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A PRUFER APPROACH TO HALF-LINEAR STURM
LIOUVILLE PROBLEMS

by PATRICK J. BROWNE*

(Received 26th November 1996)

We consider the half linear Sturm-Liouville problem

= try + ay+

on the interval [0,1] subject to separated boundary conditions (which may be eigenparameter dependent at
x = 1) and use Prufer techniques to produce an oscillation theory for this problem. Both right definite (r > 0)
and left definite (r of both signs) cases are discussed.

1991 Mathematics subject classification: 34B15.

1. Introduction

The eigenvalue problem to be considered in this paper takes the form

-(Pi/)'+ qy = try + ay++ py~ (1)

on [0,1], where p,q,r,a,p are real valued continuous functions on [0,1] and
additionally, p, r > 0. The continuity requirement can be relaxed to integrability on
[0, 1] but it is not our purpose here to pursue that line of refinement. Rather, our
interest will focus on the terms involving y+ and y~, the positive and negative parts of
the function y defined, as usual, by y+ = max(y, 0), y~ — (-y)+. We shall subject (1)
to boundary conditions:

= do(py')(O) (2)

bty(l) = </,(py)(l) (3)

where b0, d^, bu dx are constants. Problems of this type have been considered previously
by Berestycki [2] and, more recently, Rynne [6]. While they are nonlinear because of
the terms involving y*, they are positively homogeneous and linear in the cones y > 0
and y < 0, and have been termed "half linear" by Berestycki. "Half-eigenvalues", then,
are points A for which (1,2,3) has a non trivial solution y, the corresponding "half-
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eigenfunction". In this case the functions ty where t > 0 are also solutions. Berestycki
has produced, via non linear bifurcation techniques, a Sturm oscillation theorem for
these problems to the effect that there are two sequences of half-eigenvalues,
XQ < X* < %2 < • • • and AQ < Aj" < XI < • • • where the corresponding half-eigenfunction
y* has k zeros in (0, 1) and satisfies ±yt > 0 in a neighbourhood of 0 of the form (0, <5)
- see [2, Theorem 2].

Our aim here is to establish this result via Priifer angle techniques and subsequently,
allow the boundary conditions at x = 1 to depend on the eigenparameter X. We shall
also discuss the so called "left definite" case for both the standard boundary conditions
(3) and for X dependent ones. The results in this case are new even for the situation
of standard separated boundary conditions. The arguments follow the ideas used in
[3, 4, 5] where linear problems have been discussed from this point of view.

2. The Priifer angle

We use the usual substitutions: y = p sin 0, py = p cos 0 to obtain the first order equation

ff = p'1 cos2 0 + (Ar - q)sin2 0 + sin 0[a(sin0)+ + 0(sin 0)"'] (4)

subject to the initial condition

0(0) = tan-H/fco). (5)

Of course this initial condition is not sufficient to determine a solution of (4) since
(5) does not specify the sign of sin 0(0). For now we shall take

0(0) e [0, n[

thereby forcing sin 0(0) > 0, and, in terms of the original equation (1), y > 0 in some
deleted neighbourhood of 0. Other cases will be discussed later. Equation (4) can also
be written as

ff = p"1 cos2 0 + [Xr - q + a(sin 0)+/ sin 0 + 0(sin 0)"/ sin 0] sin2 0

from which we conclude the two useful comparisons:

ff < p'1 cos2 0 + [Xr - (q - |a| - |j8|)] sin2 0

ff > p~l cos2 9 + [Xr-(q + |a| + |0Q] sin2 0.

The right hand sides of these two inequalities are those that would arise from linear
Sturm-Liouville problems with potentials qx = q - |a| - |/}|, q2 = q + |a| 4-1/?|
respectively and with the same initial condition. If 0,, 02 denote the solutions to those
Priifer equations we obtain
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91(x,X)<9(x,X)<9l(x,X) (6)

for all x e [0,1] and for all X. With this background we have

Theorem 1.

(i) For any fixed X, 9(x, ?) increases through integer multiples ofn.

(ii) For any x, 9(x, X) is an increasing function of X.

(iii) For any x, 0(x, X) -*• oo as X -*• oo, and 9(x, X) -*• 0 as X -*• —oo.

