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2.1 Exact Categories 15

this book. The main theme is the theory of localisation for additive and abelian
categories. We begin with a brief introduction into additive and exact categories.
Then we describe specific constructions for localising additive and abelian
categories. We provide many examples. For instance, we study localisations of
module categories, and it is shown that Grothendieck categories are precisely
the abelian categories arising from localising a module category. Also, for
the category of modules over a commutative noetherian ring the localising
subcategories are classified in terms of support.

2.1 Exact Categories

We introduce the notion of an exact category and begin with the more fun-
damental notions of additive and abelian categories. An exact category is by
definition an additive category together with an extra structure given by a dis-
tinguished class of short exact sequences. Extreme cases arise either from ad-
ditive categories by taking all split exact sequences as distinguished sequences,
or from abelian categories by taking any possible short exact sequence as a
distinguished sequence. Categories of finitely presented functors are a useful
tool.

Additive and Abelian Categories
A category A is additive if it admits finite products, including the product
indexed over the empty set, for each pair of objects 𝑋,𝑌 the set HomA(𝑋,𝑌 )

is an abelian group, and the composition maps

HomA(𝑌, 𝑍) × HomA(𝑋,𝑌 ) −→ HomA(𝑋, 𝑍)

sending a pair (𝜓, 𝜙) to the composite 𝜓 ◦ 𝜙 are biadditive.

Lemma 2.1.1. In an additive category finite coproducts also exist. Moreover,
finite products and coproducts coincide.

Proof For a pair of objects 𝑋,𝑌 the product 𝑋×𝑌 together with the morphisms
(id𝑋, 0) : 𝑋 → 𝑋 × 𝑌 and (0, id𝑌 ) : 𝑌 → 𝑋 × 𝑌 represents the coproduct of
𝑋 and 𝑌 , since any pair of morphisms 𝜙 : 𝑋 → 𝐴 and 𝜓 : 𝑌 → 𝐴 induces the
morphism

𝑋 × 𝑌
𝜙×𝜓
−−−−−→ 𝐴 × 𝐴

∇
−−→ 𝐴

where ∇ denotes the sum of both projections 𝐴 × 𝐴→ 𝐴. �
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16 Abelian Categories

We write 𝑋 ⊕ 𝑌 for the (co)product of objects 𝑋,𝑌 in A and note that the
group structure on HomA(𝑋,𝑌 ) is determined by the following commuting
diagram for any pair 𝜙, 𝜓 ∈ HomA(𝑋,𝑌 ):

𝑋 ⊕ 𝑋 𝑌 ⊕ 𝑌

𝑋 𝑌

𝜙⊕𝜓

∇Δ

𝜙+𝜓

(2.1.2)

A functor 𝐹 : A → B between additive categories is additive if it preserves
finite products. An equivalent condition is that the induced map

HomA(𝑋,𝑌 ) −→ HomB (𝐹𝑋, 𝐹𝑌 )

is additive for every pair of objects 𝑋,𝑌 in A.
The kernel Ker 𝐹 of an additive functor 𝐹 : A → B is the full subcategory

of objects 𝑋 in A such that 𝐹 (𝑋) = 0.
An additive category A is abelian if every morphism 𝜙 : 𝑋 → 𝑌 has a kernel

and a cokernel, and if the canonical factorisation

Ker 𝜙 𝑋 𝑌 Coker 𝜙

Coker 𝜙′ Ker 𝜙′′

𝜙′ 𝜙 𝜙′′

�̄�

of 𝜙 induces an isomorphism 𝜙.

Remark 2.1.3. An additive category may be characterised as follows. It is a
category with finite products and coproducts (including the (co)product indexed
over the empty set) such that products and coproducts coincide, and the monoid
structure on Hom(𝑋,𝑌 ) given by (2.1.2) yields a group structure for all objects
𝑋,𝑌 .

Example 2.1.4. (1) Let A be an additive category and 𝑋 an object. Set Λ =
EndA(𝑋). Then HomA(𝑋,−) : A → ModΛ induces a fully faithful functor
add 𝑋 → projΛ. This functor is an equivalence if A is idempotent complete.

(2) The category of modules over an associative ring is an abelian category.

Finitely Presented Functors
Let C be an additive category. We consider additive functors Cop → Ab.
Morphisms between such functors are the natural transformations. This gives
a category which is denoted by ModC. For 𝐹 and 𝐺 in ModC, we write
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2.1 Exact Categories 17

HomC(𝐹, 𝐺) for the class of morphisms 𝐹 → 𝐺. Note that HomC (𝐹, 𝐺) is a
set when C is essentially small.

For each object 𝑋 in C there is the representable functor

ℎ𝑋 = HomC (−, 𝑋) : Cop −→ Ab.

An important tool is Yoneda’s lemma.

Lemma 2.1.5 (Yoneda). For objects 𝐹 in ModC and 𝑋 in C, the map

HomC (ℎ𝑋, 𝐹) −→ 𝐹 (𝑋), 𝜙 ↦→ 𝜙𝑋 (id𝑋)

is an isomorphism of abelian groups.

Proof The inverse map sends 𝑥 ∈ 𝐹 (𝑋) to 𝜓 : ℎ𝑋 → 𝐹 given by 𝜓𝐶 (𝛼) =
𝐹 (𝛼) (𝑥) for 𝐶 ∈ C and 𝛼 ∈ HomC (𝐶, 𝑋). �

It follows from this lemma that the Yoneda functor

C −→ ModC, 𝑋 ↦→ ℎ𝑋

is fully faithful. Also, one sees for 𝐹, 𝐺 ∈ ModC that HomC (𝐹, 𝐺) is a set
when there is an epimorphism ℎ𝑋 → 𝐹 for some object 𝑋 ∈ C.

(Co)kernels and (co)products in ModC are computed pointwise, and it fol-
lows that ModC is an abelian category which has set-indexed products and
coproducts. A sequence 𝐹 → 𝐺 → 𝐻 of morphisms in ModC is exact if and
only if the sequence 𝐹 (𝑋) → 𝐺 (𝑋) → 𝐻 (𝑋) is exact for all 𝑋 in C.

Let modC denote the category of finitely presented functors 𝐹 : Cop → Ab,
where a functor 𝐹 is finitely presented if it fits into an exact sequence

HomC (−, 𝑋) −→ HomC (−, 𝑌 ) −→ 𝐹 −→ 0.

The morphisms in modC are given by the natural transformations.
A morphism 𝑋 → 𝑌 in C is a weak kernel of a morphism 𝑌 → 𝑍 if the

induced sequence

HomC(−, 𝑋) −→ HomC (−, 𝑌 ) −→ HomC (−, 𝑍)

is exact. Let D be an abelian category. Then an additive functor 𝐹 : C → D is
weakly left exact if it sends each weak kernel sequence 𝑋 → 𝑌 → 𝑍 in C to an
exact sequence 𝐹 (𝑋) → 𝐹 (𝑌 ) → 𝐹 (𝑍) in D.

Lemma 2.1.6. The category modC is additive and all morphisms in modC
have cokernels. The category is abelian if and only if all morphisms in C have
weak kernels.
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18 Abelian Categories

Proof We fix a pair of functors with finite presentations

Hom(−, 𝑋𝑖) −→ Hom(−, 𝑌𝑖) −→ 𝐹𝑖 −→ 0 (𝑖 = 1, 2).

A morphism 𝜙 : 𝐹1 → 𝐹2 gives rise to a commutative diagram

Hom(−, 𝑋1) Hom(−, 𝑌1) 𝐹1 0

Hom(−, 𝑋2) Hom(−, 𝑌2) 𝐹2 0

𝜙

in modC. We obtain presentations

Hom(−, 𝑋1 ⊕ 𝑋2) −→ Hom(−, 𝑌1 ⊕ 𝑌2) −→ 𝐹1 ⊕ 𝐹2 −→ 0

and

Hom(−, 𝑋2 ⊕ 𝑌1) −→ Hom(−, 𝑌2) −→ Coker 𝜙 −→ 0.

It follows that modC is an additive category with cokernels.
Now suppose that C has weak kernels. Choose weak kernel sequences

𝑌0 −→ 𝑋2 ⊕ 𝑌1 −→ 𝑌2 and 𝑋0 −→ 𝑋1 ⊕ 𝑌0 −→ 𝑌1.

This gives rise to a commutative diagram

Hom(−, 𝑋0) Hom(−, 𝑌0) Ker 𝜙 0

Hom(−, 𝑋1) Hom(−, 𝑌1) 𝐹1 0

in modC. Thus modC has kernels and it follows that modC is abelian.
Finally, suppose modC is abelian and fix a morphism 𝑌 → 𝑍 in C. Let

𝐹 denote the kernel of the induced morphism Hom(−, 𝑌 ) → Hom(−, 𝑍) in
modC. Then there is an epimorphism Hom(−, 𝑋) → 𝐹, and the compos-
ite Hom(−, 𝑋) → 𝐹 → Hom(−, 𝑌 ) induces a weak kernel 𝑋 → 𝑌 for the
morphism 𝑌 → 𝑍 . �

If D is an additive category with cokernels, then every additive functor
𝐹 : C→ D extends essentially uniquely to a right exact functor �̄� : modC→ D

such that �̄� (ℎ𝑋) = 𝐹 (𝑋) for all 𝑋 ∈ C. To be precise, set �̄� (Coker ℎ𝜙) =
Coker 𝐹 (𝜙) for an object Coker ℎ𝜙 in modC given by a morphism 𝜙 in C. This
universal property of the Yoneda functor ℎ : C → modC can be reformulated
as follows.
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2.1 Exact Categories 19

Lemma 2.1.7. For any additive category D with cokernels, composition with
the Yoneda functor induces a functor

Hom(modC,D) −→ Hom(C,D), 𝐹 ↦→ 𝐹 ◦ ℎ

that yields an equivalence when restricted to the full subcategory of right exact
functors in Hom(modC,D) and the full subcategory of additive functors in
Hom(C,D). �

The above lemma has an analogue for functors modC → D that are exact.
Thus we suppose that all morphisms in C have weak kernels so that modC is
abelian.

Lemma 2.1.8. For any abelian category D, composition with the Yoneda
functor induces a functor

Hom(modC,D) −→ Hom(C,D), 𝐹 ↦→ 𝐹 ◦ ℎ

that yields an equivalence when restricted to the full subcategory of exact
functors in Hom(modC,D) and the full subcategory of additive functors in
Hom(C,D) that are weakly left exact.

Proof Fix an additive functor 𝐹 : C → D and its right exact extension
�̄� : modC → D satisfying �̄� (ℎ𝑋) = 𝐹 (𝑋) for all 𝑋 ∈ C. We claim that �̄�
is exact if and only if 𝐹 is weakly left exact. One direction is clear. So suppose
that 𝐹 is weakly left exact. Choose an exact sequence 0 → 𝑋1 → 𝑋2 → 𝑋3 → 0
in modC. Then we may choose presentations

ℎ𝑋𝑖2 −→ ℎ𝑋𝑖1 −→ ℎ𝑋𝑖0 −→ 𝑋𝑖 −→ 0 (𝑖 = 1, 2, 3)

that induce a commutative diagram

0 ℎ𝑋12 ℎ𝑋22 ℎ𝑋32 0

0 ℎ𝑋11 ℎ𝑋21 ℎ𝑋31 0

0 ℎ𝑋10 ℎ𝑋20 ℎ𝑋30 0

0 𝑋1 𝑋2 𝑋3 0

0 0 0
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20 Abelian Categories

such that each sequence

0 −→ ℎ𝑋1 𝑗 −→ ℎ𝑋2 𝑗 −→ ℎ𝑋3 𝑗 −→ 0 ( 𝑗 = 0, 1, 2)

is split exact. It follows that each sequence

𝐹 (𝑋𝑖2) −→ 𝐹 (𝑋𝑖1) −→ 𝐹 (𝑋𝑖0) −→ �̄� (𝑋𝑖) −→ 0 (𝑖 = 1, 2, 3)

is exact since 𝐹 is weakly left exact and �̄� is right exact. Thus the snake lemma
implies that 0 → �̄� (𝑋1) → �̄� (𝑋2) → �̄� (𝑋3) → 0 is exact. �

Remark 2.1.9. Let C be an additive category with kernels. Then left exact
functors and weakly left exact functors 𝐹 : C→ D agree.

We end our discussion of finitely presented functors with an equivalent
description. Let C be an additive category and denote by C2 the category of
morphisms in C. The objects are morphisms 𝑥 : 𝑋1 → 𝑋0 in C, and for an object
𝑦 : 𝑌1 → 𝑌0 the morphisms 𝜙 : 𝑥 → 𝑦 are given by pairs of morphisms (𝜙0, 𝜙1)

making the following square commutative.

𝑋1 𝑋0

𝑌1 𝑌0

𝑥

𝜙1 𝜙0

𝑦

Such a morphism 𝜙 is called null-homotopic if there is a morphism 𝜌 : 𝑋0 → 𝑌1
satisfying 𝑦 ◦ 𝜌 = 𝜙0. Let us denote by C2/htp the category which is obtained
from C2 by identifying parallel morphisms 𝜙 and 𝜓 if 𝜙 −𝜓 is null-homotopic.

Lemma 2.1.10. Taking an object 𝑥 : 𝑋1 → 𝑋0 in C2 to the functor 𝐹𝑥 with
presentation

HomC (−, 𝑋1) −→ HomC (−, 𝑋0) −→ 𝐹𝑥 −→ 0

yields an equivalence C2/htp ∼−→ modC. �

We give an application. Let 𝑓 : C → D be an additive functor between
additive categories. We write 𝑓! : modC → modD for the right exact functor
sending ℎ𝑋 to ℎ 𝑓 (𝑋) for each 𝑋 ∈ C.

Lemma 2.1.11. 𝑓! : modC→ modD is fully faithful if and only if 𝑓 : C→ D

is fully faithful.

Proof Clearly, 𝑓 is fully faithful if and only if the induced functor C2/htp →
D2/htp is fully faithful. �
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2.1 Exact Categories 21

Exact Categories
Let A be an additive category. A sequence

0 −→ 𝑋
𝛼
−−→ 𝑌

𝛽
−−→ 𝑍 −→ 0

of morphisms in A is exact if 𝛼 is a kernel of 𝛽 and 𝛽 is a cokernel of 𝛼.
An exact category is a pair (A,E) consisting of an additive category A and a
class E of exact sequences in A (called admissible and given by an admissible
monomorphism followed by an admissible epimorphism) which is closed under
isomorphisms and satisfies the following axioms.

(Ex1) The identity morphism of each object is an admissible monomorphism
and an admissible epimorphism.

(Ex2) The composite of two admissible monomorphisms is an admissible
monomorphism, and the composite of two admissible epimorphisms is
an admissible epimorphism.

(Ex3) Each pair of morphisms 𝑋 ′
𝜙
←− 𝑋

𝛼
−→ 𝑌 with 𝛼 an admissible monomor-

phism can be completed to a pushout diagram

𝑋 𝑌

𝑋 ′ 𝑌 ′

𝛼

𝜙

𝛼′

such that 𝛼′ is an admissible monomorphism. And each pair of mor-
phisms 𝑌

𝛽
−→ 𝑍

𝜓
←− 𝑍 ′ with 𝛽 an admissible epimorphism can be com-

pleted to a pullback diagram

𝑌 ′ 𝑍 ′

𝑌 𝑍

𝛽′

𝜓

𝛽

such that 𝛽′ is an admissible epimorphism.

Observe that in (Ex3) the morphism 𝜙 induces an isomorphism Coker𝛼 ∼−→

Coker𝛼′, while 𝜓 induces an isomorphism Ker 𝛽′ ∼−→ Ker 𝛽.
A pair of admissible exact sequences 𝜉 and 𝜉 ′ is called equivalent if there is

a commutative diagram of the following form.

𝜉 : 0 𝑋 𝑌 𝑍 0

𝜉 ′ : 0 𝑋 𝑌 ′ 𝑍 0

𝛼 𝛽

𝜙

𝛼′ 𝛽′
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22 Abelian Categories

In this case 𝜙 is an isomorphism. We write Ext1
A
(𝑍, 𝑋) for the set of equivalence

classes of such extensions and note that it is an abelian group via the Baer sum,
which is given by the following diagram.

𝜉1 ⊕ 𝜉2 : 0 𝑋 ⊕ 𝑋 𝑌1 ⊕ 𝑌2 𝑍 ⊕ 𝑍 0

0 𝑋 ⊕ 𝑋 𝑌 ′ 𝑍 0

𝜉1 + 𝜉2 : 0 𝑋 𝑌 𝑍 0

∇

Δ

We obtain a functor

Ext1A(−,−) : A
op ×A −→ Ab

which is given on morphisms by taking pullbacks (in the first argument) and
pushouts (in the second argument).

Given exact categories A and B, a functor A → B is exact if it is additive
and takes admissible exact sequences in A to admissible exact sequences in B.
A full exact subcategory of an exact category A is a full additive subcategory
B ⊆ A that is extension closed, which means that for an admissible exact
sequence in A with end terms in B the middle term is also in B.

Example 2.1.12. (1) An additive category endowed with all split exact se-
quences is an exact category.

(2) An abelian category endowed with all short exact sequences is an exact
category. Conversely, an exact category is an abelian category, if each morphism
𝜙 admits a factorisation 𝜙 = 𝜙′′𝜙′ such that 𝜙′ is an admissible epimorphism
and 𝜙′′ is an admissible monomorphism.

(3) Let B be an exact category and let A ⊆ B be a full exact subcategory.
Then A becomes an exact category by taking as admissible exact sequences
those which are admissible in B.

(4) Any essentially small exact category A can be embedded into an abelian
category B such that it identifies with a full extension closed subcategory.
For instance, take for B the category of left exact functors 𝐹 : Aop → Ab;
see Proposition 2.3.7. This yields an alternative definition for essentially small
categories: an exact category is a full extension closed subcategory A ⊆ B of
an abelian category B, endowed with all sequences which are short exact in B.

(5) Let C be an additive category. Then modC is an exact category, if one
chooses as admissible exact sequences the sequences that are pointwise exact.
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2.1 Exact Categories 23

Projective and Injective Objects
Let A be an exact category. An object 𝑃 in A is projective if every admissible
epimorphism 𝑋 → 𝑌 induces a surjective map HomA(𝑃, 𝑋) → HomA(𝑃,𝑌 ).
Dually, an object 𝐼 is injective if every admissible monomorphism 𝑋 → 𝑌

induces a surjective map HomA(𝑌, 𝐼) → HomA(𝑋, 𝐼).
An exact category A has enough projective objects if every object 𝑋 in

A admits an admissible epimorphism 𝑃 → 𝑋 such that 𝑃 is projective, and
A has enough injective objects if every object 𝑋 in A admits an admissible
monomorphism 𝑋 → 𝐼 such that 𝐼 is injective.

Example 2.1.13. (1) The category of modules over a ring Λ has enough
projective objects, because every free module is projective. We write ProjΛ for
the full subcategory of projective Λ-modules.

(2) The category of modules over a ring Λ has enough injective objects, and
we write InjΛ for the full subcategory of injective Λ-modules. More generally,
any Grothendieck category has enough injective objects; cf. Corollary 2.5.4.

(3) Let C be an additive category and view modC as an exact category, with
exact structure given by all pointwise exact sequences. Then each representable
functor HomC (−, 𝑋) is a projective object in modC by Yoneda’s lemma.

