REPRESENTATION THEOREMS FOR THE WEIERSTRASS TRANSFORM
Z. DITZIAN

(Received 10 November 1970)

Communicated by J. B. Miller

1. Introduction

In this paper we shall be interested in the Weierstrass transform defined by

(L.1) f(x) = f “k(x =y, Dda(y)

converging (conditionally) for x in some interval, where
(1.2) k(x, 1) = (4nr) e /4,

A representation theorem is a set of necessary and sufficient conditions on
f(x) so that f(x) be represented by (1.1) with «(y) belonging to a certain class of
functions. Representation theorems were discussed in [2], [3, Ch. VIIT], [4], [5],
[7] and [8]. In these papers conditions on f(x) were given in order that o(y)
would belong to one of the following classes:

(a) a(y)is increasing or decreasing, (see [8] and [3, p. 204]).

(b)) a(y)eB.V[— o0,00], (see [7] and [3, p. 198]).

(c) «(y) satisfies (2 k(x—y, l)f da(y)| < oo for all xe(a,b) for some
a,b a<b, (see [4, p. 37] and [2]).

(d) «(y)= [’¢p(u)du and ¢ e L,(— o0,0) 1 < p < oo (see [3, p. 195]).

(&) a(y)= [’¢p(u)du and e ="M p(u)eL,1 <p< oo for xe(a,b) for
some a and b, (see [4, p. 43] and [2]).

(f) Same as (e) for p =1 (see [4, p. 48]).

(2) , qb(u)[ < Ne”’ a< tand ~ o < y < o0, (see [3, p. 207]).

Obviously there are functions f(x) representable by (1.1) with determining
functions a(y) that are not in any one of the classes (a) — (g). Our main result
will be to find necessary and sufficient conditions on f(x) so that there exist a
function a{y) locally of bounded variation for which (1.1) converges conditionally
in some interval (a, b) a < b. This obviously is the widest class of f(x) for which
the Weierstrass-Stieltjes transform (1.1) exists. We may also restrict ourselves to
the transform f(x)
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(13) £(s) = f " k(s — y, () dy,

of locally Lebesgue integrable function ¢(y). The widest class of f(x) represented
by (1.3) corresponds to the class of ¢(y) for which (1.3) converges conditionally
in a strip a; < Re s < a,. Representation of this class is of special interest and
will be the result of section 6. New representation theorems will be given for f(s)
satisfying (1.1) and (1.3) where the integral converges absolutely in sections 5 and 7
respectively. A representation theorem for f(s) satisfying (1.3) where

-9 l d)(u), < Me*/*min(e” ™2, ¢"t2)

will be given in section 3. This result generalizes a corresponding result of
Hirschman and Widder [3, p. 207], it is also used in proof and for motivation
in the rest of the paper.

2. A preliminary theorem for temperature functions

To prove our representation theorem for Weierstrass transforms of functions
satisfying (1.4) we first have to obtain a result about functions satisfying the Heat
equation which is interesting by itself. To state this result we have to define class
H[3, p. 181].

DErINITION 2.1. A function u(x, 1) is said to belong to class H in domain D
if u,(x,t) = u,(x,t) and u(x,) € C?in D.

THEOREM 2.1, The conditions

(D u(x,t)eH for0<t<l, —c0o<x<®
and
M 2/4(1 - . [ a;x a’t
(2) ux, t) é i ——— 4 /4(1-1 min €x - : + ! ]
l ( , \/l—t i=1,2 P l 20— 41 -0

Jor 0 <t <1-— 00 <x < o0 and some a, < a,, are necessary and sufficient that

@1 ue) = [ kx = y.090)dy,
where the integral (2.1) converges absolutely for 0 <t <1, — 0 < x < 00 and

¢(y) satisfies
(2.2) |$(»)| < Me”™* min e "2 forall y.

i=1,2

To shorten some of the expressions we write
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ax alt
20— 40 -0’