Proof. The first claim is proved using the fact that when 9 is a multiple of n,
& > 0. (For the case when the coefficient functions are integrable and not necessarily
continuous, an argument similar to that of Atkinson [1, pp. 209-211] can be used.) The
second result is a consequence of standard theory. For the third result we note that
these limits hold by standard Sturm theory for 0,, 02 and so the comparisons (6) yield
the desired conclusion.

3. Existence of half eigenvalues and oscillation theory

The right hand Dirichlet problem (RDP) associated with (1,2) consists of taking
the boundary condition (3) to be y(X) — 0. Half-eigenvalues for the RDP occur
precisely at those values of X for which 0(1, X) is an integer multiple of n. Theorem
1 shows that there is an increasing sequence Xk

+, k = 0, 1, 2 , . . . , X\+ -*• oo, satisfying
0(1, X°+) = (fc + l)7i, k — 0,1, 2 The corresponding half-eigenfunctions yf+ have fe
zeros in (0, 1) and are positive in a deleted neighbourhood of 0.

We now consider the function

f(X) = cot 0(1, X)

and list its immediate properties.

Theorem 2. The graph \i =f(X) consists of countably many branches Bk,
k = 0, 1, 2, Interpreting A°f as - c o , we have for k>0,:

(1) 0(1, X) e]kn, (k + \)n]for X e]XD
k^,X°+[ and 0(1, XD

k
+) = (k+ l)n.

(2) Bk is defined for X ̂ ]X-klx, Xk
+[ and f decreases over this interval with f(X) —*• —oo

as X t XD
k+ andf (Xs) -» oo as X \ XD

k
+.

(3) X = X>k
+ are the vertical asymptotes of the graph off.

The following lemma sets the stage for the oscillation theory associated with our
problem: it parallels [5, Lemma 2.2].
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Lemma 3. Ifk>0, and A e]Af*,, Af+[ then all solutions o/(l , 2) which are positive in
a deleted neighbourhood ofO possess exactly k zeros in (0, 1).

Proof. While the solutions of (1,2) which are positive in a deleted neighbourhood
do not form a vector space they are all of the form ty for some solution y, i.e. they
constitute a positive ray of functions. Since 0(1, A) e]kn, (k + l)n[ for the A value in
question and since 6(x,k) increases through multiples of n, there is no x e (0, 1) for
which 6(x, k) — (k+ l)n. Further, we have 0(0, k) e [0, n[, so that the result follows
directly for k = 0, and for k > 0, we have 6(x, A) — kn for some x e]0, n[.

Theorem 4. If the solutions of (1,2) are also required to satisfy (3), then for each
k > 0, there is a unique half-eigenvalue k = AjJ" whose corresponding half-eigenfunction
has exactly k zeros in ]0, 1[. The k% interlace the RDP eigenvalues in the sense that

kt <k^+<kt+],k = O, 1 , . . .

Proof. If we take fi — tan~\dl/bl) e]0, n], we see that the graph of fi = cot/? cuts
Bk at (At, fi) say, when fi / n, while if ft — n we set kk — k°+. The lemma provides the
remainder of the argument.

We have now produced the results of [2, Theorem 2] for the case in which the half-
eigenfunctions are to be positive in a deleted neighbourhood of 0. To cover the
alternate case in which the half-eigenfunctions are to be negative in a deleted
neighbourhood of 0, we can either adjust the initial condition for (4) by requiring that
0(0) € [—7t, 0[ and modify the subsequent results accordingly, or we can consider the
original problem with a, fi replaced by — fi, —a respectively and note that if y is a
solution to that problem which is positive in a deleted neighbourhood of 0, then — y
solves the original problem and is negative in a deleted neighbourhood of 0. Thus the
full Berestycki result on the existence of half-eigenvalues and their oscillation
properties is obtained.

At this stage one further simple result involving Aj is immediate. We give the case
for AQ only.

Corollary 5. The half-eigenvalue AQ coincides with the zero-th eigenvalue AQ of the
linear problem

with boundary conditions (2, 3).

Proof. We note that for A < k°+, 6{x, A) e [0, n] so that the equation (4) coincides
with the corresponding Priifer equation from the linear problem above.