Let A be an exact category and write C := ProjA for the full subcategory
of projective objects in A. Suppose that A has enough projective objects. Then
every object 𝑋 ∈ A admits a projective presentation

𝑃1 −→ 𝑃0 −→ 𝑋 −→ 0,

that is, an exact sequence such that each 𝑃𝑖 is projective. This yields an exact
sequence

HomC(−, 𝑃1) −→ HomC (−, 𝑃0) −→ HomA(−, 𝑋) |C −→ 0

and therefore the functor

𝐹 : A −→ modC, 𝑋 ↦→ HomA(−, 𝑋) |C

is well defined.

Lemma 2.1.14. The functor 𝐹 is fully faithful; it is an equivalence when A is
abelian.

Proof For the first assertion fix objects 𝑋,𝑌 in A and choose projective
presentations

𝑃1
𝑝
−→ 𝑃0 → 𝑋 → 0 and 𝑄1

𝑞
−→ 𝑄0 → 𝑌 → 0.
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24 Abelian Categories

Then the morphisms 𝑋 → 𝑌 in A correspond to equivalence classes of com-
mutative squares in C

𝑃1 𝑃0

𝑄1 𝑄0

𝑝

𝑞

which in turn correspond to morphisms HomA(−, 𝑋) |C → HomA(−, 𝑌 ) |C, by
Lemma 2.1.10.

Now suppose that A is abelian. Then the inclusion C → A extends to a
quasi-inverse modC→ A for 𝐹. �

We obtain the following correspondence; it provides a useful principle when
dealing with abelian categories having enough projectives.

Proposition 2.1.15. The assignments C ↦→ modC and A ↦→ ProjA induce (up
to equivalence) mutually inverse bijections between

– additive categories that are idempotent complete such that each morphism
admits a weak kernel, and

– abelian categories with enough projective objects. �

An application of this correspondence is the following criterion.

Corollary 2.1.16. LetA be an abelian category with enough projective objects.
Then a right exact functor 𝐹 : A → B between abelian categories is exact if
and only if for each exact sequence 𝑋2 → 𝑋1 → 𝑋0 in A with each 𝑋𝑖 ∈ ProjA
the sequence 𝐹𝑋2 → 𝐹𝑋1 → 𝐹𝑋0 is exact.

Proof Set C = ProjA and identify A = modC. Then apply Lemma 2.1.8. �

There is a dual version of the above proposition for abelian categories with
enough injective objects.

Proposition 2.1.17. The assignments C ↦→ (mod(Cop))op and A ↦→ InjA
induce (up to equivalence) mutually inverse bijections between

– additive categories that are idempotent complete such that each morphism
admits a weak cokernel, and

– abelian categories with enough injective objects. �

We end our discussion of projectives and injectives with a basic fact that will
be used throughout without further reference.
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2.1 Exact Categories 25

Lemma 2.1.18. The left adjoint of an exact functor takes projective objects to
projective objects. Dually, the right adjoint of an exact functor takes injective
objects to injective objects. �

Projective Covers and Injective Envelopes
Let A be an abelian category. An epimorphism 𝜙 : 𝑋 → 𝑌 is essential if any
morphism 𝛼 : 𝑋 ′ → 𝑋 is an epimorphism provided that the composite 𝜙𝛼 is
an epimorphism. This condition can be rephrased as follows: if 𝑈 ⊆ 𝑋 is a
subobject with 𝑈 + Ker 𝜙 = 𝑋 , then 𝑈 = 𝑋 . An epimorphism 𝜙 : 𝑃 → 𝑋 is a
projective cover of 𝑋 if 𝑃 is projective and 𝜙 is essential.

There are the following dual notions. A monomorphism 𝜙 : 𝑋 → 𝑌 is es-
sential if any morphism 𝛼 : 𝑌 → 𝑌 ′ is a monomorphism provided that the
composite 𝛼𝜙 is a monomorphism. This condition can be rephrased as follows:
if 𝑈 ⊆ 𝑌 is a subobject with 𝑈 ∩ Im 𝜙 = 0, then 𝑈 = 0. A monomorphism
𝜙 : 𝑋 → 𝐼 is an injective envelope of 𝑋 if 𝐼 is injective and 𝜙 is essential.

We collect some basic properties of projective covers and injective envelopes.
In most cases we provide only one formulation (say, about injective envelopes)
and leave the dual result (about projective covers) to the reader.

Lemma 2.1.19. Let 𝐼 be an injective object. Then the following are equivalent
for a monomorphism 𝜙 : 𝑋 → 𝐼.

(1) The morphism 𝜙 is an injective envelope of 𝑋 .
(2) Every endomorphism 𝛼 : 𝐼 → 𝐼 satisfying 𝛼𝜙 = 𝜙 is an isomorphism.

Proof (1) ⇒ (2): Let 𝛼 : 𝐼 → 𝐼 be an endomorphism satisfying 𝛼𝜙 = 𝜙.
Then 𝛼 is a monomorphism since 𝜙 is essential. Thus there exists 𝛼′ : 𝐼 → 𝐼

satisfying 𝛼′𝛼 = id𝐼 since 𝐼 is injective. It follows that 𝛼′𝜙 = 𝜙 and therefore
𝛼′ is a monomorphism. On the other hand, 𝛼′ is an epimorphism. Thus 𝛼′ and
𝛼 are isomorphisms.

(2) ⇒ (1): Let 𝛼 : 𝐼 → 𝐼 ′ be a morphism such that 𝛼𝜙 is a monomorphism.
Then 𝜙 factors through 𝛼𝜙 via a morphism 𝛼′ : 𝐼 ′ → 𝐼 since 𝐼 is injective. The
composite 𝛼′𝛼 is an isomorphism and therefore 𝛼 is a monomorphism. Thus 𝜙
is essential. �

We write 𝐸 (𝑋) = 𝐼 when 𝑋 → 𝐼 is an injective envelope. The following
statement justifies this notation.

Lemma 2.1.20. Let 𝜙 : 𝑋 → 𝐼 and 𝜙′ : 𝑋 → 𝐼 ′ be injective envelopes of an
object 𝑋 . Then there is an isomorphism 𝛼 : 𝐼 → 𝐼 ′ such that 𝜙′ = 𝛼𝜙. �
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There is a close relation between projective covers and radical morphisms.
We establish this in two steps: first for modules, and then for general abelian
categories.

Lemma 2.1.21. Let Λ be a ring and 𝑃1
𝜙
−→ 𝑃0

𝜓
−→ 𝑋 → 0 an exact sequence of

Λ-modules such that each 𝑃𝑖 is finitely generated projective. Then the following
are equivalent.

(1) 𝜓 is essential.
(2) Im 𝜙 ⊆ rad 𝑃0.
(3) 𝜙 ∈ Rad(𝑃1, 𝑃0).

Proof (1) ⇒ (2): Set 𝑈 = Im 𝜙. Suppose that 𝜓 is essential and let 𝑉 ⊆ 𝑃0
be a maximal subobject not containing 𝑈. Then 𝑈 + 𝑉 = 𝑃0 and therefore
𝑉 = 𝑃0. This is a contradiction and therefore 𝑈 is contained in every maximal
subobject. Thus𝑈 ⊆ rad 𝑃0.

(2) ⇒ (1): Suppose that 𝑈 ⊆ rad 𝑃0 and let 𝑉 ⊆ 𝑃0 be a subobject with
𝑈 + 𝑉 = 𝑃0. If 𝑉 ≠ 𝑃0, then there is a maximal subobject 𝑉 ′ ⊆ 𝑃0 containing
𝑉 since 𝑃0 is finitely generated. Thus 𝑃0 = 𝑈 +𝑉 ⊆ 𝑉 ′. This is a contradiction
and therefore 𝑉 = 𝑃0. It follows that 𝜓 is essential.

(2) ⇔ (3): When 𝑃1 = Λ we have the identification Rad(Λ, 𝑃0) = rad 𝑃0 via
𝜆 ↦→ 𝜆(1). In particular, for 𝜆 : Λ→ 𝑃0 we have 𝜆 ∈ Rad(Λ, 𝑃0) if and only if
Im𝜆 ⊆ rad 𝑃0. More generally, for 𝜆 : Λ𝑛 → 𝑃0 we have 𝜆 ∈ Rad(Λ𝑛, 𝑃0) if
and only if Im𝜆 ⊆ rad 𝑃0.

For the implication (3) ⇒ (2) choose an epimorphism 𝜋 : Λ𝑛 → 𝑃1. Then
𝜙𝜋 is a radical morphism and therefore Im 𝜙 = Im 𝜋𝜙 ⊆ rad 𝑃0.

For the implication (2) ⇒ (3) choose an epimorphism Λ𝑛 → 𝑈. Then
𝜆 : Λ𝑛 → 𝑈 � 𝑃0 is a radical morphism, and therefore 𝜙 ∈ Rad(𝑃1, 𝑃0) since
𝜙 factors through 𝜆. �

Proposition 2.1.22. Let 𝑃1
𝜙
−→ 𝑃0

𝜓
−→ 𝑋 → 0 be an exact sequence in an

abelian category such that each 𝑃𝑖 is projective. Then 𝜓 is a projective cover
if and only if 𝜙 ∈ Rad(𝑃1, 𝑃0).

Proof Let A denote the abelian category and C the smallest full additive
subcategory which is closed under cokernels and contains 𝑃 = 𝑃0 ⊕ 𝑃1. Set
Λ = End(𝑃). The functor 𝐻 = Hom(𝑃,−) : A → ModΛ restricts to an
equivalence C ∼−→ modΛ. It follows from the dual of Lemma 2.1.19 that 𝜓
is a projective cover if and only if 𝐻𝜓 is a projective cover. On the other
hand, Rad(𝑃1, 𝑃0)

∼−→ Rad(𝐻𝑃1, 𝐻𝑃0) via 𝐻. Thus the assertion follows from
Lemma 2.1.21. �

https://doi.org/10.1017/9781108979108.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781108979108.007


2.1 Exact Categories 27

We record the dual characterisation of injective envelopes via the radical.

Proposition 2.1.23. Let 0 → 𝑋
𝜙
−→ 𝐼0

𝜓
−→ 𝐼1 be an exact sequence in an

abelian category such that each 𝐼 𝑖 is injective. Then 𝜙 is an injective envelope
if and only if 𝜓 ∈ Rad(𝐼0, 𝐼1). �

We say that a morphism 𝜙 : 𝑋 → 𝑌 in an additive category admits a minimal
decomposition if 𝜙 can be written as a direct sum

𝑋 = 𝑋 ′ ⊕ 𝑋 ′′
𝜙′⊕𝜙′′

−−−−−−→ 𝑌 ′ ⊕ 𝑌 ′′ = 𝑌

such that 𝜙′ is an isomorphism and 𝜙′′ is a radical morphism.
An abelian category has injective envelopes if every object admits an injective

envelope. Dually, an abelian category has projective covers if every object
admits a projective cover.

Corollary 2.1.24. Let A be an abelian category with enough injective objects.
Then A has injective envelopes if and only if all morphisms in InjA admit
minimal decompositions.

Proof Suppose first that A has injective envelopes. Let 𝜙 : 𝑋 → 𝑌 be a
morphism in InjA. Choose a decomposition 𝑋 = 𝑋 ′ ⊕ 𝑋 ′′ such that 𝑋 ′′ =
𝐸 (Ker 𝜙). Let 𝜙′ : 𝑋 ′ ∼−→ 𝑌 ′ = 𝜙(𝑋 ′) be the restriction 𝜙|𝑋′ . Then 𝜙′ is a direct
summand of 𝜙. Thus we get a decomposition 𝜙 = 𝜙′ ⊕ 𝜙′′ and 𝜙′′ is radical by
Proposition 2.1.23.

For the converse let 𝐴 ∈ A and choose an exact sequence 0 → 𝐴→ 𝑋
𝜙
−→ 𝑌

with 𝜙 ∈ InjA. Decomposing 𝜙 = 𝜙′⊕𝜙′′ yields an injective envelope 𝐴→ 𝑋 ′′,
again by Proposition 2.1.23. �

Example 2.1.25. Let A be a Krull–Schmidt category. Then every morphism
𝜙 : 𝑋 → 𝑌 in A admits a minimal decomposition.

To see this, choose decompositions 𝑋 =
⊕

𝑖 𝑋𝑖 and 𝑌 =
⊕

𝑗 𝑌 𝑗 into in-
decomposables. Then 𝜙 = (𝜙𝑖 𝑗 ) belongs to Rad(𝑋,𝑌 ) if and only if 𝜙𝑖 𝑗 ∈
Rad(𝑋𝑖 , 𝑌 𝑗 ) for all 𝑖, 𝑗 . Suppose 𝜙𝑖0 𝑗0 is not radical. Then 𝜙𝑖0 𝑗0 is an iso-
morphism and we may decompose 𝑋 = 𝑋𝑖0 ⊕ �̄� and 𝑌 = 𝑌 𝑗0 ⊕ 𝑌 such that
𝜙 = 𝜙𝑖0 𝑗0 ⊕ 𝜙. Removing successively summands 𝜙𝑖 𝑗 that are not radical we
obtain the decomposition 𝜙 = 𝜙′ ⊕ 𝜙′′ as required.

Stable Categories
Let A be an exact category and suppose that A has enough injective objects.
Thus for each object 𝑋 ∈ A we can choose an exact sequence 0 → 𝑋 → 𝐼𝑋 →

𝑋 ′ → 0 such that 𝐼𝑋 is injective.
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The injectively stable category StA has by definition the same objects as A
while the morphisms for objects 𝑋,𝑌 are given by the quotient

HomStA(𝑋,𝑌 ) = HomA(𝑋,𝑌 )/{𝜙 | 𝜙 factors through an injective object}.

Lemma 2.1.26. The assignment 𝑋 ↦→ Ext1 (−, 𝑋) induces a fully faithful
functor StA→ modA.

Proof For each object 𝑋 ∈ A the sequence 0 → 𝑋 → 𝐼𝑋 → 𝑋 ′ → 0 induces
a presentation

0 → Hom(−, 𝑋) → Hom(−, 𝐼𝑋) → Hom(−, 𝑋 ′) → Ext1 (−, 𝑋) −→ 0.

Given a morphism 𝜙 : 𝑋 → 𝑌 in A, we have Ext1 (−, 𝜙) = 0 if and only if 𝜙
factors through 𝑋 → 𝐼𝑋. On the other hand, given a morphism of functors,
𝜓 : Ext1 (−, 𝑋) → Ext1 (−, 𝑌 ), we use Yoneda’s lemma and obtain from the
above presentation a morphism Hom(−, 𝑋) → Hom(−, 𝑌 ) which corresponds
to a morphism �̄� : 𝑋 → 𝑌 in A. Clearly, Ext1 (−, �̄�) = 𝜓. �

We call a pair of objects 𝑋,𝑌 in A stably equivalent if the equivalent condi-
tions in the following lemma are satisfied.

Lemma 2.1.27. For objects 𝑋,𝑌 ∈ A the following are equivalent.

(1) Ext1 (−, 𝑋) � Ext1 (−, 𝑌 ) in modA.
(2) 𝑋 � 𝑌 in StA.
(3) 𝑋 ⊕ 𝐼 � 𝑌 ⊕ 𝐽 in A for some injective objects 𝐼, 𝐽 ∈ A.

Proof (1) ⇔ (2): See Lemma 2.1.26.
(2)⇒ (3): Let 𝜙 : 𝑋 → 𝑌 be a morphism inA that becomes invertible in StA.

Adding 𝑋 → 𝐼𝑋 yields a split monomorphism 𝑋 → 𝑌 ⊕ 𝐼𝑋, so 𝑋 ⊕ 𝐼 � 𝑌 ⊕ 𝐼𝑋
for some object 𝐼. We have 𝐼 = 0 in StA, so 𝐼 is injective.

(3) ⇒ (2): Clear. �

2.2 Localisation of Additive and Abelian Categories

There are specific constructions for localising additive and abelian categories.
In both cases the localisation amounts to annihilating a class of objects. Also,
the additional categorical structure is preserved. This means the localisation
provides an additive functor A → A[𝑆−1] when A is additive and an exact
functor when A is abelian.
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Additive Categories
Let A be an additive category. When 𝐹 : A→ B is an additive functor, then the
class 𝑆 = {𝜎 ∈ MorA | 𝐹𝜎 is invertible} contains the identities and is closed
under finite direct sums. The following criterion shows that this is sufficient for
A[𝑆−1] to be an additive category.

Lemma 2.2.1. Let A be an additive category and 𝑆 ⊆ MorA a class of
morphisms. Suppose that 𝑆 contains the identity morphism of each object and
that 𝜎, 𝜏 ∈ 𝑆 implies 𝜎 ⊕ 𝜏 ∈ 𝑆. Then A[𝑆−1] is an additive category and the
canonical functor A→ A[𝑆−1] is additive.

Proof We use the characterisation of an additive category from Remark 2.1.3.
Also, we make a number of additional observations.

(1) Finite coproducts in a categoryC are given by a left adjoint of the diagonal
Δ : C→ C𝑛 for any 𝑛 ≥ 0. Dually, finite products are given by a right adjoint.

(2) If C𝑖 and 𝑆𝑖 ⊆ MorC𝑖 are categories with classes of morphisms, then( ∏
𝑖

C𝑖

) [( ∏
𝑖

𝑆𝑖

)−1]
∼−−→

∏
𝑖

C𝑖 [𝑆
−1
𝑖 ] .

(3) Let (𝐹, 𝐺) be an adjoint pair of functors C � D. If 𝑆 ⊆ MorC and
𝑇 ⊆ MorD are classes of morphisms such that 𝐹 (𝑆) ⊆ 𝑇 and 𝐺 (𝑇) ⊆ 𝑆, then
(𝐹, 𝐺) induces an adjoint pair of functors C[𝑆−1] � D[𝑇−1] (Lemma 1.1.6).

Now it follows that A[𝑆−1] is a category with finite products and coproducts,
and the canonical functorA→ A[𝑆−1] preserves these (co)products. Moreover,
in A[𝑆−1] the monoid structure on Hom(𝑋,𝑌 ) given by (2.1.2) yields a group
structure for all objects 𝑋,𝑌 . �

Let A be an additive category and let C ⊆ A be a full additive subcategory.
The additive quotient category A/C of A with respect to C has the same objects
as A while the morphisms for objects 𝑋,𝑌 are defined by the quotient

HomA/C(𝑋,𝑌 ) = HomA(𝑋,𝑌 )/{𝜙 | 𝜙 factors through an object in C}.

For a morphism 𝜙 in A we write 𝜙 for the corresponding morphism in A/C.

Lemma 2.2.2. Let A be an additive category and let C ⊆ A be a full additive
subcategory. Set

𝑆 = 𝑆(C) = {𝜎 ∈ MorA | �̄� is invertible in A/C}.

Then the canonical functor A → A/C induces an isomorphism A[𝑆−1] ∼−→

A/C.
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Proof Consider the canonical functors 𝑃 : A → A/C and 𝑄 : A → A[𝑆−1].
Clearly, 𝑃 factors through 𝑄 via a functor �̄�. Now observe for morphisms 𝛼, 𝛽
in A that �̄� = 𝛽 implies𝑄𝛼 = 𝑄𝛽, since𝑄 is additive by Lemma 2.2.1. Thus𝑄
factors through 𝑃 via a functor �̄�. It follows that �̄��̄� = id and �̄��̄� = id, since
𝑃 and 𝑄 provide solutions of some universal problems. �

Abelian Categories
Let A be an abelian category. A full additive subcategory C ⊆ A is a Serre
subcategory provided that C is closed under taking subobjects, quotients and
extensions. This means that for every exact sequence 0 → 𝑋 ′ → 𝑋 → 𝑋 ′′ → 0
in A, the object 𝑋 is in C if and only if 𝑋 ′ and 𝑋 ′′ are in C.