ProOF. We first prove the necessity of conditions (1) and (2). Condition (1)
is implied by (2.1). Combining (2.1) and (2.2) we write:

(2.3) R(a;,x,t) = exp [ -

0] = [ k= 0] 40)] dy

IIA

Mf k(x — y,0)e’* {mine‘“"”z}dy

i=1,2

< M min [ K= y.0expldy?  fay]dy
i=1,2 —0

= M min 1 exp[ x? - -+ ait ]
20 Jami P |a0 =y Tai-p Tat-9

-fwex -t x +ai_t__2 4
_BP 4t 1—t 1—1¢ y

M exp( 2l min exp [ S + ait ]
Ji—1 41 ‘t)) i=1,2 20— 41—
which completes the proof of necessity of condition (2).

We shall prove now the sufficiency of conditions (1) and (2). Define V(x, t) by

IIA

«

k(x —y, t)e”2/4{min e_“"””‘ dy = fik(x — y,0dB().

i=1,2

2.4) V(x,t) = f

-0

(Choosing (0) = 0 a normalized f(y) is unique). Recalling [1,p. 146 (21)] that
(2.5) f e 4= dy = n¥at e Erfe(ats)
[¢]

where Erfe(x)=2n"* | ©¢~""dt we calculate V(x, ) and obtain

1 x? x att ]
= R(ay,x,t) - E —
Ve = 5 e (g (R B - 5
x a,t®
+ R(a,,x,t) Erfc[ T t2)i-+ 31 = t)*]} .
Obviously the necessity of (1) and (2) implies
(2.6) Vix,t) < ! exp x ) min R(a;,x,t) = H(x,1).
\/l—t A1 -0/ ;=12

We shall need in our proof that for every fixed a; and a4, and ¢>0
0<t<d(e)
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2.7 V(x,1) 2 (1 —e)H(x,1).

We can choose 7,(e) so that for | y| < #,(e) &% min;_, , e™*** 21 —¢/3 and
then using (2.3) we obtain for ,x <inm(e)and 0 <t <d,(e) V(x, 1) =1 —2¢/3.
Since H(x,t) is continuous at a neighbourhood of (0,0) and H(0,0) = 1 we have
for |x| <m, and 0 <t <3, V(x,1) 2 (1 — &)H(x,1). For | x| Z , we can choose
03 < 0, such that for t < J,

R(ag,x,t) x= —1n,

min R(a;,x,1) = {R(az,x, ) xzn,

i=1,2

To prove (2.7) it is enough now to show for [ t] <0 =< d3and x = n, that

X at* € (a2 —adt (a, — ay)x
(@) Erfc[z(t—tz)%_ 231 —t)z‘] 2P [4(1 = T a—y ]
e (a2 — a)t
=7 [m] ’

x 4 at*
2t —3)F 21—t

(b) Erfc[— ] >2—¢

and corresponding results for x £ —5,. Using the estimate

f e Vdy

for x = 1 and straightforward computation we can prove (a) and (b) and therefore
(2.7).

We recall now that (see Th. 12.2 of [3, p. 202]) necessary and sufficient
conditions for u(x,t) to be written as

1A

u(x,t)=f k(x —y,da(y) in0<t<Jd, —o0<x<w

with a(y) nondecreasing is
u(x,t) = Oand u(x,t)eH for0<t<d, —0<x< 0.
Using (2.7) we have
— M1 =)~ W(x,t) Sulx,t) £ M(1 — &)~ 'V(x,t) 0 <t <d(e),
and this implies the existence of y,(¢¥) i = 1,2, both nondecreasing and unique

after normalization, such that

2.8) M(1—)~*V(x,t) + (= D'u(x,t) = fwk(x —y,0dy(y) O<t<di=1,2.