We can use the comparisons (6) to produce comparisons for the half-eigenvalues
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with those from the linear problems with potentials q ± (|a| + \P\) giving a slight
improvement on the result of Berestycki [2, Theorem 1].

Theorem 6. Let X\, n > 0, denote the eigenvalues from the linear Sturm-Liouville
problem with potential q — (|a| + |/?|) and )?„, n > 0, those from the linear problem with
potential q + (|a| + |/?|). Then we have

Proof. The result is an easy consequence of consideration of the equations
0,(1, A) = tan~'(—d,/b,) + nn and the corresponding equation for 8(1,?.).

4. Eigenparameter dependent boundary conditions

We now turn to the situation in which the boundary conditions at x — 1 are
eigenvalue dependent and take the form:

Sturm-Liouville problems with this type of boundary condition have been the subject
of recent investigation by the author and co-workers: [3, 4, 5]. There is a significant
literature devoted to them and the introduction to [4] contains details of references. To
date no non-linear problems with such boundary conditions have been studied.

We assume initially that 5 = axdx - fc,c, > 0 and c, ^ 0 a typical right definiteness
condition for linear problems of this kind. The half-eigenvalue problem becomes that
of finding the k values at which the graphs of /(A) and

intersect. The graph of \i = g is a hyperbola with vertical asymptote at k = —dx/cx. It
is increasing on each of its branches and has a horizontal asymptote at fi = ajcx. It is
thus easy to locate the intersections of these two graphs. We suppose that the vertical
asymptote for g intersects the K-th branch BK of / or is its right hand asymptote: i.e.
we select K so that

kD
K

+_x < - d x / c x < kD
K

+

We also denote by A* + the half eigenvalues for the so called "asymptotic problem" in
which the boundary conditions at x = 1 take the form
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Theorem 7. (i) For the problem (1,2, 7) subject to 8 > 0, c, / 0, //ie half-eigenvalues
whose corresponding half-eigenfunctions are positive in a deleted neighbourhood of 0
consist of a sequence Aj < A* < A\ < ... where for each k = 0, 1,... the corresponding
half-eigenfunction has k zeros in ]0,1[, together with an additional half-eigenvalue
A' e]AJ£i, A£+] whose corresponding half-eigenfunction has K zeros in ]0, 1[.

(ii) At+ < At < A£, for all k>K.

(iii) Aft < XA
k
 + < At < A?+ for all k.

Proof. The results come from considering the superposition of the graphs of /
and g much along the lines of the corresponding results for the linear problem given in
[5, Theorems 3.1, 3.3].

We have adopted here the numbering convention for the half-eigenvalues used by
Binding and Browne in [3, 4].

We also note in passing that it is possible to give comparison results for the case in
which the coefficient functions depend on a parameter: cf. [5, Theorem 3.2]. Of course
similar results are available for the half-eigenvalues XI. We leave the reader to
formulate them.

As in [5], we can give an asymptotic result comparing the half-eigenvalues At with
the asymptotic half-eigenvalues A*+ for large k. We have

Theorem 8. Ifpr e AC[Q, 1], then At - A£+ = O(/c"2) as k -> oo.

Proof. We introduce a modified Prufer transformation via the substitutions
(prA)1/2y = co sin </>, py' = co cos 0, whence tan <f> — (prX)]/2 tan 0 and, after some
calculation,

1/2 / y
+ ^—^ sin 2<p — (Xpr)~l/2q sin2 +(Apr)~'/2[asin $(sin <p)+ + /?sin 0(sin <f>)~]

Apr

This corresponds to [5, eqn. (3.3), Proof of Theorem 3.5]. The argument now follows
the lines of that given in [5, Theorem 3.5]: we note that it is easy to show that, for
example, sin 0(sin (f>)+ is smooth in <f>. We leave details of the proof to the reader.

When c, = 0, g(A) takes the form

which, since 5 > 0, is a line of positive slope. It intersects each branch Bk of / exactly
once and so we see that the usual Sturm oscillation theorem holds. We summarize this
as

Theorem 9. If the problem (1,2,7) satisfies <5 > 0 and c, = 0, then the half-
eigenvalues of the problem can be ordered as A% <X\ <A\ < ... where the half-
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eigenfunction corresponding to AjJ" has k zeros in [0,1[ and is positive in a deleted
neighbourhood ofO.