Example 2.2.3. The kernel of an exact functor A → B between abelian
categories is a Serre subcategory of A.

Fix a Serre subcategory C of A. We set

𝑆(C) = {𝜎 ∈ MorA | Ker𝜎,Coker𝜎 ∈ C}

and

C⊥ = {𝑌 ∈ A | HomA(𝑋,𝑌 ) = 0 = Ext1A(𝑋,𝑌 ) for all 𝑋 ∈ C}.

The abelian quotient category A/C of A with respect to C has the same ob-
jects while the morphisms for objects 𝑋,𝑌 are defined as follows. There is for
each pair of subobjects 𝑋 ′ ⊆ 𝑋 and 𝑌 ′ ⊆ 𝑌 an induced map HomA(𝑋,𝑌 ) →

HomA(𝑋
′, 𝑌/𝑌 ′). The pairs (𝑋 ′, 𝑌 ′) such that both 𝑋/𝑋 ′ and 𝑌 ′ lie in C

form a directed set, and one obtains a directed system of abelian groups
HomA(𝑋

′, 𝑌/𝑌 ′). Then one defines

HomA/C(𝑋,𝑌 ) = colim
(𝑋′,𝑌 ′)

HomA(𝑋
′, 𝑌/𝑌 ′).

The composition of morphisms in A induces the composition in A/C.

Lemma 2.2.4. For a Serre subcategory C ⊆ A the following holds.

(1) 𝑆(C) admits a calculus of left and right fractions.
(2) An object in A is 𝑆(C)-local if and only if it is in C⊥.
(3) The canonical functor A → A/C induces an isomorphism A[𝑆(C)−1] ∼−→

A/C.
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Proof (1) and (2) are straightforward. For (3) we apply Lemma 1.2.2. Given
objects 𝑋,𝑌 in A we have

HomA/C(𝑋,𝑌 ) = colim
(𝑋′,𝑌 ′)

HomA(𝑋
′, 𝑌/𝑌 ′)

� colim
(𝜎,𝜏)

HomA( �̄�,𝑌 )

� HomA[𝑆−1 ] (𝑋,𝑌 )

where 𝜎 : �̄� → 𝑋 and 𝜏 : 𝑌 → 𝑌 run through all morphisms in 𝑆(C). �

A consequence is the following useful observation describing the morphisms
in A/C. For each morphism 𝜙 : 𝑋 → 𝑌 in A/C we have a commutative square

𝑋 ′ 𝑌/𝑌 ′

𝑋 𝑌
𝜙

such that the other three morphisms are in the image of A → A/C and the
vertical morphisms are isomorphisms inA/C, since 𝑋/𝑋 ′ and𝑌 ′ lie in C. There
is an analogue for exact sequences in A/C; see Lemma 14.1.9.

The following provides another useful fact about the morphisms in A/C.

Lemma 2.2.5. Let C ⊆ A be a Serre subcategory and 𝑌 ∈ A. Then the
canonical map

HomA(𝑋,𝑌 ) −→ HomA/C(𝑋,𝑌 )

is a bijection for all 𝑋 ∈ A if and only if 𝑌 ∈ C⊥.

Proof This follows from Lemma 1.1.2 and Lemma 2.2.4. �

Proposition 2.2.6. Let A be an abelian category and C ⊆ A a Serre subcate-
gory. Then the following holds.

(1) The category A/C is abelian and the canonical functor 𝑄 : A → A/C is
an exact functor that annihilates C.

(2) If B is an abelian category and 𝐹 : A → B is an exact functor that
annihilates C, then there exists a unique exact functor �̄� : A/C → B such
that 𝐹 = �̄� ◦𝑄.

Proof (1) We apply Lemma 2.2.4. Thus A/C = A[𝑆−1] for 𝑆 = 𝑆(C), and 𝑆
admits a calculus of left and right fractions. The category A/C is additive by
Lemma 2.2.1. A morphism 𝑋 → 𝑌 in A/C is up to an isomorphism of the form
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32 Abelian Categories

𝑄𝜙 for some 𝜙 : 𝑋 → 𝑌 in A. Choosing a cokernel 𝜓 : 𝑌 → 𝑍 yields for each
𝐴 ∈ A an exact sequence

0 → HomA(𝑍, 𝐴) → HomA(𝑌, 𝐴) → HomA(𝑋, 𝐴)

and therefore an exact sequence

0 → colim
𝐴→𝐴′

HomA(𝑍, 𝐴
′) → colim

𝐴→𝐴′
HomA(𝑌, 𝐴

′) → colim
𝐴→𝐴′

HomA(𝑋, 𝐴
′)

where 𝐴→ 𝐴′ runs through all morphisms in 𝑆 starting at 𝐴. Thus the sequence

0 → HomA/C(𝑍, 𝐴) → HomA/C(𝑌, 𝐴) → HomA/C(𝑋, 𝐴)

is exact by Lemma 1.2.2, and it follows that 𝑄𝜓 is a cokernel of 𝑄𝜙. The
dual argument shows that each morphism in A/C admits a kernel. Clearly, 𝑄
preserves kernels and cokernels; so the property of A to be abelian carries over
to A/C.

(2) If 𝐹 : A → B is an exact functor and 𝐹 |C = 0, then 𝐹 inverts all
morphisms in 𝑆. Thus 𝐹 factors through 𝑄 : A → A/C via a unique functor
�̄� : A/C → B. The functor �̄� is exact, because any exact sequence in A/C is
up to isomorphism the image of an exact sequence in A. �

Remark 2.2.7. (1) The properties (1)–(2) in Proposition 2.2.6 provide a univer-
sal property that determines the canonical functor A → A/C up to a unique
isomorphism.

(2) The canonical functor A → A/C preserves all coproducts in A if and
only if C is closed under coproducts; see Lemma 1.1.8.

Next we describe all Serre subcategories of a quotient A/C.

Proposition 2.2.8. Let C ⊆ B ⊆ A be Serre subcategories of an abelian
category A. Then B/C identifies with a Serre subcategory of A/C, and every
Serre subcategory of A/C is of this form. Moreover, the canonical functor
A→ A/C induces an isomorphism A/B ∼−→ (A/C)/(B/C).

We capture the situation in the following commutative diagram.

C B B/C

C A A/C

A/B (A/C)/(B/C)
∼
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Proof The inclusion B → A induces a fully faithful functor B/C → A/C

since B is left and right cofinal with respect to 𝑆(C); see Lemma 1.2.5. It is
easily checked that B/C yields a Serre subcategory of A/C. If D ⊆ A/C is a
Serre subcategory, set B := 𝑄−1 (D). Then B/C ∼−→ D. The final assertion is
clear, since the kernel of the composite A → A/C → (A/C)/(B/C) equals
B. �

Remark 2.2.9. The above correspondence B ↦→ B/C between Serre subcate-
gories is inclusion preserving, and B/B′ ∼−→ (B/C)/(B′/C) for B′ ⊆ B.

Localisation and Adjoints
Let A be an abelian category. We consider the situation that the canonical
functor A→ A/C given by a Serre subcategory C admits a right adjoint.

Lemma 2.2.10. Let A be an abelian category and C ⊆ A a Serre subcat-
egory. Suppose the canonical functor 𝑄 : A → A/C admits a right adjoint
𝑄𝜌 : A/C→ A. Then the following holds.

(1) The functor 𝑄𝜌 is fully faithful and induces an equivalence

A/C ∼−−→ C⊥ with quasi-inverse C⊥ ↩→ A
𝑄
−−→ A/C.

(2) The adjunction yields for 𝑋 in A a natural exact sequence

0 −→ 𝑋 ′ −→ 𝑋
𝜂
−−→ 𝑄𝜌𝑄(𝑋) −→ 𝑋 ′′ −→ 0

with 𝑋 ′ and 𝑋 ′′ in C.
(3) The assignment 𝑋 ↦→ 𝑋 ′ gives a right adjoint of the inclusion C→ A.

Proof (1) This follows from Proposition 1.1.3 and Lemma 2.2.4.
(2) This follows from the fact that 𝑄(𝜂) is invertible.
(3) The map HomA(𝐶, 𝑋

′) → HomA(𝐶, 𝑋) is bijective for 𝐶 ∈ C since
𝑄𝜌𝑄(𝑋) is in C⊥. �

We capture the situation in the following diagram

C A A/C
𝐼

𝐼𝜌

𝑄

𝑄𝜌

which is a localisation sequence. Each object 𝑋 ∈ A fits into a functorial exact
sequence

0 −→ 𝐼 𝐼𝜌 (𝑋) −→ 𝑋 −→ 𝑄𝜌𝑄(𝑋).

A Serre subcategory C ⊆ A is called localising if the canonical functor
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𝑄 : A → A/C admits a right adjoint. Note that in this case C is closed under
all coproducts which exist in A, since 𝑄 preserves coproducts.

Proposition 2.2.11. Let (𝐹, 𝐺) be an adjoint pair of functors

A B
𝐹

𝐺

between abelian categories such that 𝐹 is exact and set C = Ker 𝐹. Then 𝐺 is
fully faithful if and only if 𝐹 induces an equivalence A/C ∼−→ B.

Proof Let 𝑆 = {𝜎 ∈ MorA | 𝐹𝜎 is invertible}. Then 𝐺 is fully faithful if
and only if 𝐹 induces an equivalence A[𝑆−1] ∼−→ B, by Proposition 1.1.3. It
remains to observe that A[𝑆−1] ∼−→ A/C, by Lemma 2.2.4.

Let us give a more direct proof for one implication. So suppose that 𝐺 is
fully faithful. Then it is easily checked that the counit 𝜀𝑋 : 𝐹𝐺 (𝑋) → 𝑋 is an
isomorphism for all 𝑋 ∈ B; see Proposition 1.1.3. We show that 𝐹 satisfies, up
to an isomorphism, the universal property of the canonical functor A→ A/C;
see Remark 2.2.7. Clearly, 𝐹 is exact and annihilates C. Now let 𝐻 : A→ A′ be
an exact functor between abelian categories that annihilates C. Set �̄� = 𝐻 ◦𝐺.
We claim that �̄� is exact, that 𝐻 � �̄� ◦ 𝐹, and that �̄� is unique with these
properties. For the exactness, choose an exact sequence 0 → 𝑋 → 𝑌 → 𝑍 → 0
in B which yields an exact sequence

0 → 𝐺𝑋 → 𝐺𝑌 → 𝐺𝑍 → 𝑋 ′ → 0

in A since 𝐺 is left exact. We have 𝐹𝑋 ′ = 0 since 𝐹 ◦ 𝐺 � id, so 𝑋 ′ ∈ C,
and therefore 𝐻𝑋 ′ = 0. Thus �̄� is exact. Let 𝑋 ∈ A. Then 𝐹 maps the unit
𝜂𝑋 : 𝑋 → 𝐺𝐹 (𝑋) to an isomorphism, since the counit 𝜀𝐹𝑋 is an inverse.
Thus Ker 𝜂𝑋 and Coker 𝜂𝑋 are in C. It follows that 𝐻𝜂 yields an isomorphism
𝐻 ∼−→ �̄� ◦ 𝐹. If �̃� : B → A′ is another functor such that 𝐻 � �̃� ◦ 𝐹, then one
composes this isomorphism with 𝐺. Thus �̄� = 𝐻 ◦ 𝐺 � �̃� ◦ 𝐹 ◦ 𝐺 � �̃�. �

Remark 2.2.12. There are dual versions of Lemma 2.2.10 and Proposition 2.2.11
for abelian categories where the canonical functor A → A/C admits a left ad-
joint.

Example 2.2.13. Let A be an abelian category and 𝑖∗ : A′ → A the inclusion
of a Serre subcategory. Set A′′ = A/A′ and suppose that the canonical functor
𝑗∗ : A → A′′ admits both adjoints. Then one obtains a recollement of abelian
categories.

A′ A A′′𝑖∗=𝑖!

𝑖!

𝑖∗

𝑗!= 𝑗∗

𝑗∗

𝑗!
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For an object 𝑋 in A, there are natural exact sequences relating the left and the
right halves of the diagram.

𝑗! 𝑗
! (𝑋) −→ 𝑋 −→ 𝑖∗𝑖

∗(𝑋) −→ 0 0 −→ 𝑖!𝑖
! (𝑋) −→ 𝑋 −→ 𝑗∗ 𝑗

∗(𝑋)

Each recollement of abelian categories is, up to equivalence, of the above
form. A prototypical example arises from the category Sh(𝑋) of sheaves on a
topological space 𝑋 and the inclusion 𝑖 : 𝑉 → 𝑋 of a closed subset plus the
inclusion 𝑗 : 𝑈 → 𝑋 for𝑈 = 𝑋 \𝑉 .

Sh(𝑉) Sh(𝑋) Sh(𝑈)𝑖∗=𝑖!

𝑖!

𝑖∗

𝑗!= 𝑗∗

𝑗∗

𝑗!

which involves the following functors:

𝑖∗, 𝑗∗ = restriction 𝑖! = sections with support
𝑖∗, 𝑗∗ = direct image 𝑗! = extension by zero.

This example explains the notation.

Categories with Injective Envelopes
Recall that an abelian category has injective envelopes if every object admits
an injective envelope.

Proposition 2.2.14. Let A be an abelian category with injective envelopes and
let C ⊆ A be a Serre subcategory. Then the inclusion C → A admits a right
adjoint if and only if the canonical functor A → A/C admits a right adjoint.
In that case C and A/C are categories with injective envelopes. Moreover, both
right adjoints induce a sequence of functors

Inj(A/C) InjA InjC

that induces an equivalence

(InjA)/Inj(A/C) ∼−−→ InjC.

Proof If the functor A → A/C admits a right adjoint, then the inclusion
C → A admits a right adjoint, by Lemma 2.2.10. For the other implication,
suppose that C → A admits a right adjoint, sending 𝑋 ∈ A to the maximal
subobject 𝑡𝑋 ⊆ 𝑋 that belongs to C. Choose an injective envelope 𝑋/𝑡𝑋 → 𝐼.
Then 𝐼 belongs to C⊥ because there are no non-zero subobjects in C. We form
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the following pullback

0 𝑋/𝑡𝑋 𝑋 ′ 𝑡𝐶 0

0 𝑋/𝑡𝑋 𝐼 𝐶 0

and also 𝑋 ′ belongs to C⊥. Then 𝑋 ↦→ 𝑋 ′ yields a right adjoint of the canonical
functor A → A/C, since the kernel and cokernel of the morphism 𝑋 → 𝑋 ′

belong to C by construction.
Now suppose that both adjoints exist. It is convenient to identify C⊥ = A/C.

If 𝑋 → 𝐼 is an injective envelope in A, then it is easily checked that 𝑡𝑋 → 𝑡 𝐼

is an injective envelope in C. In particular, 𝑡 induces a functor InjA → InjC
that is surjective on isoclasses of objects and full. In fact, for 𝑋 ∈ InjC we have
𝑋 � 𝑡𝐸 (𝑋). Also, any morphism 𝜙 : 𝑡𝑋 → 𝑡𝑌 can be extended to a morphism
𝜙 : 𝑋 → 𝑌 since 𝑌 is injective, and 𝑡𝜙 = 𝜙. We claim that

Ker 𝑡 ∩ InjA = C⊥ ∩ InjA = Inj(C⊥).

The first equality is clear. Also, an object in C⊥ ∩ InjA is injective in C⊥, since
the inclusion C⊥ → A is left exact. Given an object 𝑋 ∈ C⊥, then its injective
envelope 𝐸 (𝑋) is also in C⊥, since 𝑡𝐸 (𝑋) = 0. This yields the second equality
and shows that A/C has injective envelopes. Morover, it follows that 𝑡 induces
an equivalence between the additive quotient (InjA)/Inj(C⊥) and InjC. �

Corollary 2.2.15. Let A be an abelian category with injective envelopes and
let C ⊆ A be a localising subcategory. Then we have C⊥ ∩ InjA = Inj(C⊥) and
C⊥ ⊆ A is closed under injective envelopes. �

Grothendieck categories form an important class of abelian categories with
injective envelopes. Thus we can apply the above proposition.

Proposition 2.2.16. Let A be a Grothendieck category and C ⊆ A a Serre
subcategory that is closed under coproducts. Then C and the quotient A/C
are Grothendieck categories. Moreover, the canonical functors C → A and
A→ A/C admit right adjoints.

Proof Let 𝐺 ∈ A be a generator of A. The right adjoints are constructed as
follows. Fix an object 𝑋 ∈ A. Observe that the subobjects of 𝑋 form a set which
has its cardinality bounded by 2𝛼, where 𝛼 = card Hom(𝐺, 𝑋). The subobjects
𝐶 ⊆ 𝑋 with 𝐶 ∈ C form a directed subset and we set 𝑡𝑋 := colim𝐶⊆𝑋 𝐶;
this is the largest subobject of 𝑋 belonging to C. Then 𝑋 ↦→ 𝑡𝑋 yields a right
adjoint of the inclusion C → A. The right adjoint of A → A/C then exists by
Proposition 2.2.14.
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The object 𝐺 is also a generator of A/C, and the coproduct of all quotients
of 𝐺 that belong to C is a generator for C. It is straightforward to check that the
condition (AB5) holds for C and A/C. �

Corollary 2.2.17. A Serre subcategory of a Grothendieck category is localising
if and only if it is closed under coproducts. �

Let A be a Grothendieck category. We denote by SpA a representative
set of the isomorphism classes of indecomposable injective objects in A (the
spectrum of A). Note that SpA is a set, because A has a generator 𝐺 and each
object in SpA is the injective envelope of 𝐺/𝑈 for some subobject𝑈 ⊆ 𝐺.

Corollary 2.2.18. Let A be a Grothendieck category and C ⊆ A a localising
subcategory. Every injective object 𝑋 ∈ A admits a canonical decomposition
𝑋 = 𝑋 ′ ⊕ 𝑋 ′′ satisfying 𝑡𝑋 ′ = 𝑡𝑋 and 𝑋 ′′ ∈ C⊥. In particular, there is a
canonical bijection

SpC � SpA/C ∼−−→ SpA.

Proof Let 𝑋 ∈ A be injective. Then the injective envelope 𝑋 ′ = 𝐸 (𝑡𝑋) is
a direct summand of 𝑋 and 𝑋 ′′ = 𝑋/𝑋 ′ belongs to C⊥. The map SpC �
SpA/C → SpA sends 𝑋 ∈ SpC to 𝐸 (𝑋) and 𝑋 ∈ SpA/C to its image under
A/C ∼−→ C⊥ ↩→ A. �

Example 2.2.19. (1) Let A be a length category and denote by 𝑆(A) a repre-
sentative set of the isomorphism classes of simple objects. Then the maps

A ⊇ C ↦−→ C ∩ 𝑆(A) and 𝑆(A) ⊇ S ↦−→ Filt(S) ⊆ A

give mutually inverse and inclusion preserving bijections between the Serre
subcategories of A and the subsets of 𝑆(A).

