E◦). Therefore, it is a homeomorphism and by Nagumo’s theorem, we
have that the Brouwer degree deg(ω, E◦, p) = ±1 for some p ∈ ω(E◦)◦. Finally,
by applying theorem 3.1 we directly obtain the desired frequency-preserving KAM
persistence in corollary 3.2.

5.3. Proof of theorem 3.3

This section outlines the proof of theorem 3.3. We focus on describing the parts
of the proof of theorem 3.3 that differ from those of theorem 3.1. We shall see that
	1 � 	2 is used directly by assumption (A3) in the process of proving lemma 5.2.
Moreover, there is no need to construct a conjugation of F̄ν+1 since the mapping
we considered in theorem 3.3 does not have the intersection property. The parts we
leave out in this section are similar to those described in § 4.

Consider the mapping F : T
n × Λ → T

n defined by

θ1 = θ + ω(ξ) + εf(θ, ξ, ε),

where ξ ∈ Λ ⊂ R
n is a parameter, Λ is a connected closed bounded domain with

interior points. For θ0 ∈ D(h0), and ξ0 ∈ Λ0 := {ξ ∈ Λ : |ξ − ξ0| < dist (ξ0, ∂Λ)},
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denote

θ1
0 = θ0 + ω(ξ0) + f0(θ0, ξ0, ε),

where ω(ξ0) = ω(ξ∗) = q for given q ∈ R
n in advance and f0(θ0, ξ0, ε) =

εf(θ0, ξ0, ε). The estimate on ||f0||D(h0) is

||f0||D(h0) � γn+m+2
0 μ0,

if

ε
3
4 ε−

1
8η(m+1) ||f ||D(h0) � 1.

Set

Λν := {ξ : dist (ξ, ∂Λν−1) < μν−1}, ν ∈ N
+.

Suppose that after ν KAM steps, for θν ∈ D(hν) and ξν ∈ Λν , the mapping becomes

θ1
ν = θν + ω(ξ0) + fν(θν , ξν , ε),

and one has

||fν ||D(hν) � γn+m+2
0 μν .

Introduce a transformation Uν+1 := id + Uν+1 that satisfies Uν+1 ◦ F̄ν+1 = Fν ◦
Uν+1. Then the conjugation F̄ν+1 of mapping Fν is

F̄ν+1 : θ1
ν+1 = θν+1 + ω(ξ0) + f̄ν+1(θν+1, ξν , ε).

We obtain the homological equation

Uν+1(θν+1 + ω(ξ0)) − Uν+1(θν+1) = TKν+1fν(θν+1, ξν , ε), (5.5)

and the new perturbation

f̄ν+1(θν+1, ξν , ε) = fν(θν+1 + Uν+1, ξν , ε) − fν(θν+1, ξν , ε) + RKν+1fν(θν+1, ξν , ε)

+ Uν+1(θν+1 + ω(ξ0), ξν , ε) − Uν+1(θν+1 + ω(ξ0) + f̄ν+1, ξν , ε).

The homological equation (5.5) is uniquely solvable on D(hν+1), and the new
perturbation f̄ν+1 can be solved by the implicit function theorem.

To keep the frequency unchanged, construct a translation

Vν+1 : θν+1 → θν+1, ξ̃ν → ξ̃ν + ξν+1 − ξν , (5.6)

where ξν+1 is to be determined. This translation changes the parameter alone, and
the mapping becomes Fν+1 = F̄ν+1 ◦ Vν+1, that is,

Fν+1 : θ1
ν+1 = θν+1 + ω(ξ0) + fν+1(θν+1, ξν+1, ε),

where the frequency ω(ξ0) = ω(ξν+1) +
ν∑

i=0

f0,i(ξν+1). The following lemma states

that the frequency is preserved.
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Lemma 5.2. Assume that

(H6)

∥∥∥∥∥
ν∑

i=0

f0,i(ξν)

∥∥∥∥∥
Λν

� cμ
1
2
0 .

Then there exists a ξν+1 ∈ Bcμν
(ξν) ⊂ Λ0 such that

ω(ξν+1) +
ν∑

i=0

f0,i(ξν+1) = ω(ξ0).