—
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Recalling (2.4) there exists a(y) locally of bounded variation such that

2.9 u(x,t) = f_w k(x — y,0)da(y)

for 0 <t < d(e) and y,(y) = M(1 — &)~ B(y) + (— D'a(y). Following now argu-
ments in [7] and [3, p. 207] we get a(y) = [*¢(x)dx and

(2.10) |6 <M1 —e) " %’* min &2

i=1,2

The function «(y) is independent of ¢, in spite of the dependence of y,(y) on &,
since a(y) satisfying (2.9) in 0 < t < J is unique. ¢(y) now satisfies (2.10) for all ¢
and therefore (2.2) but then (2.1) converges absolutely in 0 <t < 1.

REMARK 2.1.a. In condition (2) of Theorem 2.1 we replace 0 <t <1 by
0 <t < J and call it (2)*. Conditions (1) of Theorem 2.1 and (2)* can replace (1)
and (2) as necessary and sufficient for (2.1) and (2.2). The necessity is obvious
while sufficiency follows the proof of Theorem 2.1.

3. The asymptotic representation theorem

In this section a representation theorem for the Weierstrass transform of ¢
satisfying (1.3) will be obtained. This result will be used in the motivation and
proof of the following theorems of this paper. For our theorem we define first,
class A[a,b].

DerniTION 3.1. A function f(z) analytic in a << Re z < b belongs to class
A[a,b] if f(x + iy) = 0 (¢*/*) uniformly for x in every closed subinterval of (a, b).
Define also (see [3]) K(s,t) by

w 3 2
(3.1 K(s,1) = (7) 4 = 27k(is, 1).
THEOREM 3.1. The conditions (1) f(z) e A[a,,a,] and

d+iw
2) ]-2-1; f K(s - x,1) f(s)dsl < Mt~*&** min R(a;,x,1 — 1)
d

—iow i=1,2

(where R(a;, x,t) was defined by (2.3)) for somed,a; <d < a, and 0 <r <1 are
necessary and sufficient that

(32) ) = f k(x — y,)$()dy
converges absolutely for a; < x < a, and

(3.3) | $(»)| < Me™* min ™72,
i=1,2
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Proor. To prove necessity of (1) and (2) we observe that (3.3) implies
|exp[ — (x — »)2/41¢(») |; < oo for a; <x < a, and therefore using Lemma 1
of [4, p. 32] (3.3) implies condition (1). Using Theorem 7.3 of [3, pp. 189-191]
we obtain for a; <d < a,

1 d+ico ]
3.4 27 )y K(z — x,t)f(z)dz = f k(x —u,1 — Ho(uw)du.

The necessity of condition (2) follows now the corresponding part of Theorem
2.1 replacing t by 1 — ¢.

To prove (1) and (2) are sufficient we define

(3.5) u(x,1 —t) = — fd+le(s —x,0)f(s)ds.

Using Cauchy’s theorem and the asymptotic behaviour of both K(s,?) and f(s) it
follows that (3.5) is independent of d, provided d satisfies a; < d < a,. Recalling
that (8/0x)*K(s — x,t) = — (9/0t) K(s — x,t) and differentiating under the integral
sign in (3.5), which is easily justified, we obtain

2
(3.6) (-;;)u(x,l f) = —-@—u(x1—t)for0<t<1and—oo<x<oo

The sufficiency part of Theorem 2.1 implies now
3.7 ulx,1—-1) = f k(x —y,1 =0¢(y)dyfor0<t<l —oo<x<0
~here ¢(y) satisfies (3.3). For such ¢(y)

(3.8) fu0) = f k(x = 3, D) dy

converges absolutely for a; < x < a,. To complete the proof it will be sufficient
to show f(x)=f(x) on a; < x < a,. Using the Lebesgue convergence theorem we
obtain
3.9) fo(¥) = lim u(x,1—¢) = lim kK(x —y,1 —Do(»)dy.