(2) Let Λ be a semiprimary ring. Thus the Jacobson radical 𝐽 (Λ) is nilpotent
and Λ/𝐽 (Λ) is semisimple. Denote by 𝑆(Λ) a representative set of the isomor-
phism classes of simple Λ-modules. Every Λ-module has a finite filtration with
semisimple factors. It follows that the map

ModΛ ⊇ C ↦−→ C ∩ 𝑆(Λ)

gives an inclusion preserving bijection between the localising subcategories of
ModΛ and the subsets of 𝑆(Λ).

(3) Let A be a Grothendieck category that is locally noetherian. This means
that every object is the directed union of its noetherian subobjects. Let noethA
denote the full subcategory of noetherian objects in A. Then the map

A ⊇ C ↦−→ C ∩ noethA
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gives an inclusion preserving bijection between the localising subcategories of
A and the Serre subcategories of noethA.

Categories with Enough Projectives or Injectives
Recall that an abelian category A has enough projective objects if and only
if the inclusion C := ProjA ↩→ A induces an equivalence modC ∼−→ A; see
Proposition 2.1.15. In this case the localisation theory for A is determined by
certain subcategories of C.

Let C be a category and X ⊆ C a full subcategory. Given an object 𝐶 ∈ C,
a morphism 𝑋 → 𝐶 with 𝑋 ∈ X is called a right X-approximation of 𝐶 if
the induced map HomC (𝑋

′, 𝑋) → HomC (𝑋
′, 𝐶) is surjective for every object

𝑋 ′ ∈ X. The subcategory X is contravariantly finite if every object 𝐶 ∈ C

admits a right X-approximation.
Let C be an additive category. We denote by ModC the category of additive

functors Cop → Ab. An additive functor 𝑓 : C → D induces an adjoint pair
( 𝑓!, 𝑓

∗)

C modC ModC

D modD ModD

𝑓 𝑓! 𝑓! 𝑓 ∗

where 𝑓 ∗ is given by𝑌 ↦→ 𝑌 ◦ 𝑓 and 𝑓! is given by 𝑋 ↦→ 𝑓! (𝑋) via presentations

HomC (−, 𝐶1) −→ HomC (−, 𝐶0) −→ 𝑋 −→ 0

and

HomD (−, 𝑓 (𝐶1)) −→ HomD (−, 𝑓 (𝐶0)) −→ 𝑓! (𝑋) −→ 0.

The following proposition describes the localisation of an abelian category
with enough projective objects.

Proposition 2.2.20. Let C be an additive category such that modC is abelian.
If D ⊆ C is a contravariantly finite subcategory, then the sequence of additive
functors

D C C/D
𝑖 𝑝

induces a diagram of functors between abelian categories

mod(C/D) modC modD
𝑝∗

𝑝!

𝑖∗

𝑖!
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which is a colocalisation sequence. The functors 𝑖∗ and 𝑝∗ are exact and induce
equivalences

mod(C/D) ∼−−→ Ker 𝑖∗ and (modC)/(Ker 𝑖∗) ∼−−→ modD.

Proof For any additive functor 𝑓 the assignment 𝐹 ↦→ 𝑓 ∗(𝐹) is exact, but
we need to show that it maps finitely presented functors to finitely presented
functors when 𝑓 is one of 𝑖 or 𝑝. It suffices to show this when 𝐹 is representable.
In the first case, let 𝐹 = HomC (−, 𝐶) and choose a presentation𝐷1 → 𝐷0 → 𝐶

with 𝐷𝑖 ∈ D, using that D is contravariantly finite and that C has weak kernels.
Thus 𝐷0 → 𝐶 is a right D-approximation of 𝐶, and 𝐷1 → 𝐷0 is given by a
right D-approximation of a weak kernel of 𝐷0 → 𝐶. This yields a presentation

HomD (−, 𝐷1) −→ HomD (−, 𝐷0) −→ HomC(−, 𝐶) |D −→ 0

in modD. Now let 𝐹 = HomC/D (−, 𝐶). This yields in modC a presentation

HomC (−, 𝐷0) −→ HomC(−, 𝐶) −→ HomC/D (−, 𝐶) −→ 0.

The equivalence mod(C/D) ∼−→ Ker 𝑖∗ is clear, since additive functors C →
Ab vanishing on D identify with additive functors C/D → Ab. The second
equivalence follows from the fact that 𝑖∗𝑖! � id; see Proposition 2.2.11. �

Example 2.2.21. Let C be an exact category and (T,F) a torsion pair for C.
Then the subcategory T ⊆ C is contravariantly finite. If the torsion pair is split,
so C = T ∨ F, then we have an equivalence F ∼−→ C/T.

We have the following converse of Proposition 2.2.20, showing that any
colocalisation sequence of abelian categories

A′ A A′′

is of the above form, provided that every object in A admits a projective cover.

Proposition 2.2.22. LetA be an abelian category with projective covers and let
A′ ⊆ A be a Serre subcategory. Suppose that the canonical functors A′ → A

and A → A′′ := A/A′ admit left adjoints. Set C := ProjA, C′ := ProjA′, and
C′′ := ProjA′′. Then the left adjoints restrict to functors

C′′ C C′
𝑖 𝑝

which induce the following commutative diagram.

A′ A A′′

modC′ modC modC′′
� � �

𝑝∗ 𝑖∗
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Proof We have an equivalence A ∼−→ modC by Proposition 2.1.15 since A

has enough projectives. Now apply the dual of Proposition 2.2.14 which shows
that A′ and A′′ have enough projectives. �

Example 2.2.23. Let 𝐴 be a ring and 𝑒 = 𝑒2 an idempotent in 𝐴. Multiplication
of 𝐴-modules by 𝑒 identifies with Hom𝐴(𝑒𝐴,−) and yields an exact functor
Mod 𝐴→ Mod 𝑒𝐴𝑒 which has a fully faithful left adjoint given by − ⊗𝑒𝐴𝑒 𝑒𝐴.

Mod 𝐴 Mod 𝑒𝐴𝑒
Hom𝐴 (𝑒𝐴,−)

−⊗𝑒𝐴𝑒𝑒𝐴

The kernel of Hom𝐴(𝑒𝐴,−) identifies with Mod 𝐴/𝐴𝑒𝐴. On the other hand,
multiplication by 𝑒 identifies with − ⊗𝐴 𝐴𝑒 and the corresponding functor
Mod 𝐴→ Mod 𝑒𝐴𝑒 has a fully faithful right adjoint given by Hom𝑒𝐴𝑒 (𝐴𝑒,−).

Mod 𝐴 Mod 𝑒𝐴𝑒
−⊗𝐴𝐴𝑒

Hom𝑒𝐴𝑒 (𝐴𝑒,−)

Multiplication by an idempotent can be viewed as evaluation or restriction.
Thus the following example generalises the previous one.

Example 2.2.24. Let C be an essentially small additive category and fix an
object 𝑋 ∈ C. Set D = add 𝑋 and let 𝑖 : D → C denote the inclusion. Then the
evaluation 𝐹 ↦→ 𝐹 (𝑋) induces a functor

𝑖∗ : ModC −→ ModD = Mod End(𝑋)

which gives rise to the following recollement

ModC/D ModC Mod End(𝑋)𝑝∗

𝑝∗

𝑝!

𝑖∗

𝑖∗

𝑖!

where 𝑝 : C→ C/D denotes the canonical functor.

Remark 2.2.25. There are dual versions of Proposition 2.2.20 and Proposi-
tion 2.2.22 for abelian categories with enough injective objects. For instance,
let A be an abelian category with enough injective objects and let A′ ⊆ A be a
Serre subcategory that is localising. Set C = InjA and C′′ = Inj(A/A′). Then
A ∼−→ (modCop)op and C/C′′ ∼−→ InjA′.
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Pullbacks of Abelian Categories
Each diagram of abelian categories and exact functors

A2

A1 A

𝐹2

𝐹1

can be completed to a commutative diagram

A1 ×A A2 A2

A1 A

𝑃2

𝑃1 𝐹2

𝐹1

as follows. The objects of A1 ×A A2 are given by triples (𝑋1, 𝑋2, 𝜇), where
𝑋𝑖 ∈ A𝑖 are objects, and 𝜇 : 𝐹1 (𝑋1)

∼−→ 𝐹2 (𝑋2) is an isomorphism. A morphism
from (𝑋1, 𝑋2, 𝜇) to (𝑌1, 𝑌2, 𝜈) is a pair (𝜙1, 𝜙2) of morphisms 𝜙𝑖 : 𝑋𝑖 → 𝑌𝑖
such that 𝜈𝐹1 (𝜙1) = 𝐹2 (𝜙2)𝜇. The composition of morphisms is given by the
formula

(𝜓1, 𝜓2) ◦ (𝜙1, 𝜙2) = (𝜓1 ◦ 𝜙1, 𝜓2 ◦ 𝜙2).

It is straightforward to check that A1 ×A A2 is an abelian category and that the
canonical functors 𝑃𝑖 : A1 ×AA2 → A𝑖 given by 𝑃𝑖 (𝑋1, 𝑋2, 𝜇) = 𝑋𝑖 are exact.

Proposition 2.2.26. Let C be a category and 𝐸𝑖 : C → A𝑖 functors such
that 𝐹1𝐸1 � 𝐹2𝐸2. Then there exists, up to isomorphism, a unique functor
𝐸 : C→ A1 ×A A2 such that 𝑃𝑖𝐸 � 𝐸𝑖 for 𝑖 = 1, 2.

Proof Let 𝜏 : 𝐹1𝐸1
∼−→ 𝐹2𝐸2 be a natural isomorphism. Then one defines

𝐸 : C→ A1 ×A A2 by 𝐸 (𝑋) = (𝐸1 (𝑋), 𝐸2 (𝑋), 𝜏𝑋). �

The proposition justifies the notation A1 ×A A2 and we call the category a
pullback (strictly speaking, a 2-pullback); it is unique, up to equivalence.

The following lemma describes a property of pullbacks of abelian categories
which is the analogue of a property of a pullback in an abelian category.

Lemma 2.2.27. Let 𝐹𝑖 : A𝑖 → A be exact functors and suppose that 𝐹1
induces an equivalence A1/Ker 𝐹1

∼−→ A. Then 𝑃1 restricts to an equivalence
Ker 𝑃2

∼−→ Ker 𝐹1 and 𝑃2 induces an equivalence (A1 ×A A2)/Ker 𝑃2
∼−→ A2.
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42 Abelian Categories

The following diagram illustrates the assertion of the lemma.

Ker 𝑃2 A1 ×A A2 A2

Ker 𝐹1 A1 A

�

𝑃2

𝑃1 𝐹2

𝐹1

Proof We provide for both functors a quasi-inverse. For Ker 𝑃2 → Ker 𝐹1
the quasi-inverse Ker 𝐹1 → Ker 𝑃2 is given by 𝑋 ↦→ (𝑋, 0, 0). Now choose a
quasi-inverse 𝐺1 : A → A1/Ker 𝐹1 for �̄�1 : A1/Ker 𝐹1

∼−→ A together with an
isomorphism 𝜏 : �̄�1𝐺1

∼−→ id. Then the quasi-inverseA2 → (A1×AA2)/Ker 𝑃2
is given by 𝑋 ↦→ (𝐺1𝐹2 (𝑋), 𝑋, 𝜏𝐹2 (𝑋) ). �

2.3 Module Categories and Their Localisations

For several classes of abelian categories we describe specific Serre subcate-
gories and the corresponding localisations. We begin with categories of functors
and the interplay between effaceable and left exact functors. Then we consider
module categories and see the connection with the localisation of a ring.

Effaceable and Left Exact Functors
Let A be an abelian category. Fix 𝐹 ∈ modA given by a presentation

0 −→ HomA(−, 𝑋2) −→ HomA(−, 𝑋1) −→ HomA(−, 𝑋0) −→ 𝐹 −→ 0
(2.3.1)

coming from an exact sequence 0 → 𝑋2 → 𝑋1 → 𝑋0 in A.

Lemma 2.3.2. For 𝐺 ∈ modA we have Ext𝑖 (𝐹, 𝐺) � 𝐻𝑖𝐺 (𝑋) where 𝐺 (𝑋)
is the complex

· · · −→ 0 −→ 𝐺 (𝑋0) −→ 𝐺 (𝑋1) −→ 𝐺 (𝑋2) −→ 0 −→ · · ·

Proof This is clear since (2.3.1) provides a projective resolution of 𝐹. �

The functor 𝐹 is called effaceable if 𝑋1 → 𝑋0 is an epimorphism. This defi-
nition does not depend on the presentation of 𝐹, since an equivalent condition
is that Hom(𝐹, 𝐺) = 0 for each representable functor 𝐺 = HomA(−, 𝑋). Let
eff A denote the full subcategory of effaceable functors.

Proposition 2.3.3. LetA be an abelian category. The functor modA→ A that
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sends Coker HomA(−, 𝜙) (given by a morphism 𝜙 in A) to Coker 𝜙 provides an
exact left adjoint of the Yoneda functorA→ modA and induces an equivalence

(modA)/(eff A) ∼−−→ A.

Proof For the adjointness, see Example 1.1.4. The exactness of the left ad-
joint follows from Lemma 2.1.8. Now the equivalence is a consequence of
Proposition 2.2.11. �

Remark 2.3.4. (1) The inclusion eff A ↩→ modA admits a right adjoint that
sends 𝐹 with presentation (2.3.1) to 𝐹 ′ with presentation

0 −→ HomA(−, 𝑋2) −→ HomA(−, 𝑋1) −→ HomA(−, 𝑋) −→ 𝐹 ′ −→ 0

where 𝑋 = Coker(𝑋2 → 𝑋1).
(2) There is an equivalence (eff A)op ∼−→ eff (Aop) given by

𝐹 ↦−→ 𝐹∨ with 𝐹∨(𝑋) = Ext2 (𝐹,HomA(−, 𝑋)).

When 𝐹 is given by (2.3.1), then 𝐹∨ has a presentation

0 −→ HomA(𝑋0,−) −→ HomA(𝑋1,−) −→ HomA(𝑋2,−) −→ 𝐹∨ −→ 0

and we have 𝐹∨∨ � 𝐹.
We give an alternative description of the equivalence in Proposition 2.3.3

when A = modΛ is the module category of a ring. Let modΛ denote the
projectively stable category which is obtained from modΛ by setting for Λ-
modules 𝑋 and 𝑌

HomΛ (𝑋,𝑌 ) = HomΛ (𝑋,𝑌 )/{𝜙 | 𝜙 factors through a projective module}.

Proposition 2.3.5. Let Λ be a right coherent ring so that modΛ is abelian.
Then the sequence of additive functors projΛ � modΛ � modΛ induces a
sequence of exact functors

mod(modΛ) mod(modΛ) mod(projΛ) = modΛ𝜋

and an equivalence

mod(modΛ) ∼−−→ Ker 𝜋 = eff (modΛ).

Proof The subcategory projΛ ⊆ modΛ is contravariantly finite. Now apply
Proposition 2.2.20. �

Now let A be an exact category and let ModA denote the category of
additive functors Aop → Ab. A functor 𝐹 ∈ ModA is locally effaceable if
for each object 𝐶 in A and 𝑥 ∈ 𝐹 (𝐶) there exists an admissible epimorphism
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44 Abelian Categories

𝜙 : 𝐵 → 𝐶 such that 𝐹 (𝜙) (𝑥) = 0. We write Eff A for the full subcategory of
locally effaceable functors.

Lemma 2.3.6. When A is abelian we have eff A = Eff A ∩modA.

Proof Let 𝐹 ∈ modA be given by a presentation (2.3.1). Suppose first that
𝐹 ∈ eff A. An element 𝑥 ∈ 𝐹 (𝐶) is given by a morphism 𝐶 → 𝑋0, and
forming the pullback with 𝑋1 → 𝑋0 yields an epimorphism 𝜙 : 𝐵 → 𝐶 such
that 𝐹 (𝜙) (𝑥) = 0. Thus 𝐹 ∈ Eff A.

Now let 𝐹 ∈ Eff A. Choose 𝐶 = 𝑋0 and take for 𝑥 ∈ 𝐹 (𝐶) the element given
by id : 𝑋0 → 𝑋0. This yields an epimorphism 𝜙 : 𝐵 → 𝐶 that factors through
𝑋1 → 𝑋0. Thus the morphism 𝑋1 → 𝑋0 is an epimorphism and therefore
𝐹 ∈ eff A. �

We denote by LexA the category of additive functors 𝐹 : Aop → Ab that are
left exact, that is, each exact sequence 0 → 𝑋 → 𝑌 → 𝑍 → 0 in A induces an
exact sequence 0 → 𝐹𝑍 → 𝐹𝑌 → 𝐹𝑋 of abelian groups.

Proposition 2.3.7. Let A be an essentially small exact category.

(1) The inclusion LexA → ModA admits an exact left adjoint ModA →

LexA that induces an equivalence

(ModA)/(Eff A) ∼−−→ LexA.

(2) The category LexA is a Grothendieck category.
(3) The Yoneda functor A→ LexA that takes 𝑋 to HomA(−, 𝑋) is exact and

identifies A with a full extension closed subcategory of LexA.

Proof Using (Ex1) and (Ex2) one shows that Eff A is a Serre subcate-
gory of ModA and closed under coproducts. From (Ex3) it follows that
(Eff A)⊥ = LexA. Thus the canonical functor ModA→ ModA

Eff A
admits a fully

faithful right adjoint, which identifies ModA
Eff A

with LexA; see Lemma 2.2.10
and Proposition 2.2.16. In particular, LexA is a Grothendieck category.

Now let 𝜉 : 0 → HomA(−, 𝑋)
𝛼
−→ 𝐸

𝛽
−→ HomA(−, 𝑍) → 0 be an exact

sequence in LexA. Then Coker 𝛽 is locally effaceable, and there exists an
admissible epimorphism 𝑉 → 𝑍 inducing the following commutative diagram
with exact rows.

0 HomA(−,𝑈) HomA(−, 𝑉) HomA(−, 𝑍) 0

0 HomA(−, 𝑋) 𝐸 HomA(−, 𝑍) 0
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Apply condition (Ex3) by forming the following pushout.

0 𝑈 𝑉 𝑍 0

0 𝑋 𝑌 𝑍 0

Then the bottom row identifies with 𝜉, and therefore the image of the Yoneda
functor A→ LexA is extension closed. �

The injective objects in LexA admit the following explicit description. The
functors 𝐼𝑋 = HomZ (HomA(𝑋,−),Q/Z) (with 𝑋 ∈ A) form a set of injective
cogenerators for the abelian category ModA. Thus the direct summands of
products

∏
𝛼 𝐼𝑋𝛼 are precisely the injective objects in ModA. Moreover,

Inj(LexA) = {𝐹 ∈ Inj(ModA) | 𝐹 is exact}.

Epimorphisms of Rings
A ring homomorphism 𝜙 : 𝐴 → 𝐵 is by definition an epimorphism of rings if
for any pair of homomorphisms 𝜓, 𝜓′ : 𝐵→ 𝐶 we have that 𝜓𝜙 = 𝜓′𝜙 implies
𝜓 = 𝜓 ′. An equivalent condition is that restriction of scalars 𝜙∗ : Mod 𝐵 →

Mod 𝐴 is fully faithful [197, Proposition XI.1.2]. In fact, we have an adjoint
pair (𝜙!, 𝜙

∗) with counit 𝑋 ⊗𝐴 𝐵 → 𝑋 given by scalar multiplication for any
𝐵-module 𝑋 . Then 𝜙∗ is fully faithful if and only if the counit is an isomorphism
for all 𝑋 if and only if 𝐵 ⊗𝐴 𝐵

∼−→ 𝐵. It follows that the adjoint pair (𝜙!, 𝜙
∗)

gives rise to a localisation functor 𝜙∗ ◦ 𝜙! : Mod 𝐴 → Mod 𝐴 when 𝜙 is an
epimorphism, cf. Proposition 1.1.5.

