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This paper is concerned with stochastic Schrödinger delay lattice systems with both
locally Lipschitz drift and diffusion terms. Based on the uniform estimates and the
equicontinuity of the segment of the solution in probability, we show the tightness of
a family of probability distributions of the solution and its segment process, and
hence the existence of invariant measures on l2 × L2((−ρ, 0); l2) with ρ > 0. We also
establish a large deviation principle for the solutions with small noise by the weak
convergence method.
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1. Introduction

Stochastic lattice systems can be used to model many practical systems with dis-
crete character and random fluctuation. The long-time dynamics for stochastic
lattice systems with or without delays have been investigated extensively in the lit-
erature. For stochastic lattice systems without delays, we refer the reader to [2, 3,
9, 20] for pathwise random attractors and stability, [31, 32, 34, 36] for weak mean
random attractors and invariant measures. Since the current states of the practical
systems often depend on their past history, stochastic lattice systems with delays
have been investigated; see e.g., [12, 15, 16, 24] for invariant measures and weak
mean random attractors, and [23] for periodic measures. Recently, regime-switching
was taken account into stochastic lattice systems, and invariant measures of such
systems were studied in [13, 22].
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2 Z. Chen, X. Sun and B. Wang

In this paper we consider the following stochastic Schrödinger delay lattice system
defined on the integer set Z:⎧⎪⎪⎪⎨⎪⎪⎪⎩

duε
n(t) + i|uε

n(t)|2uε
n(t)dt + λuε

n(t)dt − i(uε
n−1(t) − 2uε

n(t) + uε
n+1(t))dt

= fn(uε
n(t − ρ))dt + gndt

+
√

ε
∑
k∈N

(hk,n + σk,n(uε
n(t − ρ))) dWk(t), t > 0,

uε
n(0) = u0

n, uε
n(s) = ξn(s), s ∈ (−ρ, 0),

(1.1)

where n ∈ Z; ε ∈ (0, 1); λ and ρ are positive constants; g = (gn)n∈Z and hk =
(hk,n)n∈Z are deterministic complex-valued sequences for each k ∈ N; fn and σk,n

are locally Lipschitz continuous functions for every k ∈ N and n ∈ Z, and {Wk}k∈N

are independent two-sided real-valued standard Wiener processes on a complete
filtered probability space (Ω, F , {Ft}t�0, P).

The first goal of this paper is to investigate the existence of invariant measures of
the stochastic Schrödinger delay lattice system (1.1) in l2 × L2((−ρ, 0); l2). To that
end, we need to establish the tightness of a family of distributions of the solution
and its segment process of (1.1) in l2 × L2((−ρ, 0); l2). Actually, such tightness
can be obtained by proving the uniform tail-estimates, the uniform estimates of
higher-order moments and the Hölder continuity of the solution as in [15]. Note
that the derivation of uniform estimates of higher-order moments requires not only
sophisticated calculations, but also strong dissipativeness assumptions on the non-
linear terms. In order to relax the strong dissipativeness restrictions and prove the
existence of invariant measures under weaker conditions on the nonlinear terms, in
the present paper, we will employ the equicontinuity of the segment of the solution
in probability, instead of uniform estimates of higher-order moments, to establish
the tightness of distributions of the solution and its segment process. The idea of
equicontinuity in probability was used for proving the tightness of the segment of the
solution in [4, 37] for finite-dimensional stochastic ordinary differential equations
and in [14] for fractional stochastic partial differential equations. In the present
paper, we will use this method to deal with the infinite-dimensional lattice system
(1.1).

The second goal of the paper is to investigate the large deviation principle (LDP)
of the solutions of (1.1) on a finite interval [0, T ] with T > 0 by the weak convergence
method. The weak convergence method is based on the variational representation
of certain functionals of Brownian motion [5, 7, 8] as well as the equivalence of large
deviation principles and Laplace principles. Compared with the classical discretiza-
tion method as introduced in [19], the weak convergence method does not require
any exponential-type probability estimates which are usually difficult to derive for
infinite-dimensional models. The weak convergence method has been successfully
applied to establish the LDP for many infinite-dimensional stochastic systems, see
e.g. [6, 8, 10, 11, 25, 28, 29, 35] for stochastic partial differential equations, and
[33] for stochastic reaction-diffusion lattice systems without delay. We refer the
reader to [19] and [18] for more details on the discretization method and the weak
convergence method for LDPs, respectively.