=0+ =0+ —

Combining (3.5) and (3.9) we have

i
1 d+iwo

fH(x) = lim — K(s — x,0)f(s)ds
>0+ 27 Jioin
1 x+im
= lim —f K(s — x,t)f(s)ds
i gt o, KT
= lim —I—f K(iy,)f(x + iy)dy = lim k(y, 1)f(x + iy/t)dy.
(»0+ 20 Jo 120+ J-w
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7 The Weierstrass transform 97

Since for xe[Ad;,4,], a; <A <A;<a, and 0<t=<1-39 J2ok(y, 1)
| fx+ iy /D] dy S M [2,e77%" 1 "P%0y < o0 we can use again Lebesgue
convergence theorem now to show that f(x)= lm [2 k(y,1)f(x + iy \/t)dy

>0+
which completes the proof.

We conclude this section with a few remarks. We shall define first, class
B(a,b).

DeriNITION 3.2, A function f(z) analytic in a < Rez < b belongs to class
B[a,b] if f(x + iy) = 0(y’*/*)| y| = oo uniformly for every closed subinterval of
(a,b).

REMARK 3.1.a. In a related result of Hirschman and Widder [3, p. 207]
where the Weierstrass transform of ¢(y) satisfying [d)(y)l <M 0<a<i
is represented the condition f(z) € B[ a, b] is required. Using Nessel’s result[4, p.
31] in the theorem above [3, p. 207] we can assume there f(z) € A[a, b] instead of

f(z)eB[a,b].

ReMARK 3.1.b. If we follow carefully the sufficiency proof of Theorem 3.1
we can see that f(z) € B[a, b] can replace f(z) € A[a, b] there. (The necessity parts
is easier then).

REMARK 3.1.c. In fact, in both theorems f(z) = O(Iyl"eyz“) y — oo uniformly
in any closed subinterval of (a, b) can replace A[a, b] and B[a, b]. But we do use
only B[a,b] for theorems that will be proved later in this paper.

ReMArk 3.1.d. In theorem 3.1 in condition (2) 0 <t < 1 could be replaced
by 1 —§ <t < 1. This follows from Remark 2.1.a since Theorem 3.1 uses for its
sufficiency part, the sufficiency part of Theorem 2.1 with 1 — ¢ replacing ¢.

4. Functions of locally bounded variation whose Weierstrass fransform
converges conditionally

In this section the most general class of functions «(y) for which Weierstrass-
Stieltjes transform is defined will be treated.

THEOREM 4.1. The conditions
(1) f(z2)eB[ay,a,] a, < a, (Def. 3.2).
(2) For somed a, <d <a,

x d+ico
f {J K(s ¢, t)f(S)dS} dfl < M(xy,05)t™*e*/* min R(o,x,1— 1)
1]

d—iw i=1,2

for all a; satisfying a, <a; <oy, <a,,0<t<land —o0 <x<; and
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® [ b

for any (a,b) — 0 <a < b < ; are necessary and sufficient that; f(x) will be
represented as f(x)= [ k(x — y,1)da(t) where the integral converges con-
ditionally for a, < x < a,.

rﬁw K(s—E0f(s)ds|dé <L(a,b) 1-6=st<1

d—iw

REMARK 4.1.a. Actually we shall prove that (1) (2) for a fixed pair (&, %,)and
(3) willimply the conditional convergence of (1.1) forx e (B, o) oy < By < B, < a,
and that will imply (1), (2) and (3) with v, instead of o; where f§; <y, <y, < §,.

Proor. We shall show (1), (2) and (3) are necessary first. The necessity of (1)
follows [3, p. 180]. The conditional convergence of (1.1) in (ay,a,) implies (see

[3, p. 190)).

4.1) | (3| < M(ay, ;) € *min ™2
i=1,2

for any («,,a,) satisfying a, < oy < o, < a,, and also fora, <d < a,

4.2) % dJ“.wK(s —x,0)f(s)ds = foo k(x - u,1 — t)da(u).

27 Jatie -

Writing now

J:{f_ik(f —u,1 — t)doc(u)}df = J:{f:: [%k(f -u,1— t)]oc(u)du}dé

o0 X a
- _ f_mfo S k(E = u,1 = Da(u)dedu

- fw k(x —u,1 — Ho(u)du

+ f k(—u,l —ta(u)du=1, +I,.