Proposition 2.3.8. Let 𝐿 : Mod 𝐴 → Mod 𝐴 be a localisation functor. Then
the following are equivalent.

(1) The functor 𝐿 is, up to an equivalence, of the form 𝜙∗ ◦ 𝜙! for some ring
epimorphism 𝜙 : 𝐴→ 𝐵.

(2) The subcategory Im 𝐿 is closed under all coproducts and cokernels.

Proof (1) ⇒ (2): An epimorphism 𝜙 : 𝐴→ 𝐵 yields an adjoint pair (𝜙!, 𝜙
∗),

and we have Im 𝜙∗ = Im 𝐿 for 𝐿 = 𝜙∗ ◦ 𝜙!. Clearly, 𝜙∗ is right exact and
preserves coproducts.

(2) ⇒ (1): Recall from Proposition 1.1.5 that a localisation functor 𝐿 can be
written as the composite 𝐿 = 𝐺◦𝐹 given by an adjoint pair (𝐹, 𝐺) such that 𝐹 is
a quotient functor and 𝐺 is fully faithful. Let B = {𝑋 ∈ Mod 𝐴 | 𝑋 ∼−→ 𝐿 (𝑋)}

be the localised category. It is of the form 𝑆⊥ for a class 𝑆 of morphisms
in Mod 𝐴, so closed under all limits in Mod 𝐴; see Proposition 1.1.3. Also,
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B = Im 𝐿 is closed under colimits and it follows thatB is abelian. The inclusion
𝐺 : B → Mod 𝐴 is exact, and therefore 𝐹 takes projectives to projectives. It
follows that 𝐹𝐴 is a projective generator of B. Also, HomB (𝐹𝐴,−) preserves
coproducts since 𝐺 preserves coproducts. Set 𝐵 = EndB (𝐹𝐴). It follows that
HomB (𝐹𝐴,−) : B → Mod 𝐵 is an equivalence. Let 𝜙 : 𝐴 → 𝐵 denote the
homomorphism that is induced by 𝐹. Then the composite

Mod 𝐴 B Mod 𝐵𝐹 Hom(𝐹𝐴,−)

is isomorphic to 𝜙! = − ⊗𝐵 𝐵, and therefore 𝐿 � 𝜙∗ ◦ 𝜙!. �

Examples of ring epimorphisms arise from localising a ring by universally
inverting a set of fixed elements.

Universal Localisation
Let 𝐴 be a ring and Σ a set of morphisms between finitely generated projective
𝐴-modules. The universal localisation of 𝐴 with respect to Σ is a ring 𝐴Σ
together with a ring homomorphism 𝑞 : 𝐴→ 𝐴Σ satisfying the following:

(UL1) For every 𝜎 ∈ Σ, the morphism 𝜎 ⊗𝐴 𝐴Σ is invertible.
(UL2) For every ring homomorphism 𝑓 : 𝐴→ 𝐵 such that 𝜎⊗𝐴𝐵 is invertible

for all 𝜎 ∈ Σ, there exists a unique ring homomorphisms 𝑓 : 𝐴Σ → 𝐵

such that 𝑓 = 𝑓 𝑞.

The universal localisation solves a universal problem and is therefore unique.
In particular, a universal localisation is an epimorphism of rings.

Any element 𝑥 ∈ 𝐴 can be viewed as a morphism 𝜆𝑥 : 𝐴 → 𝐴 (left mul-
tiplication by 𝑥). Thus the universal localisation generalises the localisation
of 𝐴 with respect to a subset 𝑆 ⊆ 𝐴, because we have 𝐴[𝑆−1] = 𝐴Σ for
Σ = {𝜆𝑥 | 𝑥 ∈ 𝑆}.

We sketch the construction of 𝐴Σ. Set C = proj 𝐴 so that Σ ⊆ MorC. We may
assume that Σ contains the identity morphism of each object and that 𝜎, 𝜏 ∈ Σ
implies 𝜎 ⊕ 𝜏 ∈ Σ. Then C[Σ−1] is an additive category and the canonical
functor C→ C[Σ−1] is additive, by Lemma 2.2.1. Set 𝐴Σ = EndC[Σ−1 ] (𝐴). The
functor HomC[Σ−1 ] (𝐴,−) makes the following diagram commutative

C proj 𝐴Σ

C[Σ−1]

−⊗𝐴𝐴Σ

can Hom
C[Σ−1 ] (𝐴,−)

and identifies the idempotent completion of C[Σ−1] with proj 𝐴Σ.
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There is an alternative construction of 𝐴Σ. Set A = Mod 𝐴 and consider the
full subcategory A′ ⊆ A of 𝐴-modules 𝑋 such that Hom𝐴(𝜎, 𝑋) is invertible
for all 𝜎 ∈ Σ. It is easily checked that A′ is closed under taking (co)kernels,
(co)products, and extensions. Moreover, the inclusion A′ → A admits a left
adjoint 𝐹 : A→ A′ (for instance by [84, Satz 8.5] or [1, Theorem 1.39]) which
takes 𝐴 to a projective generator of A′. Set 𝐴Σ = End𝐴(𝐹𝐴). Then we obtain
an equivalence

Hom𝐴(𝐹𝐴,−) : A′ ∼−−→ Mod 𝐴Σ .

The inverse is given by the canonical functor Mod 𝐴Σ → Mod 𝐴, via restriction
of scalars along the morphism 𝐴 → 𝐴Σ induced by 𝐹. Now set Σ̄ = {𝜎 ∈

MorA | 𝜎 ⊗𝐴 𝐴Σ is invertible}. Then it follows from Proposition 1.1.3 that the
following diagram commutes

A Mod 𝐴Σ

A[Σ̄−1]

𝑇=−⊗𝐴𝐴Σ

can Hom
A[Σ̄−1 ] (𝐴,−)

which equals the ‘completion’ of the above diagram for proj 𝐴. Note that
𝑇 = HomA[Σ̄−1 ] (𝐴,−) is an equivalence.

In general, the universal localisation 𝐴Σ is not a flat 𝐴-module.

Example 2.3.9. Let Σ be a set of morphisms between finitely generated pro-
jective 𝐴-modules such that proj.dim Coker𝜎 ≤ 1 for all 𝜎 ∈ Σ. Then Mod 𝐴Σ
identifies with C⊥ where C = {Ker𝜎,Coker𝜎 | 𝜎 ∈ Σ} and

C⊥ = {𝑋 ∈ Mod 𝐴 | Hom𝐴(𝐶, 𝑋) = 0 = Ext1𝐴(𝐶, 𝑋) for all 𝐶 ∈ C}.

2.4 Commutative Noetherian Rings

We consider modules over commutative rings. There is a notion of support for
modules which yields a classification of Serre subcategories for the category of
noetherian modules. This extends to a classification of localising subcategories
for the category of all modules provided the ring is noetherian. Also, we discuss
injective and artinian modules.

Let 𝐴 be a commutative ring. For the main results of this section we need to
assume that 𝐴 is noetherian.
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Support of Modules
Let 𝐴 be a commutative ring. The spectrum Spec 𝐴 of 𝐴 is the set of prime
ideals 𝔭 ⊆ 𝐴. A subset of Spec 𝐴 is Zariski closed if it is of the form

V(𝔞) = {𝔭 ∈ Spec 𝐴 | 𝔞 ⊆ 𝔭}

for some ideal 𝔞 of 𝐴. A subset V of Spec 𝐴 is specialisation closed if for any
pair 𝔭 ⊆ 𝔮 of prime ideals, 𝔭 ∈ V implies 𝔮 ∈ V. For 𝔭 ∈ Spec 𝐴 set 𝑆 = 𝐴 \ 𝔭
and denote by 𝐴𝔭 = 𝐴[𝑆−1] the localisation. Note that 𝑋 ↦→ 𝑋𝔭 := 𝑋 ⊗𝐴 𝐴𝔭
yields an exact functor Mod 𝐴 → Mod 𝐴𝔭. The support of an 𝐴-module 𝑋 is
the subset

Supp 𝑋 = {𝔭 ∈ Spec 𝐴 | 𝑋𝔭 ≠ 0}.

Observe that this is a specialisation closed subset of Spec 𝐴.

Lemma 2.4.1. We have Supp 𝐴/𝔞 = V(𝔞) for each ideal 𝔞 of 𝐴.

Proof Fix 𝔭 ∈ Spec 𝐴 and let 𝑆 = 𝐴 \ 𝔭. Recall that for any 𝐴-module 𝑋 ,
an element 𝑥/𝑠 in 𝑆−1𝑋 = 𝑋𝔭 is zero if and only if there exists 𝑡 ∈ 𝑆 such
that 𝑡𝑥 = 0. Thus we have (𝐴/𝔞)𝔭 = 0 if and only if there exists 𝑡 ∈ 𝑆 with
𝑡 (1 + 𝔞) = 𝑡 + 𝔞 = 0 if and only if 𝔞 � 𝔭. �

Lemma 2.4.2. Let 0 → 𝑋 ′ → 𝑋 → 𝑋 ′′ → 0 be an exact sequence of
𝐴-modules. Then Supp 𝑋 = Supp 𝑋 ′ ∪ Supp 𝑋 ′′.

Proof The sequence 0 → 𝑋 ′𝔭 → 𝑋𝔭 → 𝑋 ′′𝔭 → 0 is exact for each 𝔭 in
Spec 𝐴. �

Lemma 2.4.3. Let 𝑋 =
∑

𝑖 𝑋𝑖 be an 𝐴-module, written as a sum of submodules
𝑋𝑖 . Then Supp 𝑋 =

⋃
𝑖 Supp 𝑋𝑖 .

Proof The assertion is clear if the sum
∑

𝑖 𝑋𝑖 is direct, since⊕
𝑖

(𝑋𝑖)𝔭 =
( ⊕

𝑖

𝑋𝑖

)
𝔭
.

As 𝑋𝑖 ⊆ 𝑋 for all 𝑖 one gets
⋃

𝑖 Supp 𝑋𝑖 ⊆ Supp 𝑋 , from Lemma 2.4.2. On the
other hand, 𝑋 =

∑
𝑖 𝑋𝑖 is a factor of

⊕
𝑖 𝑋𝑖 , so Supp 𝑋 ⊆

⋃
𝑖 Supp 𝑋𝑖 . �

We write Ann 𝑋 for the ideal of elements in 𝐴 that annihilate 𝑋; it is the
kernel of the natural homomorphism 𝐴→ End𝐴(𝑋).

Lemma 2.4.4. We have Supp 𝑋 ⊆ V(Ann 𝑋), with equality when 𝑋 is in
mod 𝐴.
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Proof Write 𝑋 =
∑

𝑖 𝑋𝑖 as a sum of cyclic modules 𝑋𝑖 � 𝐴/𝔞𝑖 . Then

Supp 𝑋 =
⋃
𝑖

Supp 𝑋𝑖 =
⋃
𝑖

V(𝔞𝑖) ⊆ V
( ⋂

𝑖

𝔞𝑖
)
= V(Ann 𝑋),

and equality holds if the sum is finite. �

Lemma 2.4.5. Let 𝑋 ≠ 0 be an 𝐴-module. If 𝔭 is maximal in the set of ideals
which annihilate a non-zero element of 𝑋 , then 𝔭 is prime.

Proof Suppose 0 ≠ 𝑥 ∈ 𝑋 and 𝔭𝑥 = 0. Let 𝑎, 𝑏 ∈ 𝐴 with 𝑎𝑏 ∈ 𝔭 and 𝑎 ∉ 𝔭.
Then (𝔭, 𝑏) annihilates 𝑎𝑥 ≠ 0, so the maximality of 𝔭 implies 𝑏 ∈ 𝔭. Thus 𝔭
is prime. �

Lemma 2.4.6. Let 𝑋 ≠ 0 be a noetherian 𝐴-module. There exists a submodule
of 𝑋 which is isomorphic to 𝐴/𝔭 for some prime ideal 𝔭.

Proof The ring �̄� = 𝐴/(Ann 𝑋) is noetherian. Thus the set of ideals of �̄� an-
nihilating a non-zero element has a maximal element. Now apply Lemma 2.4.5.

�

Lemma 2.4.7. For each noetherian 𝐴-module 𝑋 there exists a finite filtration

0 = 𝑋0 ⊆ 𝑋1 ⊆ · · · ⊆ 𝑋𝑛 = 𝑋

such that each factor 𝑋𝑖/𝑋𝑖−1 is isomorphic to 𝐴/𝔭𝑖 for some prime ideal 𝔭𝑖 .
In that case we have Supp 𝑋 =

⋃
𝑖 V(𝔭𝑖).

Proof Repeated application of Lemma 2.4.6 yields a chain of submodules
0 = 𝑋0 ⊆ 𝑋1 ⊆ 𝑋2 ⊆ · · · of 𝑋 such that each 𝑋𝑖/𝑋𝑖−1 is isomorphic to 𝐴/𝔭𝑖 for
some 𝔭𝑖 . This chain stabilises since 𝑋 is noetherian, and therefore

⋃
𝑖 𝑋𝑖 = 𝑋 .

The last assertion follows from Lemma 2.4.2 and Lemma 2.4.1. �

For a class C ⊆ Mod 𝐴 we set

SuppC =
⋃
𝑋∈C

Supp 𝑋.

Proposition 2.4.8. Let 𝐴 be a commutative noetherian ring. Then the assign-
ment C ↦→ SuppC induces a bijection between

– the set of Serre subcategories of mod 𝐴, and
– the set of specialisation closed subsets of Spec 𝐴.

Its inverse takes V ⊆ Spec 𝐴 to {𝑋 ∈ mod 𝐴 | Supp 𝑋 ⊆ V}.
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Proof Both maps are well defined by Lemma 2.4.2 and Lemma 2.4.4. If
V ⊆ Spec 𝐴 is a specialisation closed subset, let CV denote the smallest Serre
subcategory containing {𝐴/𝔭 | 𝔭 ∈ V}. Then we have SuppCV = V, by
Lemma 2.4.1 and Lemma 2.4.2. Now let C be a Serre subcategory of mod 𝐴.
Then

SuppC = {𝔭 ∈ Spec 𝐴 | 𝐴/𝔭 ∈ C}

by Lemma 2.4.7. It follows that C = CV for each Serre subcategory C, where
V = SuppC. Thus SuppC1 = SuppC2 implies C1 = C2 for each pair C1,C2 of
Serre subcategories. �

Corollary 2.4.9. Let 𝑋 and 𝑌 be in mod 𝐴. Then Supp𝑌 ⊆ Supp 𝑋 if and only
if 𝑌 belongs to the smallest Serre subcategory containing 𝑋 .

Proof With C denoting the smallest Serre subcategory containing 𝑋 , there is
an equality SuppC = Supp 𝑋 by Lemma 2.4.2. Now apply Proposition 2.4.8.

�

Corollary 2.4.10. The assignment C ↦→ SuppC induces a bijection between

– the set of localising subcategories of Mod 𝐴, and
– the set of specialisation closed subsets of Spec 𝐴.

Proof The proof is essentially the same as that of Proposition 2.4.8 if we
observe that any 𝐴-module 𝑋 is the sum 𝑋 =

∑
𝑖 𝑋𝑖 of its finitely generated

submodules; see also Example 2.2.19. Note that 𝑋 belongs to a localising
subcategory C if and only if all 𝑋𝑖 belong to C. In addition, we use that
Supp 𝑋 =

⋃
𝑖 Supp 𝑋𝑖; see Lemma 2.4.3. �

Injective Modules
Let 𝐴 be a commutative noetherian ring. For an 𝐴-module 𝑋 we say that
𝔭 ∈ Spec 𝐴 is associated to 𝑋 if 𝐴/𝔭 is isomorphic to a submodule of 𝑋 . The
set of associated primes is denoted by Ass 𝑋 .

Lemma 2.4.11. We have Supp 𝑋 =
⋃

𝔭∈Ass 𝑋 V(𝔭) for each 𝐴-module 𝑋 .

Proof We have V(𝔭) ⊆ Supp 𝑋 when 𝐴/𝔭 ⊆ 𝑋 , by Lemma 2.4.1 and
Lemma 2.4.2. For the other direction, let 𝔭 ∈ Supp 𝑋 , and we need to show
that 𝔭 ∈ Ass 𝑋 when 𝔭 is minimal in Supp 𝑋 . We may assume that 𝑋 is finitely
generated, and as in Lemma 2.4.7 we have submodules

0 = 𝑋0 ⊆ 𝑋1 ⊆ · · · ⊆ 𝑋𝑛 = 𝑋

such that each factor 𝑋𝑖/𝑋𝑖−1 is isomorphic to 𝐴/𝔭𝑖 for some prime ideal 𝔭𝑖 .
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Choose 𝔭 = 𝔭𝑖 to be minimal in {𝔭1, . . . ,𝔭𝑛}, and let 𝑖 be minimal such that
𝔭 = 𝔭𝑖 . Pick 𝑥 ∈ 𝑋𝑖 \ 𝑋𝑖−1. Then 𝔭1 · · ·𝔭𝑖 ⊆ Ann 𝐴𝑥 ⊆ 𝔭. Also 𝔭 𝑗 � 𝔭 for 𝑗 < 𝑖
and therefore 𝔭1 · · ·𝔭𝑖−1 � 𝔭. Pick 𝑎 ∈ 𝔭1 · · ·𝔭𝑖−1 \ 𝔭. Then Ann 𝐴𝑎𝑥 = 𝔭, and
therefore 𝔭 ∈ Ass 𝑋 . �

Lemma 2.4.12. Let 𝔭 ∈ Spec 𝐴. Then Ass 𝐴/𝔭 = {𝔭}.

Proof We have 𝐴/𝔮 � 𝑋 ⊆ 𝐴/𝔭 if and only if 𝔮 equals the ideal annihilating
𝑎 + 𝔭 for some 𝑎 ∈ 𝐴. Then 𝑏 ∈ 𝔮 if and only if 𝑎𝑏 ∈ 𝔭 if and only if 𝑏 ∈ 𝔭,
since 𝔭 is prime. �

Recall that for an 𝐴-module 𝑋 , 𝐸 (𝑋) denotes an injective envelope.

Lemma 2.4.13. We have Ass 𝐸 (𝑋) = Ass 𝑋 for every 𝐴-module 𝑋 .

Proof Clearly, Ass 𝑋 ⊆ Ass 𝐸 (𝑋). If 𝐴/𝔭 � 𝑋 ′ ⊆ 𝐸 (𝑋) for some 𝔭 ∈

Spec 𝐴, then 𝑋 ′ ∩ 𝑋 ≠ 0, and we have 𝐴/𝔮 � 𝑋 ′′ ⊆ 𝑋 ′ ∩ 𝑋 for some
𝔮 ∈ Spec 𝐴, by Lemma 2.4.6. This implies 𝔭 = 𝔮, by Lemma 2.4.12. �

Corollary 2.4.14. Let 𝑋 be an 𝐴-module. Then Supp 𝑋 = Supp 𝐸 (𝑋). There-
fore localising subcategories of Mod 𝐴 are closed under injective envelopes.