We turn to the cases in which 5 = 0 but (a,, c,) ^ (0, 0). Firstly if c, / 0, then
boundary condition (7) becomes

so that half-eigenvalues arise from the right hand asymptotic problem and additionally,
A = — <f,/c, is a further half-eigenvalue. Thus if we define K by the condition

we have the same situation as in the statement of Theorem 7 unless it should happen
that A£+= —d,/C|. If c ,=d, = 0 ^ f l i , then the boundary condition (7) becomes
(a,A + bt)y(l) = 0 and half-eigenvalues arise from the RDP and additionally from
A = —bx/ax. Now we define K by A{£, < —bx/ax < A£+ and obtain the same result as
above. Finally if c, ^ 0 and -dx/cx = A£+ or if c, = d, = 0 ^ a, and -bx/ax = A£+, the
corresponding half-eigenfunctions satisfy (1,2) and are unique up to positive scalar
multiplication so that no "extra" half-eigenvalue or half-eigenfunction exists in these
cases. The analysis of these special cases follows that of [5] for the linear situation.

It is possible to consider the case in which the condition on 8 is replaced by 5 < 0.
The development will parallel that for the linear case given in [3] but we choose not to
pursue this avenue nor problems in which both boundary conditions are A-dependent,
preferring to turn to the consideration of left definite problems.

5. Left definite problems

In this section we shall abandon the requirement r > 0 and replace it by a demand
that neither of r+, r" be identically zero and also that

Mo > 0.

For the case in which the boundary conditions at x = 1 are of the form (3) we require
bldl < 0 and for the case in which they are of the form (7) we require the matrix
-8M where

—0|C, cxa

to be positive definite. This requirement has a number of consequences; see [3,
Section 2]: in particular we note that axcx < 0.
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We note in passing that the assumptions above prevent / = 0 being a half-eigenvalue
for our problem for, if it were and if y were a corresponding half-eigenfunction we
would have

-(py1) + qy = <*y+ + Py~

/ -Wyy + qy2 = / «y+

Jo Jo

and now routine calculations show the left hand side to be positive while the right hand
side is negative. Essentially the same argument shows that X — 0 is not an eigenvalue for
the linear case (i.e. a = /? = 0). The Priifer transformation to be used here is given by

).y — p sin 0 , py' = p c o s <f>

and the corresponding Priifer equation is

,, A cos2 <b t q\ . 2 , . , / s i n0 \ + „ . , / s in0 \~ , , „
0 = - + ^ r - j j s i n 2 0 + a s i n < / > ( — p j +/Ssin0(—-^ 1 , k / 0. (8)

The initial condition for this equation is

, X) = tan-' M _• e ] _ K/2, n/2[, if b0 ? 0,
V V

0(0, X) = sign(X)n/2, if b0 = 0.

Note that this choice of 0(0, X) forces y to be positive in a deleted neighbourhood of
0. In developing properties of 0 we shall concentrate on the case X > 0 since
corresponding properties for X > 0 can be obtained via the transformation

MX) = -0(-A)

where we realize that \j/ satisfies the same differential equations as <f> but with r
replaced by — r. As in Section 2, we can form two useful comparisons:

,, Acos20 / q-\<x\-\P\\ . 2 ,
0' < + r - -—— —) sin2 0

P \ * I

ACOS2^ / q+l«l + l ^ , ; , 2 ^
0 > — + I r jsin 0

and compare the right hand sides with Prufer equations from linear problems with
potentials q ± (|a| + \fi\). Such Prufer angle functions have been analyzed in [4,
Section 3] and, much as in the argument of Theorem 1 we can claim
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Theorem 10.

(i) 0(x, A) increases in /.for any fixed x.

(ii) 0(1, /.) 4, 0 as A 4, 0 and 0(1, A) f 0 as A t 0

(iii) </>(l, A) -»• ±oo aj A -*• ±oo

(iv) For A > 0, 0(x, A) increases through multiples of n.