[ee]

The interchange of order of integration above is justified by Fubini theorem using
(4.1). Theorem 3.1 used on both I, and I, implies condition (2). Recalling that
ofy) satisfies [3%1]da(y) | < 4,(a,b)(a(y)islocally of bounded variation), we have

jb fwK(é—u,l—t)dx(u)’dféZnUb
o e ba
)
+ f

= 27'({.]1 +J2 +J3}.

f:lk(f —ul— t)dx(u)ldé

fbilk(é — u, 1 — fyda(u) ]df

a—

" (& = u,1 — Dda(u) ' di}

b+1
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It is easy to see that J, < A,(a,b). To estimate J, (treatment of J; is similar) we
write

b
Jléf

Obviously JT , is bounded independently of ¢ (we choose a(0) = 0). For ¢ e(a, b)
andue(—o0,a—1) 0/0¢k(é—u,1—1>0

fUH ai&"“ ~u,1 = D] ()| d”}dé

— o0

fa—la—éak(é—u,l —t)x(u)dul dé + ‘f;la(a—l)'k(é_u,l—t)dé

-0

= Jii+JT.

*
Jia

1A

a-1 a—1
gf k(a—u,l—t)loz(u)]du+f k(b —u,1 — )] a(u)|du

=0Dt->1-

Therefore J, is bounded for 1 — 6 <t <1 which completes the proof of condition (3).
To prove that conditions (1), (2) and (3) are sufficient our first step will be to
show fora fixedt 0 <t <1 and for xe(a,,a,)

(43) f :k(x—f,t) {5}; f j;wK(s—é, t)f(s)ds} d = f(x).

Condition (2) implies the convergence of the integral in (4.3) (conditional
convergence). Condition (1) combined with Cauchy Theorem implies for a; < d,,

d<a,
d+ico dy+ico
4.4) f K(s — &, 0)f(s)ds = f K(s—&,Df(s)ds.
d—io dy i
Straightforward computation yields for0 <z <t <1
0 d+ioo
(4.5) f k(x —&,7) U | K(s~¢&, t)f(s)lds} dé< .
- d—ioo
Therefore using (4.4) and (4.5) for a, < x <a, and [3, p. 177, (1)] we have
0 1 d+io
[ rx—e 5 [ kG- s
- Tl Ji-iw
1 x+ioc ©
=55 |10 | [ ke - ek - ena as

f_ " fx + ip)dy f " (& OKGE — u, e

- f " fx + ink(y, 1 — D dy.

https://doi.org/10.1017/5144678870000968X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870000968X

100 Z. Ditzian [10]

Obviously
lim f(x +ip)k(y,t = )dy = f(x)

T -

and therefore to prove (4.3) it is enough to show

d+ico

49| f_ww(k(x—e:,r)—k(x—é,t)){-2%. d_mK(s-f,t)f(s)ds} dzj —o(l) Tot—

which we can obtain applying condition (2) again.
Our next step will be to determine «(y). We define «,(y) by

4.7) o«(y) = ﬁ y{ “MK(s - &,0f(s) ds}da:.

d—iw

Using condition (3) and Helly-Bray’s Theorem [5, p. 31] there exist a sequence ¢,
and a function o(y), y € [4,b] such that lim, ., [%f(da, () = [ig(y)da(y) for
all g(y) € [a,b] where j,'j|doc(y)l < L(a,b) and a, (y) tend to a(y) at all points of
continuity of a(y). We take the sequence «,, , (») to correspond to [~ 1,1] (for
[a.5]) and a subsequence of o, ¥y, o, (») to correspond to [—2, 2] etc.
Define now a,,;(y) by Cantor diagonal selection principle. It seems as if we have
different functions «(n,y) for each interval [ — n,n] but normalizing the a(n, y)
and recalling that o, (k)(y) is a subsequence of &, , _, (y) we observe that a unique
function «(y) exists, is locally of bounded variation, satisfies

lim "g(y)dcx,(m)(y) = f ”g(y)da(y) Yn

m- oo -

and lim,,_, ., %,m(¥) = a(y) at all points of continuity of a(y) (that is at all but a
countable set of points). Therefore, for any («,0,) 9, < o, <o, < a,