Proof We have Ass 𝐸 (𝑋) = Ass 𝑋 by Lemma 2.4.13, and then Lemma 2.4.11
implies that Supp 𝐸 (𝑋) = Supp 𝑋 . If C ⊆ ModA is localising and 𝑋 ∈ C, then
𝐸 (𝑋) ∈ C by Corollary 2.4.10. �

Corollary 2.4.15. The assignments 𝔭 ↦→ 𝐸 (𝐴/𝔭) and 𝑋 ↦→ Ass 𝑋 yield
mutually inverse bijections between Spec 𝐴 and Sp(Mod 𝐴).

Proof We have Ass(𝐸 (𝐴/𝔭)) = {𝔭} by Lemma 2.4.12 and Lemma 2.4.13.
On the other hand, if 𝑋 is indecomposable injective, then Ass 𝑋 ≠ ∅ by
Lemma 2.4.6. Clearly, 𝑋 � 𝐸 (𝐴/𝔭) when 𝔭 ∈ Ass 𝑋 . �

For a subset U ⊆ Spec 𝐴 we set

InjU 𝐴 = {𝑋 ∈ Inj 𝐴 | Ass 𝑋 ⊆ U}.

Corollary 2.4.16. Let V ⊆ Spec 𝐴 be specialisation closed and set W =
Spec 𝐴 \ V. Then we have for Inj 𝐴 a split torsion pair (InjV 𝐴, InjW 𝐴).

Proof Consider the localising subcategory

C = {𝑋 ∈ Mod 𝐴 | Supp 𝑋 ⊆ V};

see Corollary 2.4.10. Because C is closed under injective envelopes by Corol-
lary 2.4.14, we have

InjV 𝐴 = C ∩ InjA and InjW 𝐴 = C⊥ ∩ InjA. �
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Localising subcategories of module categories over non-commutative rings
are usually not closed under injective envelopes.

Example 2.4.17. Let 𝑘 be a field and Λ =
[
𝑘 0
𝑘 𝑘

]
. Consider the simple Λ-

module 𝑆 = 𝑒Λ where 𝑒 =
[ 1 0

0 0
]
. The localising subcategory generated by 𝑆

consists of all direct sums of copies of 𝑆 since Ext1Λ (𝑆, 𝑆) = 0; so it does not
contain 𝐸 (𝑆) = Hom𝑘 (Λ𝑒, 𝑘).

Artinian Modules
Let 𝐴 be a commutative ring and let 𝔞 be an ideal. We set gr(𝐴)𝑛 = 𝔞𝑛/𝔞𝑛+1

for 𝑛 ∈ Z, where 𝔞𝑛 = 𝐴 for all 𝑛 ≤ 0. The associated graded ring

gr(𝐴) =
⊕
𝑛∈Z

gr(𝐴)𝑛

is Z-graded with multiplication induced by that in 𝐴.

Lemma 2.4.18. If the ideal 𝔞 is finitely generated over 𝐴, then gr(𝐴) is a
finitely generated 𝐴/𝔞-algebra.

Proof Let 𝑥1, . . . , 𝑥𝑛 generate 𝔞. Then gr(𝐴) = (𝐴/𝔞) [𝑥𝑖 , . . . 𝑥𝑛], where 𝑥𝑖 =
𝑥𝑖 + 𝔞2, and gr(𝐴) is a quotient of the polynomial ring (𝐴/𝔞) [𝑋𝑖 , . . . 𝑋𝑛] as a
graded ring. �

For an 𝐴-module 𝑋 and 𝑚 ∈ Z let 𝑋𝑚 denote the submodule of elements
annihilated by 𝔞𝑚. We set gr𝔞 (𝑋)𝑚 = 𝑋−𝑚+1/𝑋−𝑚 and obtain a graded gr(𝐴)-
module

gr𝔞 (𝑋) =
⊕
𝑛∈Z

gr𝔞 (𝑋)𝑛.

The assignment (𝑥, 𝑎) ↦→ 𝑥𝑎 yields an 𝐴/𝔞-bilinear map

gr𝔞 (𝑋)𝑚 × gr(𝐴)𝑛 −→ gr𝔞 (𝑋)𝑚+𝑛,

which induces a homomorphism

𝜇𝑋 : gr𝔞 (𝑋) −→ Hom𝐴/𝔞 (gr(𝐴), 𝑋1)

of graded gr(𝐴)-modules since gr𝔞 (𝑋)0 = 𝑋1.
For each submodule𝑈 ⊆ 𝑋 let𝔞𝑈 denote the graded ideal of gr(𝐴) consisting

in degree 𝑛 of elements 𝑎 ∈ gr(𝐴)𝑛 such that 𝑥𝑎 = 0 for all 𝑥 ∈ ((𝑈 ∩ 𝑋𝑛+1) +

𝑋𝑛)/𝑋𝑛.

Lemma 2.4.19. Let 𝐴 be a commutative noetherian ring and let𝔪 be a maximal
ideal. Then the injective envelope 𝐸 (𝐴/𝔪) is artinian over 𝐴.
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Proof Set 𝑋 = 𝐸 (𝐴/𝔪). We consider gr(𝐴) for 𝔞 = 𝔪 and gr𝔪 (𝑋). First
observe that 𝑋 =

⋃
𝑛≥0 𝑋𝑛. To see this, let 𝑈 ⊆ 𝑋 be a finitely generated

submodule. Then we have Supp𝑈 ⊆ Supp 𝑋 = {𝔪} by Corollary 2.4.14. Thus
𝑈 admits a finite filtration with factors isomorphic to 𝐴/𝔪 by Lemma 2.4.7.
This means𝑈 is annihilated by 𝔪𝑛 for some 𝑛 ≥ 0, so𝑈 ⊆ 𝑋𝑛.

Our first observation implies that 𝜇𝑋 is an isomorphism. For submodules
𝑈,𝑉 of 𝑋 , it follows that 𝔪𝑈 = 𝔪𝑉 implies

(𝑈 ∩ 𝑋𝑛+1) + 𝑋𝑛 = (𝑉 ∩ 𝑋𝑛+1) + 𝑋𝑛

for all 𝑛. Thus 𝑈 ∩ 𝑋𝑛+1 = 𝑉 ∩ 𝑋𝑛+1 for all 𝑛 by induction, and therefore
𝑈 = 𝑉 . Clearly, 𝑈 ⊆ 𝑉 implies 𝔪𝑉 ⊆ 𝔪𝑈 . Thus 𝑋 is artinian, because gr(𝐴)
is noetherian by Lemma 2.4.18. �

Proposition 2.4.20. For a module 𝑋 over a commutative noetherian ring the
following are equivalent.

(1) The module 𝑋 is artinian.
(2) The module 𝑋 is a union of finite length submodules and the socle of 𝑋 has

finite length.
(3) The socle of 𝑋 has finite length and all prime ideals in Supp 𝑋 are maximal.

Proof (1) ⇒ (2): The module 𝑋 is a union of its finitely generated submod-
ules, which are both artinian and noetherian, and therefore of finite length. A
semisimple artinian module has finite length. Thus soc 𝑋 has finite length.

(2) ⇒ (3): This follows from Lemma 2.4.3, since the support of a finite
length module consists of prime ideals which are maximal.

(3) ⇒ (1): We have Supp 𝐸 (𝑋) = Supp 𝑋 by Corollary 2.4.14. Then
Lemma 2.4.19 implies that 𝐸 (𝑋) is artinian. Thus 𝑋 is artinian. �

Graded Rings and Modules
The preceding results about modules over commutative noetherian rings gen-
eralise to graded modules over graded rings. We sketch the appropriate setting.

Fix an abelian grading group 𝐺 and let 𝐴 be a 𝐺-graded ring. Thus 𝐴 is a
ring together with a decomposition of the underlying abelian group

𝐴 =
⊕
𝑔∈𝐺

𝐴𝑔

such that the multiplication satisfies 𝐴𝑔𝐴ℎ ⊆ 𝐴𝑔+ℎ for all 𝑔, ℎ ∈ 𝐺. An element
in 𝐴 is called homogeneous of degree 𝑔 if it belongs to 𝐴𝑔 for some 𝑔 ∈ 𝐺.
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We consider graded 𝐴-modules and homogeneous ideals of 𝐴. An 𝐴-module
𝑀 is 𝐺-graded if the underlying abelian group admits a decomposition

𝑀 =
⊕
𝑔∈𝐺

𝑀𝑔

such that the multiplication satisfies 𝑀𝑔𝐴ℎ ⊆ 𝑀𝑔+ℎ for all 𝑔, ℎ ∈ 𝐺. We write
GrMod 𝐴 for the category of graded 𝐴-modules (with degree zero morphisms)
and grmod 𝐴 for the full subcategory of finitely presented modules. Later on
we will consider the full subcategory grproj 𝐴 of finitely generated projective
modules and the projectively stable category grmod 𝐴.

Now suppose that 𝐺 is endowed with a symmetric bilinear form

(−,−) : 𝐺 × 𝐺 −→ Z/2.

A typical example is 𝐺 = Z with Z × Z→ Z/2 the multiplication map modulo
two. We say that 𝐴 is 𝐺-graded commutative when 𝑥𝑦 = (−1) (𝑔,ℎ) 𝑦𝑥 for all
homogeneous 𝑥 ∈ 𝐴𝑔, 𝑦 ∈ 𝐴ℎ. A homogeneous element in 𝐴 is even if it
belongs to 𝐴𝑔 for some 𝑔 ∈ 𝐺 satisfying (𝑔, ℎ) = 0 for all ℎ ∈ 𝐺.

Let us fix such a 𝐺-graded commutative ring 𝐴. Note that all homogeneous
ideals are automatically two-sided. The graded localisation of 𝐴 at a multi-
plicative set consisting of even (and therefore central) homogeneous elements
is the obvious one and enjoys the usual properties; in particular, it is again a
𝐺-graded commutative ring. Similarly, one localises any graded 𝐴-module at
such a multiplicative set. For instance, when𝔭 is a homogeneous prime ideal of
𝐴 and 𝑀 is a graded 𝐴-module, then 𝑀𝔭 is the localisation of 𝑀 with respect
to the multiplicative set of even homogeneous elements in 𝐴 \ 𝔭.

Suppose now that 𝐴 is noetherian as a 𝐺-graded ring, that is, the ascending
chain condition holds for homogeneous ideals of 𝐴. Then all results of this
section carry over to the category of graded 𝐴-modules. However, it is necessary
to twist. For any graded 𝐴-module 𝑀 and 𝑔 ∈ 𝐺, the twisted module 𝑀 (𝑔)
is the 𝐴-module 𝑀 with the new grading defined by 𝑀 (𝑔)ℎ = 𝑀𝑔+ℎ for each
ℎ ∈ 𝐺. For instance, in Lemma 2.4.6 one shows that each graded non-zero
module has a submodule of the form (𝐴/𝔭) (𝑔) for some homogeneous prime
ideal 𝔭 and some 𝑔 ∈ 𝐺. This affects all subsequent statements. The following
is then the analogue of Proposition 2.4.8.

Proposition 2.4.21. The assignment C ↦→ SuppC induces a bijection between

– the set of Serre subcategories of grmod 𝐴 that are closed under twists, and
– the set of specialisation closed sets of homogeneous prime ideals of 𝐴. �
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Example 2.4.22. Let 𝑘 be a field and X = P1
𝑘 the projective line with homoge-

neous coordinate ring 𝑆 = 𝑘 [𝑥0, 𝑥1]. Then a theorem of Serre [188] provides
the following localisation sequence

GrMod0 𝑆 GrMod 𝑆 QcohX
Γ∗ (X,−)

where GrMod0 𝑆 denotes the category of torsion modules. Note that GrMod0 𝑆

is the localising subcategory corresponding to the category grmod0 𝑆 of finite
length modules. These are precisely the modules with support only containing
the unique maximal homogeneous ideal of positive degree elements. The fact
that the subcategory GrMod0 𝑆 is not closed under products leads to an example
showing that products in QcohX need not be exact.

For each 𝑛 ≥ 0, we have a canonical map

𝜋𝑛 : O (−𝑛) ⊗𝑘 HomX (O (−𝑛),O) −→ O

which is an epimorphism in QcohX. We claim that the product

𝜋 :
∏
𝑛≥0

(
O (−𝑛) ⊗𝑘 HomX (O (−𝑛),O)

)
−→

∏
𝑛≥0

O

is not an epimorphism. Taking graded global sections gives for each 𝑛 ≥ 0 the
multiplication map

Γ∗(X, 𝜋𝑛) : 𝑆(−𝑛) ⊗𝑘 𝑆𝑛 −→ 𝑆

which is a morphism of graded 𝑆-modules with cokernel of finite length.
However, the cokernel of

Γ∗(X, 𝜋) =
∏
𝑛≥0

Γ∗(X, 𝜋𝑛)

is not a torsion module. The left adjoint of Γ∗(X,−) is exact and takes Γ∗(X, 𝜋)
to 𝜋. It follows that the cokernel of 𝜋 is non-zero, because the left adjoint of
Γ∗(X,−) annihilates exactly those 𝑆-modules which are torsion.

2.5 Grothendieck Categories

We study the basic properties of Grothendieck categories. It is shown that an
abelian category is a Grothendieck category if and only if it is the localisation
of a module category. From this we deduce that objects in a Grothendieck
category admit injective envelopes. Also, it follows that any Grothendieck
category is a locally presentable category. This means that every object is an
𝛼-filtered colimit of 𝛼-presentable objects for some regular cardinal 𝛼. Finally,
we characterise the coherent functors for any locally presentable category.
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The Embedding Theorem
Let A be an abelian category and suppose that A admits arbitrary coproducts.
We fix an object 𝐶 ∈ A and set Λ = End(𝐶). Then the functor

𝐻 : A −→ ModΛ, 𝑋 ↦→ Hom(𝐶, 𝑋)

admits a left adjoint 𝑇 : ModΛ → A. We obtain this by first extending the
equivalence addΛ → add𝐶 to a functor 𝑇 : AddΛ → Add𝐶 preserving
coproducts. Then extend 𝑇 to a right exact functor ModΛ→ A.

Recall that 𝐶 is a generator for A if for every object 𝑋 ∈ A the canonical
morphism

∐
𝜙∈Hom(𝐶,𝑋) 𝐶 → 𝑋 is an epimorphism.

Lemma 2.5.1. Suppose that filtered colimits in A are exact and that 𝐶 is a
generator. If 𝜙 : 𝑋 → 𝐻 (𝑌 ) is a monomorphism in ModΛ, then the adjoint
morphism 𝜓 : 𝑇 (𝑋) → 𝑌 is a monomorphism.

Proof Suppose 𝐾 = Ker𝜓 ≠ 0. Choose an epimorphism Λ(𝐼) → 𝑋 which
yields an epimorphism 𝜋 : 𝑇 (Λ(𝐼) ) → 𝑇 (𝑋). Write Λ(𝐼) =

⋃
𝐽⊆𝐼 Λ

𝐽 as filtered
colimit, where 𝐽 ⊆ 𝐼 runs through all finite subsets. This implies 𝑇 (Λ(𝐼) ) =⋃

𝐽⊆𝐼 𝑇 (Λ
𝐽 ) and therefore⋃

𝐽⊆𝐼

(
𝜋−1 (𝐾) ∩ 𝑇 (Λ𝐽 )

)
= 𝜋−1 (𝐾) ≠ 0.

Thus we obtain a non-zero morphism

𝜏 : 𝑇 (Λ) → 𝜋−1 (𝐾) ∩ 𝑇 (Λ𝐽 ) ↩→ 𝑇 (Λ𝐽 ) → 𝑇 (𝑋)

such that 𝜓𝜏 = 0, since 𝐶 = 𝑇 (Λ) is a generator. Note that 𝜏 = 𝑇 (𝜎) for some
𝜎 : Λ→ 𝑋 which yields the following commutative diagram.

Λ 𝑋

𝐻𝑇 (Λ) 𝐻𝑇 (𝑋) 𝐻 (𝑌 )

𝜎

𝜙

𝐻 (𝜏) 𝐻 (𝜓)

We have 𝜙𝜎 = 0 and this implies 𝜎 = 0 since 𝜙 is a monomorphism. This is a
contradiction since 𝑇 (𝜎) ≠ 0, and therefore Ker𝜓 = 0. �

The following is known as the Gabriel–Popescu theorem.

Theorem 2.5.2 (Gabriel–Popescu). Let A be a category such that filtered
colimits are exact. Given 𝐶, 𝐻, and 𝑇 as above, the following are equivalent.

(1) 𝐶 is a generator for A.
(2) 𝐻 is fully faithful.
(3) 𝑇 is exact and induces an equivalence (ModΛ)/(Ker𝑇) ∼−→ A.
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Proof (1)⇔ (2): Clearly,𝐶 is a generator when 𝐻 is faithful. For the converse
suppose that𝐶 is a generator. For 𝑋 ∈ A consider the counit 𝜀𝑋 : 𝑇𝐻 (𝑋) → 𝑋 .
Then we need to show that this is invertible for all 𝑋 ∈ A; see Proposition 1.1.3.
Each morphism𝐶 → 𝑋 factors through 𝜀𝑥 since 𝑒𝐶 is invertible, and therefore
𝜀𝑋 is an epimorphism. On the other hand, 𝜀𝑥 is adjoint to id : 𝐻 (𝑋) → 𝐻 (𝑋)

and therefore a monomorphism by Lemma 2.5.1.
(1) & (2) ⇒ (3): We show that 𝑇 is exact. Then it follows from Proposi-

tion 2.2.11 that 𝑇 induces an equivalence (ModΛ)/(Ker𝑇) ∼−→ A.
For the exactness of 𝑇 we apply the criterion from Corollary 2.1.16. Thus

we need to show that for each exact sequence 𝑋 → 𝑌 → 𝑍 of projective
Λ-modules, the sequence 𝑇 (𝑋) → 𝑇 (𝑌 ) → 𝑇 (𝑍) is exact. To show this, it
suffices to prove that for each exact sequence 0 → 𝑋 → 𝑌 → 𝑍 → 0 of
Λ-modules, the sequence 0 → 𝑇 (𝑋) → 𝑇 (𝑌 ) → 𝑇 (𝑍) → 0 is exact provided
that 𝑌 is projective. Moreover, it suffices to show that 𝑇 (𝑋) → 𝑇 (𝑌 ) is a
monomorphism since 𝑇 is right exact. We may assume that𝑌 = Λ(𝐼) is free and
write this as the filtered colimit 𝑌 = colim𝑌𝐽 , where 𝑌𝐽 = Λ𝐽 and 𝐽 ⊆ 𝐼 runs
through all finite subsets. Then 𝑋 → 𝑌 is the filtered colimit of monomorphisms
𝑋𝐽 → 𝑌𝐽 , where 𝑋𝐽 = 𝑋∩𝑌𝐽 . The morphism𝑇 (𝑋𝐽 ) → 𝑇 (𝑌𝐽 ) = 𝐶𝐽 is adjoint
to 𝑋𝐽 → 𝑌𝐽 = 𝐻 (𝐶𝐽 ) and therefore a monomorphism by Lemma 2.5.1. It
remains to note that 𝑇 preserves colimits and that filtered colimits in A are
exact. Thus 𝑇 (𝑋) → 𝑇 (𝑌 ) is a monomorphism since it identifies with the
filtered colimit of monomorphisms 𝑇 (𝑋𝐽 ) → 𝑇 (𝑌𝐽 ).