We are now interested in the graph of

/(A) : = tan 0(1, A), A # 0,

: = 0, A = 0

whose important properties we summarise. When the boundary condition at x = 1 is
the Dirichlet condition y(\) = 0, the resulting "right hand Dirichlet problem" has half-
eigenvalues denoted by A°±, with Aj£ denoting the half-eigenvalues for the "right hand
Neumann" problem where the boundary condition at x — 1 is / ( I ) = 0.

Theorem 11. The graph of fi =/(A)

(i) has vertical asymptotes at A = AĴ!" anrf increases on each of its branches

(ii) is continuous at A = 0

(iii) crosses the X-axis at A = Af±.

Proof. The claims are easy consequences of the foregoing discussion.

For the general problem in which the boundary conditions at x = 1 take the form
(3) we seek intersections of the graph of / with that of

fc(A) = dxk/bx

a straight line of negative slope. There is of course one intersection with each branch
of / . The intersection on the branch passing through the origin occurs at the origin
and must be discarded since, as we noted earlier, A = 0 is not an eigenvalue. It is
important to note also that for A > 0, 0(1, A) lies between kn and (k+ \)n when A lies
between AJ£L,)+. and A£+ (here we interpret A°_+

1)+ as 0). Hence half-eigenfunctions
corresponding to half-eigenvalues in such a range would have k internal zeros. Similar
statements hold for A < 0. Interlacing of half-eigenvalues is also immediate from the
graphs of these two functions so that we can collect all of this information as the
following.

Theorem 12. The left definite problem (1,2,3) has two double infinite sequences of
half-eigenvalues, Af±, k > 0 such that
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(i) the half-eigenfunction corresponding to ?.£± (respectively, kl±) has k internal zeros
in ]0, 1] and is positive (respectively, negative) in a deleted neighbourhood of 0,

(ii) Ajf± ~* i 0 0 as k -* °°.

(iii) the following interlacing holds;

. . . / .)_ < / . ]_ < A|_ < /to_ < /.0_ < /.0_ < U < Ao+ < Ao+ < Ao+ < Ai+ < / . |+ < X|+ . . .

W/7/J a similar interlacing for the half-eigenvalues AJ±.

For the case when the boundary condition at x = 1 takes the form (7), we seek
intersections of the graph of / above that of

which, as noted in [4, Section 4], is a hyperbola with vertical asymptote at A = —
and oblique asymptote

c,
-
a,

The hyperbola decreases on both of its branches and crosses the A-axis at X — 0.
Intersections of these two graphs will be simple, isolated and will accumulate only at
±oo. The situation is very much as in the linear case which is displayed graphically in
[4, Section 4]. When b > 0, we see that each interval ]A("t1)+, Af+ [ has precisely one
intersection point with the exception of one in which there are two. This is the interval
]A(̂

+_,)+, A£+[ where K is defined by

The intersections in the region A < 0 are regular in the sense that each interval
]̂ (°+o-> ^k-[ wi'l contain one half-eigenvalue whose corresponding half-eigenfunction
will be positive in a deleted neighbourhood of 0 and will have k internal zeros in ]0, 1[.
Similar results hold for the cases in which d < 0 and for which we require the half-
eigenfunctions to be negative in a deleted neighbourhood of 0. We thus have the
following statement.

Theorem 13. The left definite problem (1,2,7) has two double infinite sequences of
half-eigenvalues, kf±, k > 0 such that

(i) the half-eigenfunction corresponding to Â ± (respectively, ?^±) has k internal zeros
in ]0, 1[ and is positive (respectively, negative) in a deleted neighbourhood of 0,
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(ii) ?.*± -»• ± 0 0 as k -*• 00,

(iii) the following interlacing holds;

wi/A a similar interlacing for the half-eigenvalues /^±.

If ^ > 0 (respectively < 0), there is an additional half-eigenvalue A+ e]A(
D

K
h_1)+, AJJ+[

(respectively, ]Aj£, ^ - o - t ) whose corresponding half-eigenfunction is positive in a
deleted neighbourhood of 0 and has K internal zeros in ]0, 1[, where K is defined by (9)
(respectively,

A similar statement holds with regard to an additional half-eigenvalue k~ whose half-
eigenfunction is negative in a deleted neighbourhood of 0.
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