Ja)| = tlim  [omO)] S M) lim [ 1(n)] 24
t(n)—1-— t(n)=1-—

- minR(a;,y,1 — t(n)) £ M(ay,o,)e””’* min &2
i=1,2 i=1,2

This implies
4.8 fi(x) = JL k(x — y,1)da(y)

converges conditionally in a; < x < a,. The above means that for 4 < 4, and
B = B, for a fixed x, x e(a,,a;)

B
(4.9) | f K(x ~ 3, Dda(y) — fy(0)| <.
A
Using condition (2) one can show recalling (4.3) that for A£ A4, < A4, and

BzB,>B,and t,to =t <1
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(4.10) f G = 3,0z () — 1) <

(where A, and B, are independent of £). Choose A = — N B = N. For ¢ satisfying
to <t,<t<1wehave

(4.11) U_N(k(x — 1) — k(x — y,0))da(y) | <e.
Choosing t(m) > t(m,) > t, we have

N N
(4.12) if_Nk(x — ¥, Ddot,imy(y) — ﬁNk(x - y,l)doc(y)l <eée.

Combining (4.9), (4.10), (4.11) and (4.12) we have |f(x) —f*(x)| < 4¢. But both
f(x) and f,(x)are independent of N and ¢ and therefore f(x) = f,(x). The above
being true for a; < x < a, we have

) = f “kx =y, Dday)  ay <x<a,

which completes the proof of our theorem.

5. Absolute convergence

In this section necessary and sufficient conditions on f(x) to be represented
as absolutely convergent Weierstrass-Stieltjes transform will be achieved. We
shall need the following definition:

DEFINITION 5.1. A function f(z) analytic in the strip a <Re z <b and
satisfying f(x + iy) = 0(¢"*/*) uniformly in any closed subinterval belongs to class

C[a,b].

THEOREM 5.1. The conditions
1) f(x)eClay,a,], a; < a,
and

d+ico
f K(s — &,0)f(s)ds |dE < M(ay,0,)t "/ min R(oy,x,1 —1)
d

—ico i=1,2

@ f

where a; <d <a,, 0<t<1, —o0 <x <o and oy,x, are any pair satisfying
a, <o, <a, <a,; are necessary and sufficient that; f(z) = (2 k(z—y,Dda(y)
and the integral will converge absolutely for a, < Rez < a,.

Proor. The necessity proof of (2) is computational and that of (1) follows
[4, p. 32].
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To prove the sufficiency of (1) and (2) we observe that these conditions imply
conditions (1), (2) and (3) of Theorem 4.1 and therefore the conditional con-
vergence of f(x) = [2 _ k(x — y,1)dx(y). We can complete the proof if we show
that f, (x) = [ k(x — y,1) doz(y)’ < oo for a; < x < a,. We recall that

5.1) f Jax)]  tim f | da, ()]

where o,(y) was defined in (4.7). Condition (2) implies now for a; < x < «,

f |da(y)| £ M lim e*/* min R(o;,u,1—1)
0

t—>1— i=1,2

< Meée*™* mine *"?
i=1,2

The last estimate establishes the absolute convergence of [* k(x — y, Dda(y).