(3) ⇒ (2): See Proposition 2.2.11. �

Corollary 2.5.3. An abelian category is a Grothendieck category if and only if
it is the localisation of a module category, so of the form (ModΛ)/C for some
ring Λ and a localising subcategory C ⊆ ModΛ.

Proof Combine Theorem 2.5.2 with Proposition 2.2.16. �

Injective Envelopes
We are now able to establish injective envelopes in Grothendieck categories.

Corollary 2.5.4. A Grothendieck category admits arbitrary products, and
every object admits an injective envelope.

Proof Fix a Grothendieck category A. We apply the above Theorem 2.5.2 and
identifyAwith (Ker𝑇)⊥ ⊆ ModΛ. The category ModΛ has arbitrary products,
and (Ker𝑇)⊥ is closed under products. From this the first assertion follows.
The existence of injective envelopes in A follows from Corollary 2.2.15, once
we have shown that ModΛ has injective envelopes.
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We proceed in two steps. Set A = ModΛ and fix an object 𝑋 ∈ A.
(1) The object 𝑋 admits an embedding into an injective object. It suffices to

find an injective cogenerator, say 𝐸 , because then 𝑋 →
∏

𝜙∈Hom(𝑋,𝐸) 𝐸 is a
monomorphism.

If Λ = Z, then

Q/Z �
∐

𝑝 prime
Z𝑝∞ � 𝐸

( ∐
𝑝 prime

Z/(𝑝)
)

is an injective cogenerator. This can be shown using the notion of a divisible
module. For an arbitrary ring Λ, we use restriction of scalars via the canonical
homomorphism Z→ Λ. So HomZ (Λ,Q/Z) is an injective cogenerator since

HomΛ (−,HomZ (Λ,Q/Z)) � HomZ (−,Q/Z)

by adjunction.
(2) The object 𝑋 admits an essential embedding into an injective object. Let

𝜙 : 𝑋 → 𝐸 be a monomorphism such that 𝐸 is injective. Consider the partially
ordered set of subobjects {𝐸 ′ ⊆ 𝐸 | Im 𝜙 ↩→ 𝐸 ′ essential}. Using the fact that
filtered colimits are exact, it follows that this has a maximal element by Zorn’s
lemma, say 𝐸0. It is easily checked that 𝑋 → 𝐸0 is an injective envelope.
In fact, choose a maximal subobject 𝐸 ′′ ⊆ 𝐸 such that 𝐸 ′′ ∩ 𝐸0 = 0, using
again Zorn’s lemma. Then the composite 𝐸0 ↩→ 𝐸 � 𝐸/𝐸 ′′ is an essential
monomorphism and therefore an isomorphism by the maximality of 𝐸0. Thus
the inclusion 𝐸0 ↩→ 𝐸 is split and 𝐸0 is injective. �

Corollary 2.5.5. A Grothendieck category admits an injective cogenerator.

Proof Fix a generator 𝐶 and choose 𝐸 =
∏

𝐶′ ⊆𝐶 𝐸 (𝐶/𝐶
′) where 𝐶 ′ ⊆ 𝐶

runs through all subjects. It follows that any non-zero morphism 𝐶 → 𝑋 can
be extended to a non-zero morphism 𝑋 → 𝐸 . �

Decompositions into Indecomposables
We provide a brief discussion about decompositions of objects into indecom-
posable objects. In particular, we include a result about the uniqueness of such
decompositions into indecomposable objects with local endomorphism rings.

Recall that an object 𝑋 is indecomposable if 𝑋 ≠ 0 and if 𝑋 = 𝑋1 ⊕ 𝑋2
implies 𝑋1 = 0 or 𝑋2 = 0.

A non-zero object 𝑋 is called uniform provided any two non-zero subobjects
intersect non-trivially. Clearly, 𝑋 is uniform if and only if its injective envelope
𝐸 (𝑋) is indecomposable. An object 𝑋 is called super-decomposable if 𝑋 has
no indecomposable direct summands. Note that 𝐸 (𝑋) is super-decomposable
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if and only if 𝑋 has no uniform subobjects. This is clear since a direct summand
𝐸 of 𝐸 (𝑋) is the injective envelope of the intersection 𝐸 ∩ 𝑋 .

Example 2.5.6. Let Λ = 𝑘 〈𝑥, 𝑦〉 be the free algebra on two generators. Then
the Λ-module 𝐸 (Λ) is super-decomposable.

To see this, observe that if 𝑎 ∈ Λ, then 𝑎𝑥Λ ∩ 𝑎𝑦Λ = 0. Thus Λ has no
uniform right ideals, and hence 𝐸 (Λ) is super-decomposable.

A ring is called local if all non-invertible elements form a proper ideal. Thus
an object is indecomposable if its endomorphism ring is local.

Lemma 2.5.7. If 𝑋 is an indecomposable injective object in a Grothendieck
category, then End(𝑋) is a local ring.

Proof We need to show that if 𝜙 and 𝜓 in End(𝑋) are non-invertible, then
𝜙 + 𝜓 is non-invertible. If 𝜙 or 𝜓 is a monomorphism, then it splits. Thus we
need to show that Ker 𝜙 ≠ 0 and Ker𝜓 ≠ 0 implies Ker(𝜙 + 𝜓) ≠ 0. But this is
clear, since 𝑋 is the injective envelope of any non-zero subobject. Thus

0 ≠ (Ker 𝜙) ∩ (Ker𝜓) ⊆ Ker(𝜙 + 𝜓). �

The following is known as Krull–Remak–Schmidt–Azumaya theorem.

Theorem 2.5.8 (Krull–Remak–Schmidt–Azumaya). Let 𝑋 be an object in a
Grothendieck category with decompositions 𝑋 =

∐
𝑖∈𝐼 𝑋𝑖 and 𝑋 =

∐
𝑗∈𝐽 𝑌 𝑗

such that End(𝑋𝑖) is a local ring for all 𝑖 and 𝑌 𝑗 is indecomposable for all 𝑗 .
Then there is a bijection 𝜎 : 𝐼 ∼−→ 𝐽 such that 𝑋𝑖 � 𝑌𝜎 (𝑖) for all 𝑖 ∈ 𝐼.

Proof See for example [156, Section 4.8]. �

The appropriate tool for studying decompositions of objects in a Grothen-
dieck category is its spectral category. Let A be a Grothendieck category and
denote by Ess the class of essential monomorphisms in A. This class admits
a calculus of right fractions and is closed under coproducts. We obtain the
canonical functor

𝑃 : A −→ A[Ess−1]

and call A[Ess−1] the spectral category of A. It is not difficult to show that this
is again a Grothendieck category which is split exact [82, Satz 1.3].

We have the following explicit description of the spectral category.

Proposition 2.5.9. The canonical functor A → A[Ess−1] restricted to InjA
induces an equivalence (InjA)/Rad(InjA) ∼−→ A[Ess−1].
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The assertion says that 𝑃 induces for 𝑋,𝑌 ∈ InjA an isomorphism

HomA(𝑋,𝑌 )/RadA(𝑋,𝑌 ) ∼−−→ HomA[Ess−1 ] (𝑋,𝑌 ).

Proof The functor 𝑃 identifies each object 𝑋 with its injective envelope
𝐸 (𝑋). Thus the restriction 𝑃 |InjA is essentially surjective. This restriction is
also surjective on morphisms, because each morphism inA[Ess−1] is given by a
right fraction 𝑋 𝜎

←− 𝑋 ′
𝛼
−→ 𝑌 (Lemma 1.2.1). Indeed, 𝛼 extends to a morphisms

�̄� : 𝑋 → 𝑌 when𝑌 is injective, and then the right fraction equals 𝑃(�̄�). Finally,
we apply Proposition 2.1.23 and see that 𝑃 annihilates a morphism 𝜙 in InjA
if and only if 𝜙 is radical, since 𝑃 is left exact. �

Locally Presentable Categories
A cardinal 𝛼 is called regular if 𝛼 is not the sum of fewer than 𝛼 cardinals, all
smaller than 𝛼. For example, ℵ0 is regular because the sum of finitely many
finite cardinals is finite. Also, the successor 𝜅+ of every infinite cardinal 𝜅 is
regular. In particular, there are arbitrarily large regular cardinals.

Let 𝛼 be a regular cardinal. A category I is called 𝛼-filtered if

(Fil1) the category is non-empty,
(Fil2) for each family (𝑥𝑖)𝑖∈𝐼 of fewer than 𝛼 objects there is an object 𝑥 with

morphisms 𝑥𝑖 → 𝑥 for all 𝑖, and
(Fil3) for each family (𝜙𝑖 : 𝑥 → 𝑦)𝑖∈𝐼 of fewer than 𝛼 morphisms there exists

a morphism 𝜓 : 𝑦 → 𝑧 such that 𝜓𝜙𝑖 = 𝜓𝜙 𝑗 for all 𝑖, 𝑗 .

An 𝛼-filtered colimit is the colimit of a functor I→ C such that the category
I is 𝛼-filtered. An 𝛼-small colimit is the colimit of a functor I → C such that
the category I has fewer than 𝛼 morphisms.

We record a characteristic property of 𝛼-filtered categories; it is well known
when 𝛼 = ℵ0 and says that 𝛼-filtered colimits in the category of sets commute
with 𝛼-small limits.

Lemma 2.5.10. For a regular cardinal 𝛼 let 𝐹 : I× J→ Set be a functor such
that I is 𝛼-filtered and J is 𝛼-small. Then the canonical map

colim
𝑖

lim
𝑗
𝐹 (𝑖, 𝑗) −→ lim

𝑗
colim

𝑖
𝐹 (𝑖, 𝑗)

is bijective.

Proof Adapt the proof of the case 𝛼 = ℵ0; see [142, Section IX.2]. �

Now fix an additive category A and suppose that A is cocomplete. An object
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𝑋 ∈ A is called 𝛼-presentable if Hom(𝑋,−) preserves 𝛼-filtered colimits, that
is, for every 𝛼-filtered colimit colim𝑖∈I𝑌𝑖 in A the canonical map

colim
𝑖

Hom(𝑋,𝑌𝑖) −→ Hom(𝑋, colim
𝑖
𝑌𝑖)

is bijective. Let A𝛼 denote the full subcategory of 𝛼-presentable objects.

Lemma 2.5.11. The 𝛼-presentable objects are closed under taking 𝛼-small
colimits.

Proof Let colim𝑖∈I 𝑋𝑖 be an 𝛼-small colimit of 𝛼-presentable objects 𝑋𝑖 . For
an 𝛼-filtered colimit colim 𝑗∈J𝑌 𝑗 we compute

colim
𝑗

Hom(colim
𝑖

𝑋𝑖 , 𝑌 𝑗 ) � colim
𝑗

lim
𝑖

Hom(𝑋𝑖 , 𝑌 𝑗 )

� lim
𝑖

colim
𝑗

Hom(𝑋𝑖 , 𝑌 𝑗 )

� Hom(colim
𝑖

𝑋𝑖 , colim
𝑗
𝑌 𝑗 )

where the second isomorphism follows from the fact that 𝛼-small limits com-
mute with 𝛼-filtered colimits in the category of sets, by Lemma 2.5.10. �

Lemma 2.5.12. Let 𝛼 ≤ 𝛽 be regular cardinals. Then any colimit of 𝛼-
presentable objects can be written canonically as a 𝛽-filtered colimit of 𝛽-
presentable objects, which are 𝛽-small colimits of 𝛼-presentable objects.

Proof Let 𝑋 : I → A be a functor such that 𝑋 (𝑖) is 𝛼-presentable for each
𝑖 ∈ I. Consider the set

(I
𝛽

)
of all subcategories J ⊆ I having fewer than 𝛽

morphisms. This set is partially ordered by inclusion and can be viewed as a
category, which is 𝛽-filtered. For each J ⊆ I set 𝑋 (J) = colim 𝑋 |J; this induces
a functor 𝑋𝛽 :

(I
𝛽

)
→ A. Then it is straightforward to check that the morphisms

𝑋 (J) → colim 𝑋 induce an isomorphism 𝜙 : colim 𝑋𝛽
∼−→ colim 𝑋 . In fact, for

each 𝑖 ∈ I there is a canonical morphism 𝑋 (𝑖) → colim 𝑋𝛽 . These morphisms
are compatible and induce the inverse of 𝜙. It remains to observe that each
𝑋 (J) is 𝛽-presentable by Lemma 2.5.11. �

A cocomplete category A is called locally 𝛼-presentable if the category A𝛼

is essentially small and each object is an 𝛼-filtered colimit of 𝛼-presentable
objects. The category is locally presentable if it is locally 𝛼-presentable for
some regular cardinal 𝛼.

Lemma 2.5.13. Let A be a locally presentable category. Then

A =
⋃
𝛼

A𝛼
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where 𝛼 runs through all regular cardinals.
If A is locally 𝛼-presentable, then A is locally 𝛽-presentable for all 𝛽 ≥ 𝛼.

Moreover, A𝛽 equals the closure of A𝛼 under 𝛽-small colimits.

Proof Let 𝑋 ∈ A be the 𝛼-filtered colimit of 𝛼-presentable objects, given by
a functor I→ A. Choose a regular cardinal 𝛽 ≥ 𝛼 such that I has fewer than 𝛽
morphisms. Then 𝑋 is 𝛽-presentable by Lemma 2.5.11.

Let A be locally 𝛼-presentable. Then every object is a 𝛽-filtered colimit of
𝛽-presentable objects, by Lemma 2.5.12. In fact, we can choose 𝛽-presentable
objects that are 𝛽-small colimits of 𝛼-presentable objects. In particular, every
𝛽-presentable object is of this form. �

Next we consider more specifically the category A = ModΛ for a ring Λ.

Lemma 2.5.14. Let Λ be a ring, 𝛼 a regular cardinal, and 𝑛 ≥ 0 an integer. If
a Λ-module 𝑋 admits a free presentation

Λ(𝛼𝑛+1) −→ Λ(𝛼𝑛) −→ · · · −→ Λ(𝛼0) −→ 𝑋 −→ 0

with 𝛼𝑝 < 𝛼 for 0 ≤ 𝑝 ≤ 𝑛 + 1, then Ext𝑛Λ (𝑋,−) preserves 𝛼-filtered colimits.

Proof We view the presentation of 𝑋 as a complex and have

Ext𝑛Λ (𝑋,−) � 𝐻
𝑛 HomΛ (Λ

(𝛼𝑝) ,−).

For an 𝛼-filtered colimit colim𝑖∈I𝑌𝑖 of Λ-modules we compute

colim
𝑖

Ext𝑛Λ (𝑋,𝑌𝑖) � colim
𝑖

𝐻𝑛 HomΛ (Λ
(𝛼𝑝) , 𝑌𝑖)

� 𝐻𝑛 colim
𝑖

HomΛ (Λ
(𝛼𝑝) , 𝑌𝑖)

� 𝐻𝑛 HomΛ (Λ
(𝛼𝑝) , colim

𝑖
𝑌𝑖)

� Ext𝑛Λ (𝑋, colim
𝑖
𝑌𝑖).

The second isomorphism follows from the fact that taking 𝛼-filtered colimits
is exact, and the third isomorphism uses that Λ(𝛼𝑝) is 𝛼-presentable for each
𝑝 ≤ 𝑛 + 1, by Lemma 2.5.11. �

Lemma 2.5.15. Let Λ be a ring. For every family of Λ-modules (𝑋𝑖)𝑖∈𝐼 and
every 𝑛 ≥ 0 we have a canonical isomorphism

Ext𝑛Λ
( ∐

𝑖

𝑋𝑖 ,−
)

∼−−→
∏
𝑖

Ext𝑛Λ (𝑋𝑖 ,−).

Proof Choose a projective resolution 𝑝(𝑋𝑖) → 𝑋𝑖 for each 𝑖. Because taking
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(co)products of modules is exact, we obtain for every Λ-module 𝑌

Ext𝑛Λ
( ∐

𝑖

𝑋𝑖 , 𝑌
)
� 𝐻𝑛 Hom

( ∐
𝑖

𝑝(𝑋𝑖), 𝑌
)

� 𝐻𝑛
∏
𝑖

Hom(𝑝(𝑋𝑖), 𝑌 )

�
∏
𝑖

Ext𝑛Λ (𝑋𝑖 , 𝑌 ). �

Proposition 2.5.16. Any Grothendieck category is locally presentable.

Proof Fix a Grothendieck category A with generator 𝐶 and set Λ = End(𝐶).
We deduce the assertion from Theorem 2.5.2. Let 𝑇 : ModΛ → A be the
exact left adjoint of the full faithful functor Hom(𝐶,−). Then Hom(𝐶,−)
identifies A with (Ker𝑇)⊥ by Lemma 2.2.10. Now choose a generator 𝐾 of
Ker𝑇 . It is not difficult to check that (Ker𝑇)⊥ = 𝐾⊥, since any exact sequence
0 → 𝑋 ′ → 𝐾 (𝛼) → 𝑋 → 0 in ModΛ (𝛼 any cardinal) yields an exact sequence

0 Hom(𝑋,−) Hom(𝐾 (𝛼) ,−) Hom(𝑋 ′,−)

Ext1 (𝑋,−) Ext1 (𝐾 (𝛼) ,−) Ext1 (𝑋 ′,−) · · ·

and keeping in mind that

Ext𝑖 (𝐾 (𝛼) ,−) � Ext𝑖 (𝐾,−)𝛼 (𝑖 ≥ 0)

by Lemma 2.5.15. Now choose a free presentation

Λ(𝛼2) −→ Λ(𝛼1) −→ Λ(𝛼0) −→ 𝐾 −→ 0

and a regular cardinal 𝛼 such that 𝛼𝑖 < 𝛼 for all 𝑖. Then it follows from
Lemma 2.5.14 that Hom(𝐾,−) and Ext1 (𝐾,−) preserve 𝛼-filtered colimits.
Thus the functor Hom(𝐶,−) preserves 𝛼-filtered colimits, because it identifies
with the inclusion A ↩→ ModΛ. Then the lemma below implies that 𝑇 maps
𝛼-presentable objects to 𝛼-presentable objects.

Any Λ-module is a filtered colimit of finitely presented modules (Proposi-
tion 11.1.9), and therefore an 𝛼-filtered colimit of 𝛼-presentable modules by
Lemma 2.5.12. Applying the functor 𝑇 it follows that any object in A is an
𝛼-filtered colimit of 𝛼-presentable objects. �

Lemma 2.5.17. Let (𝐹, 𝐺) be an adjoint pair of functors and 𝛼 a regular
cardinal. If 𝐺 preserves 𝛼-filtered colimits, then 𝐹 maps 𝛼-presentable objects
to 𝛼-presentable objects.
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Proof For an 𝛼-presentable object 𝑋 and an 𝛼-filtered colimit colim𝑖∈I𝑌𝑖 we
have

colim
𝑖

Hom(𝐹𝑋,𝑌𝑖) � colim
𝑖

Hom(𝑋, 𝐺𝑌𝑖)

� Hom(𝑋, colim
𝑖
𝐺𝑌𝑖)

� Hom(𝑋, 𝐺 (colim
𝑖
𝑌𝑖))

� Hom(𝐹𝑋, colim
𝑖
𝑌𝑖). �

Remark 2.5.18. Let C be an essentially small additive category and fix a regular
cardinal 𝛼. When C has 𝛼-small colimits we write

Ind𝛼 C := Lex𝛼 (C
op,Ab)

for the category of left exact functors Cop → Ab preserving 𝛼-small products.
This category is locally 𝛼-presentable with

C ∼−−→ (Ind𝛼 C)
𝛼 .