Proof. The proof is an induction on ν ∈ N. When ν = 0, obviously, ω(ξ0) = ω(ξ0).
When ν � 1, let

ω(ξj) +
ν−1∑
i=0

f0,i(ξj) = ω(ξ0), j = 1, 2, · · · , ν, (5.7)

then

ω(ξν+1) +
ν∑

i=0

f0,i(ξν+1) = ω(ξ0) (5.8)

needs to be verified. Taking the assumptions (B1) and (B3), one has

deg

(
ω(ξν+1) +

ν∑
i=0

f0,i(ξν+1),Λ0, ω(ξ0)

)
= deg (ω(ξν+1),Λ0, ω(ξ0)) �= 0. (5.9)

This means that there exists at least one parameter ξν+1 ∈ Λ0 such that ω(ξν+1) +
ν∑

i=0

f0,i(ξν+1) = ω(ξ0) holds. Next, let us verify that ξν+1 ∈ Bcμν
(ξν) ⊂ Λν . From

(5.7) and (5.8), one has

ω(ξν) +
ν−1∑
i=0

f0,i(ξν) = ω(ξν+1) +
ν∑

i=0

f0,i(ξν+1),

i.e.,

f0,ν(ξν+1) = ω(ξν) − ω(ξν+1) +
ν−1∑
i=0

(f0,i(ξν) − fi(ξν+1)).

Since ||fi||D(hi+1) � γn+m+2
0 μi for each i � 0, one has [f0,i]�1 � cμi. Therefore,

|f0,i(ξν) − f0,i(ξν+1)| � cμi	1(|ξν − ξν+1|).
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Following (A3), we have

|f0,ν(ξν+1)| = |ω(ξν) − ω(ξν+1) +
ν−1∑
i=0

(f0,i(ξν) − f0,i(ξν+1))|

� |ω(ξν) − ω(ξν+1)| −
ν−1∑
i=0

|f0,i(ξν) − f0,i(ξν+1)|

� 	2(|ξν − ξν+1|) − c	1(|ξν − ξν+1|)
ν−1∑
i=0

μi

� 	2(|ξν − ξν+1|)
2

.

The last inequality is due to 	1 � 	2, and ε is sufficiently small such that
c(
∑ν−1

i=0 μi) � 1
2 . Thus,

|ξν − ξν+1| � 	−1
2 (2|f0,ν(ξν+1)|) � 	−1

2 (2cμν) � 	−1
1 (2cμν) � cμν , (5.10)

which is similar to (4.20). Moreover,

|ξν+1 − ξ0| �
ν∑

i=0

|ξi+1 − ξi| � c
ν∑

i=0

μi � 2cμ0.

The above illustrates that {ξν} is a Cauchy sequence and ξν+1 ∈ Bcμν
(ξν) ⊂ Λ0. �

We now summarize the standard convergence. Denote

U ν+1 := U1 ◦ · · · ◦ Uν+1,

and

W ν+1 := W1 ◦ · · · ◦ Wν+1 := (U1 ◦ V1) ◦ · · · ◦ (Uν+1 ◦ Vν+1).

Both of them are convergent, one therefore has U := lim
ν→∞U ν and W := lim

ν→∞W ν .
Moreover, we get

ω(ξ∞) +
∞∑

i=0

f0,i(ξ∞) = ω(ξ0) = ω(ξ∗) = q

for ξ∗ ∈ Λ◦ fixed. For (3.4), we know that the conjugation for dynamical system
(3.2) only focuses on the angular variable θ ∈ T

n. As mentioned in (5.6), the angular
variable is unchanged under the translation. Therefore, one has

U ◦ F∞ = F ◦ U ,

here F∞ denotes the limit of Fν on D∞. More precisely, one obtains the integrable
rotation

F∞ : θ1
∞ = θ∞ + ω(ξ∗)

with frequency ω(ξ∗) = q, where q is given in advance. In other words, we prove the
KAM persistence with prescribed frequency-preserving. This completes the proof
of theorem 3.3.
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