REMARK 5.1.a. One can observe that the class of functions «(t) is the same
as treated by Nessel [4, p. 37]; the conditions are different however. Condition
(2) here replaces Nessel’s condition

(5.2)

el - =021 [ (1= ) expis =02 s

x=iT

= o)

Ly

for all T. Also here most of the proof follows as a corollary of the representation
of the more general class.
6. Weierstrass transform of locally Lebesgue integrable functions

Representation theorem for Weierstrass transform

6.1) 169 = [ ke =y, 002y
where ¢(y) is locally Lebesgue integrable and (6.1) converges conditionally in
some strip would be obtained as follows:

THEOREM 6.1. Conditions (1) and (2) of Theorem 4.1 and

3" f b

for any a,b — 00 < a < b < o (but the rate at which the double integral tends
to zero depends on (a, b)), are necessary and sufficient for f(x) to be represented
by (6.1) converging conditionally in a; <x <a, and ¢(y)€Ly(a,b) for all
—w<a<b<ow.

f“iT:K(s_g,tl)—K(s—é,tz)]f(S)ds di=o(l) i->1-,1-5<1<1
d

—iowo
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Proor. Condition (1) and (2) are necessary since they were necessary already

for Theorem 4.1. To prove (3) we write
L
. 127

d+iow
f [K(s — &,1,) — K(s — &, 1)1 f(s)ds Id&f
d

—iw

,,
LI
z

To estimate I, (I, is estimated similarly) we follow the proof of Theorem 4.1 and
write

b
Il:f

For a fixed ¢ there exist N such that fika(x,l)dx =1 —¢ and therefore for
(1 ~t)N <1 we write

b
W

[ T(E = y,1 = 1) = K(E — 3,1~ )y |

IA

© 2 !
[ k&= 1= n)pray - pd)de = = 1.

b+ 1
f KE =31 = 180y — 9O dE o)) 11

N b
[ k.09 + Y T=) = 3o e+ [ #cO]d

+ & f_ (¢ |dy +0(1) t—>1-—.

1
We now use Fubini’s Theorem to write
N b b+1
ns Nk(v,w{ f | o€ +VT=100) = @) dz] do + 2¢ f leolae.

Recalling that ©(h) = {}|¢(€ + h) — ¢p(&)|dE satisfies ©(h)=o(1) h—>0+ we
complete the proof of condition (3).

To prove sufficiency we recall that conditions (1) (2) and (3)* imply the
corresponding conditions of Theorem 4.1 and therefore

169 = [ ktx = 3, 0dat).

Condition (3)* implies a(y) = [*¢(u)du and this completes the proof of our
theorem.

7. Absolutely convergent Weierstrass transform

The following theorem corresponding to those of former section can be
obtained.

TuroreM 7.1. The condition (1) f(2) € A[ay,a,],(2) condition (2) of Theorem
5.1, and (3) condition (3)* of Theorem 6.1, are necessary and sufficient for f(x)
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to be written as f(x) = [Z k(x — y,1)p(y)dy the integral converging absolutely
Jor a; <x <a,.

The proof is similar to proof of former theorems in this paper and would
not be given here.

The same class of functions has also a different representation theorem
[4, p. 48, Satz 3].

References

[1]1 Erdélyi (and others), Tables of integral transforms, Vol. I (McGraw Hill, 1954).

[2] H. P. Heinig, ‘Representation of functions as Weierstrass-transforms’, Canadian Mathematical
Bulletin 10 (1967), 711-722.

[3] I. I. Hirschman and D. V. Widder, The Convolution Transform (Princeton Univ. Press, 1955).

[4] R. J. Nessel, ‘Ueber die Darstellung holomorpher Funktionen durch Weierstrass and Weier-
strass-Stieltjes Integrale’, Journal fur die reine und angewandte Mathematik (1965),
31-50.

[5] H. Pollard, ‘Representation as Gaussian integral’, Duke Math. Jour. 10 (1943), 59-65.

[6] D. V. Widder, The Laplace transform. (Princeton Univ. Press, 1946).

[7] D. V. Widder, ‘Necessary and sufficient conditions for representation of a function by a
Weierstrass transform’, Trans. Amer. Math. Soc. 71 (1951), 430-439.

[8] D. V. Widder, ‘Weierstrass transforms positive functions’, Proc. of Nat. Acad. of Science
37 (1951), 315-317.

Department of Mathematics
University of Alberta
Canada

https://doi.org/10.1017/5144678870000968X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870000968X