Conversely, for any locally 𝛼-presentable additive category A the assignment
𝑋 ↦→ HomA(−, 𝑋) |A𝛼 induces an equivalence

A ∼−−→ Ind𝛼 (A
𝛼).

This generalises (with similar proofs) a correspondence for locally finitely
presented categories, which is the case 𝛼 = ℵ0 (Theorem 11.1.15). A conse-
quence is the fact that a locally presentable category is complete, because the
subcategory Ind𝛼 C ⊆ ModC is closed under limits.

Remark 2.5.19. Let A2 denote the category of morphisms in A. If A is locally
𝛼-presentable, then A2 is locally 𝛼-presentable and (A𝛼)2 ∼−→ (A2)𝛼. This
means that each morphism in A can be written as an 𝛼-filtered colimit of
morphisms in A𝛼.

Localisation of Grothendieck Categories
In the following we sketch the localisation theory for Grothendieck categories,
using the fact that any Grothendieck categoryA admits a filtrationA =

⋃
𝛼 A

𝛼.
In fact, we will see that A𝛼 is abelian when 𝛼 is sufficiently large.

Lemma 2.5.20. Let A be a locally 𝛼-presentable Grothendieck category. Then
A𝛼 is abelian if and only if A𝛼 is closed under kernels. Moreover, in this case
the inclusion A𝛼 → A is exact and A𝛼 is an extension closed subcategory.
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Proof We use the fact that A𝛼 is closed under cokernels. Thus when A𝛼 is
closed under kernels, then A𝛼 is abelian and the inclusion A𝛼 → A is exact.
Conversely, suppose that A𝛼 is abelian. Given an exact sequence 0 → 𝑋

𝜙
−→

𝑌
𝜓
−→ 𝑍 in A𝛼, we need to show that it is also exact in A. Let colim 𝑋𝑖 be the

kernel of 𝜓 in A, written as 𝛼-filtered colimit of objects in A𝛼. Each 𝑋𝑖 → 𝑌

factors through 𝜙, so colim 𝑋𝑖 → 𝑌 factors through 𝜙. Thus 𝜙 is a kernel in A.
In order to show thatA𝛼 is extension closed, let 𝜂 : 0 → 𝑋 → 𝑌 → 𝑍 → 0 be

an exact sequence inAwith 𝑋, 𝑍 ∈ A𝛼. Write𝑌 = colim𝑌𝑖 as 𝛼-filtered colimit
of objects in A𝛼. Then 𝜂 is the colimit of exact sequences 0 → 𝑋𝑖 → 𝑌𝑖 → 𝑍 ,
and for some index 𝑖0 the induced morphisms 𝜙 : 𝑋𝑖0 → 𝑋 and 𝑌𝑖0 → 𝑍 are
epimorphisms. It follows that 𝑌 is isomorphic to the cokernel of Ker 𝜙 → 𝑌𝑖0
and therefore in A𝛼. �

Proposition 2.5.21. Let A be a Grothendieck category and 𝛼 a regular car-
dinal. Suppose that A is locally 𝛼-presentable and that A𝛼 is abelian. For a
localising subcategory B ⊆ A such that B ∩ A𝛼 generates B, the following
holds.

(1) B and A/B are locally 𝛼-presentable Grothendieck categories.
(2) B𝛼 = B∩A𝛼 and the quotient functor A→ A/B induces an equivalence

A𝛼/B𝛼 ∼−−→ (A/B)𝛼 .

(3) The inclusion B→ A induces a localisation sequence.

B𝛼 A𝛼 A𝛼/B𝛼

B A A/B

Proof The proof amounts to identifying the sequence B� A � A/B with
the sequence Ind𝛼 (B

𝛼) → Ind𝛼 (A
𝛼) → Ind𝛼 (A

𝛼/B𝛼) which is induced by
B𝛼 � A𝛼 � A𝛼/B𝛼. Proposition 11.1.31 gives the details when 𝛼 = ℵ0,
and the general case is similar. �

Let C be an essentially small additive category and fix a regular cardinal 𝛼.
We write

mod𝛼 C := (ModC)𝛼 and proj𝛼 C := ProjC ∩mod𝛼 C,

where ProjC denotes the full subcategory of projective objects in ModC. It
is easily checked that 𝑋 ∈ ModC belongs to mod𝛼 C if and only if there is a
presentation∐

𝑖∈𝐼

HomC (−, 𝐶𝑖) −→
∐
𝑗∈𝐽

HomC (−, 𝐷 𝑗 ) −→ 𝑋 −→ 0
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satisfying card 𝐼, card 𝐽 < 𝛼; see Lemma 2.5.12.
The next lemma shows that mod𝛼 C is abelian when 𝛼 is sufficiently large.

Lemma 2.5.22. The following conditions are equivalent.

(1) The kernel of each morphism in modC belongs to mod𝛼 C.
(2) The category proj𝛼 C has weak kernels.
(3) The category mod𝛼 C is abelian.

Proof (1)⇒ (2): We apply Lemma 2.5.11. The objects in proj𝛼 C are precisely
the direct summands of coproducts 𝑋 =

∐
𝑖∈𝐼 HomC (−, 𝑋𝑖) with card 𝐼 < 𝛼.

Clearly, 𝑋 is the filtered colimit of subobjects
∐

𝑖∈𝐽 HomC (−, 𝑋𝑖) with card 𝐽 <
ℵ0. This colimit is 𝛼-small, and it follows that any morphism 𝑋 → 𝑌 in proj𝛼 C
is an 𝛼-small filtered colimit of morphisms 𝑋𝜆 → 𝑌𝜆 in projC ⊆ modC. Thus

Ker(𝑋 → 𝑌 ) = colim
𝜆

Ker(𝑋𝜆 → 𝑌𝜆)

belongs to mod𝛼 C. It remains to observe that each object in mod𝛼 C is the
quotient of an object in proj𝛼 C.

(2) ⇒ (3): That mod𝛼 C is abelian follows from Lemma 2.1.6 since each
object in mod𝛼 C is the cokernel of a morphism in proj𝛼 C, and therefore

mod𝛼 C
∼−−→ mod(proj𝛼 C).

(3) ⇒ (1): This is clear, since modC ⊆ mod𝛼 C. �

Corollary 2.5.23. Let A be a Grothendieck category. There exists a regular
cardinal 𝛼0 such that for all regular 𝛼 ≥ 𝛼0 the category A𝛼 is abelian and an
extension closed subcategory of A with exact inclusion A𝛼 → A.

Proof We apply Theorem 2.5.2 and write A as the quotient (ModΛ)/C for
some ring Λ and a localising subcategory C ⊆ ModΛ. Choose 𝛼 such that
mod𝛼 Λ is abelian and C∩mod𝛼 Λ generates C. Then the assertion follows from
Proposition 2.5.21. More precisely, for 𝛼 ≥ 𝛼0 we have (mod𝛼 Λ)/C𝛼 ∼−→ A𝛼.
Thus A𝛼 is abelian and the inclusion A𝛼 → A is exact. Also, A𝛼 is extension
closed by Lemma 2.5.20. �

When C has 𝛼-small colimits, then the Yoneda functor C→ mod𝛼 C admits
a left adjoint; it is the 𝛼-small colimit preserving functor mod𝛼 C → C taking
each representable functor HomC (−, 𝑋) to 𝑋 . The special case 𝛼 = ℵ0 is
Example 1.1.4. Let eff𝛼 C denote the full subcategory of mod𝛼 C consisting
of the objects annihilated by this left adjoint, and set Eff𝛼 C := Ind𝛼 (eff𝛼 C).
Then the following is an analogue of Proposition 2.3.3.
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Proposition 2.5.24. Let C be an essentially small abelian category with 𝛼-
small coproducts and suppose that Ind𝛼 C is a Grothendieck category. Then
the inclusion Ind𝛼 C → ModC induces a localisation sequence of abelian
categories

Eff𝛼 C ModC Ind𝛼 C

which restricts to the localisation sequence

eff𝛼 C mod𝛼 C C.

Proof The inclusion Ind𝛼 C → ModC has a left adjoint; it is the colimit
preserving functor which is the identity on the representable functors. This left
adjoint is exact by an analogue of Theorem 2.5.2, and it sends 𝛼-presentable
objects to 𝛼-presentable objects, since the right adjoint preserves 𝛼-filtered
colimits; see Lemma 2.5.17. This yields the left adjoint of the Yoneda functor
C→ mod𝛼 C. The rest then follows from Proposition 2.5.21. �

The following immediate consequence provides a canonical presentation of
a Grothendieck category as the quotient of a module category.

Corollary 2.5.25. Let A be a locally 𝛼-presentable Grothendieck category
such that C = A𝛼 is abelian. Then

(ModC)/(Eff𝛼 C)
∼−−→ A. �

Coherent Functors
Let A be a cocomplete additive category. We call a functor 𝐹 : A → Ab
coherent if there is an exact sequence

HomA(𝑌,−) −→ HomA(𝑋,−) −→ 𝐹 −→ 0.

More precisely, we say for a regular cardinal 𝛼 that 𝐹 is 𝛼-coherent if 𝑋 and
𝑌 are 𝛼-presentable objects. Note that every coherent functor is 𝛼-coherent for
some regular cardinal 𝛼whenA is locally presentable, thanks to Lemma 2.5.13.

Recall that a locally presentable category is complete and cocomplete; see
Remark 2.5.18.

Theorem 2.5.26. Let A be a locally 𝛼-presentable category. Then a functor
𝐹 : A → Ab is 𝛼-coherent if and only if 𝐹 preserves products and 𝛼-filtered
colimits.

The proof requires some preparations. In particular, we need a characterisa-
tion of finitely presented functors in terms of a tensor product.
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Let C be an essentially small additive category. Recall that there exists a
tensor product

Mod(C) ×Mod(Cop) −→ Ab, (𝑋,𝑌 ) ↦−→ 𝑋 ⊗C 𝑌,

where the tensor functors 𝑋 ⊗C − and − ⊗C 𝑌 are determined by the fact that
they preserve colimits and that for 𝐶 ∈ C there are natural isomorphisms

𝑋 ⊗C HomC (𝐶,−) � 𝑋 (𝐶) and HomC(−, 𝐶) ⊗C 𝑌 � 𝑌 (𝐶).

Recall that 𝑌 ∈ Mod(Cop) is finitely presented if there is a presentation

HomC (𝐷,−) −→ HomC (𝐶,−) −→ 𝑌 −→ 0.

Proposition 2.5.27. A functor 𝑌 ∈ Mod(Cop) is finitely presented if and only
if the functor − ⊗C 𝑌 preserves all products.

Proof Let 𝑌 ∈ Mod(Cop). We choose a family of objects (𝑋𝑖)𝑖∈𝐼 in ModC
and consider the canonical map

𝛼𝑌 :
( ∏

𝑖

𝑋𝑖

)
⊗C 𝑌 −→

∏
𝑖

(𝑋𝑖 ⊗C 𝑌 ).

When 𝑌 = HomC (𝐶,−) for some 𝐶 ∈ C, then 𝛼𝑌 is a bijection. Now choose
an exact sequence 𝑌1 → 𝑌0 → 𝑌 → 0 in Mod(Cop) and consider the following
commutative diagram with exact rows.

(
∏

𝑖 𝑋𝑖) ⊗C 𝑌1 (
∏

𝑖 𝑋𝑖) ⊗C 𝑌0 (
∏

𝑖 𝑋𝑖) ⊗C 𝑌 0

∏
𝑖 (𝑋𝑖 ⊗C 𝑌1)

∏
𝑖 (𝑋𝑖 ⊗C 𝑌0)

∏
𝑖 (𝑋𝑖 ⊗C 𝑌 ) 0

𝛼𝑌1 𝛼𝑌0 𝛼𝑌

When 𝑌𝑡 = HomC (𝐶𝑡 ,−) for 𝐶0, 𝐶1 ∈ C, then all vertical maps are bijective.
Thus − ⊗C 𝑌 preserves all products.

It is convenient to set

ℎ𝐶 = HomC (−, 𝐶) (𝐶 ∈ C)

and for any family of objects (𝐶𝑖)𝑖∈𝐼 in C we consider the canonical map

𝛽𝑌 :
( ∏

𝑖

ℎ𝐶𝑖

)
⊗C 𝑌 −→

∏
𝑖

(
ℎ𝐶𝑖 ⊗C 𝑌

)
.

Suppose that 𝛽𝑌 is surjective. We claim that 𝑌 is finitely generated. To this
end consider the product of representable functors∏

𝐶∈C

ℎ𝑌 (𝐶)𝐶
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so that the canonical map

𝛽 :
( ∏
𝐶∈C

ℎ𝑌 (𝐶)𝐶

)
⊗C 𝑌 −→

∏
𝐶∈C

(ℎ𝐶 ⊗C 𝑌 )
𝑌 (𝐶) =

∏
𝐶∈C

𝑌 (𝐶)𝑌 (𝐶)

is surjective. For any finite subset

𝐼 ⊆
⊔
𝐶∈C

𝑌 (𝐶)

there is by Yoneda’s lemma an induced morphism
∐

𝑖∈𝐼 ℎ𝐶𝑖 → 𝑌 and we denote
by 𝑌𝐼 its image. Then 𝑌 = colim𝑌𝐼 and therefore

colim
𝐼

( ∏
𝐶∈C

ℎ𝑌 (𝐶)𝐶

)
⊗C 𝑌𝐼

∼−→
( ∏
𝐶∈C

ℎ𝑌 (𝐶)𝐶

)
⊗C 𝑌 .

It follows that for some finite set 𝐼0 there is an element

𝑥 ∈
( ∏
𝐶∈C

ℎ𝑌 (𝐶)𝐶

)
⊗C 𝑌𝐼0

such that 𝛽(𝑥) = id𝑌 , and therefore 𝑌 = 𝑌𝐼0 is finitely generated.
Now choose an exact sequence 0 → 𝑌1 → 𝑌0 → 𝑌 → 0 in Mod(Cop) and

consider the following commutative diagram with exact rows.

(
∏

𝑖 ℎ𝐶𝑖 ) ⊗C 𝑌1 (
∏

𝑖 ℎ𝐶𝑖 ) ⊗C 𝑌0 (
∏

𝑖 ℎ𝐶𝑖 ) ⊗C 𝑌 0

0
∏

𝑖 (ℎ𝐶𝑖 ⊗C 𝑌1)
∏

𝑖 (ℎ𝐶𝑖 ⊗C 𝑌0)
∏

𝑖 (ℎ𝐶𝑖 ⊗C 𝑌 ) 0

𝛽𝑌1 𝛽𝑌0 𝛽𝑌

Suppose that 𝛽𝑌 is bijective. Then 𝑌 is finitely generated and we may choose
𝑌0 = HomC(𝐶,−) for some 𝐶 ∈ C. Thus 𝛽𝑌0 is bijective and it follows that 𝛽𝑌1

is surjective. Then 𝑌1 is finitely generated, and we conclude that 𝑌 is finitely
presented. �

Proof of Theorem 2.5.26 Suppose first that 𝐹 is 𝛼-coherent. A representable
functor HomA(𝑋,−) preserves products and 𝛼-filtered colimits provided that
𝑋 is 𝛼-presentable. Clearly, this property is preserved when one passes to the
cokernel of a morphism HomA(𝑌,−) → HomA(𝑋,−) where 𝑋 and 𝑌 are
𝛼-presentable.

Now suppose that 𝐹 preserves products and 𝛼-filtered colimits. Let C denote
the full subcategory of 𝛼-presentable objects in A. We set 𝐺 = 𝐹 |C and note
that

𝐹 (𝑋) � HomA(−, 𝑋) |C ⊗C 𝐺 (𝑋 ∈ A) (2.5.28)

since 𝐹 preserves 𝛼-filtered colimits and every object in A is an 𝛼-filtered
colimit of objects in C.
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The assumption on 𝐹 to preserve products implies that any family of objects
(𝐶𝑖)𝑖∈𝐼 in C induces an isomorphism( ∏

𝑖

HomC(−, 𝑋𝑖)
)
⊗C 𝐺

∼−−→
∏
𝑖

(
HomC (−, 𝑋𝑖) ⊗C 𝐺

)
.

We conclude from Proposition 2.5.27 that 𝐺 has a presentation

HomC (𝑌,−) −→ HomC (𝑋,−) −→ 𝐺 −→ 0

with 𝑋,𝑌 ∈ C. Combining this presentation with the isomorphism (2.5.28)
gives a presentation

HomA(𝑌,−) −→ HomA(𝑌,−) −→ 𝐹 −→ 0

of 𝐹. Thus 𝐹 is 𝛼-coherent. �

Notes

We follow Gabriel [79] and recall that abelian categories were introduced by
Buchsbaum and Grothendieck in order to generalise the homological methods
of Cartan and Eilenberg [46]. The localisation theory for abelian categories
is developed in Gabriel’s thesis [79], following Grothendieck’s fundamental
work [94]. In particular, [79] contains the description of Serre and localising
subcategories for commutative noetherian rings. Also, the idea of presenting a
Grothendieck category as a category of left exact functors is from [79]. Exact
categories were introduced by Heller under the name ‘abelian category’ [107];
we follow expositions by Keller and Quillen [120, 165].

Projective and injective objects are important ingredients of homological
algebra. We focus on injective objects because Grothendieck categories always
have enough injectives, but not necessarily enough projectives. The study of
injective modules goes back to the work of Baer [21]; the notion of an injec-
tive envelope was introduced by Eckmann and Schopf [70]. In [71] Eilenberg
proposes an axiomatic description of minimal resolutions. Our treatment of
projective covers and injective envelopes in terms of minimal decompositions
of morphisms follows closely [131].

Finitely presented (or coherent) functors were studied in a famous article
by Auslander [7]. Closely related is the correspondence between additive cat-
egories with weak kernels and abelian categories having enough projective
objects, which is due to Freyd [75]. The notion of an effaceable functor goes
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back to Grothendieck [94]. The presentation of an abelian category as the quo-
tient of the category of finitely presented functors modulo the subcategory of
effaceable functors is also known as ‘Auslander’s formula’ [139].

The notion of a recollement was introduced by Beilinson, Bernšteı̆n and
Deligne [26] in their study of perverse sheaves; it describes a diagram of
six additive functors and makes sense equally for abelian as for triangulated
categories. Universal localisations of (not necessarily commutative) rings were
introduced by Cohn [54] and Schofield [182]; see also [33].

Grothendieck categories were introduced by Grothendieck in his Tôhoku
paper [94] as an appropriate setting for homological algebra. While coproducts
and filtered colimits are exact in Grothendieck categories, taking products need
not be exact. The example of sheaves on the projective line over a field was
suggested by Keller. The embedding theorem for Grothendieck categories is due
to Popescu and Gabriel [159]. The Krull–Remak–Schmidt–Azumaya theorem is
Azumaya’s generalisation of the uniqueness result for decompositions of finite
length modules into indecomposables [19]. Gabriel and Oberst introduced the
spectral category of a Grothendieck category [82]; it provides a general context
for the study of direct sum decompositions.

Locally presentable categories were introduced and studied by Gabriel and
Ulmer [84]; for a modern account see [1]. The characterisation of coherent
functors on locally presentable categories is taken from [128]; it generalises
the characterisation of functors preserving products and filtered colimits for
module categories by Crawley-Boevey [59]. The crucial ingredient of its proof
is Lenzing’s theorem which characterises finitely presented modules via their
tensor functors [138].
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