Note that the LDPs of finite-dimensional stochastic delay differential equations
have been studied by many authors, see e.g. [1, 21, 27] for constant delay and
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[26, 30] for general delay. However, to the best of our knowledge, there is no result
available regarding the LDPs of infinite-dimensional delay lattice systems. We will
close this gap and prove the LDP for the infinite-dimensional delay lattice system
(1.1) in the last section of the paper. Compared with the finite-dimensional stochas-
tic delay differential equations [21] the main difficulty to verify the conditions of
the weak convergence for system (1.1) lies in the fact that bounded subsets of �2 are
not precompact. To deal with this issue, we adopt the idea of the finite-dimensional
projection and the uniform tail-ends estimates to establish the precompactness of
a family of solutions to the controlled system (4.5). The argument of the present
paper can be extended to the path-dependent lattice systems driven by superlinear
noise under certain conditions.

The paper is organized as follows. In Section 2, we discuss the assumptions on
the nonlinear terms and present our main results. In the last two sections, we prove
the existence of invariant measures and the LDP of (1.1), respectively.

For convenience, we will use L2(I;H) to denote the space of all square-integrable
functions from an interval I to a separable Hilbert space H equipped with norm
‖ · ‖L2(I;H). We also use C(I;H) for the space of all continuous functions from I
to H equipped with supremum norm ‖ · ‖C(I;H). As usual, we reserve l2 for the
space of all complex-valued square-summable sequences with inner product (·, ·)
and norm ‖ · ‖, respectively.

2. Assumptions and main results

In this section, we discuss the assumptions on the nonlinear terms in (1.1),
and present the main results of the paper. First, we define the linear operators
A, B, B∗ : l2 → l2 by:

(Au)n = −un−1 + 2un − un+1, (Bu)n = un+1 − un, (B∗u)n = un−1 − un,

for any n ∈ Z and u = (un)n∈Z ∈ l2. Then we have

A = BB∗ = B∗B, (B∗u, v) = (u,Bv), ∀ u, v ∈ l2.

Throughout the paper we make the following assumptions.

(A1) For any bounded subset K of C, there exists a positive constant LK such
that

|fn(z1) − fn(z2)| � LK|z1 − z2|,
for any z1, z2 ∈ K and n ∈ Z.

(A2) For every k ∈ N, n ∈ Z and every bounded subset K of C, there exists a
positive constant Lk,n,K such that for any z1, z2 ∈ K,

|σk,n(z1) − σk,n(z2)| � Lk,n,K|z1 − z2|,

where LK = (Lk,n,K)k∈N, n∈Z ∈ l2.
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(A3) For any n ∈ Z, there exist positive constants αn and β0 such that

|fn(z)| � β0|z| + αn, ∀ z ∈ C,

where ‖α‖2 :=
∑

n∈Z
|αn|2 < ∞.

(A4) For every k ∈ N, n ∈ Z, there exist positive constants δk,n and βk such that

|σk,n(z)| � δk,n + βk|z|, ∀ z ∈ C,

where ‖δ‖2 :=
∑

k∈N

∑
n∈Z

|δk,n|2 < ∞, ‖β‖2 :=
∑

k∈N
|βk|2 < ∞.

(A5)

‖g‖2 :=
∑
n∈Z

|gn|2 < ∞, ‖h‖2 :=
∑
k∈N

∑
n∈Z

|hk,n|2 < ∞. (2.1)

Consider operators f, σk : l2 → l2 defined by

f(u) = (fn(un))n∈Z, σk(u) = (σk,n(un))n∈Z, ∀ u = (un)n∈Z ∈ l2.

Then by assumptions (A1)–(A4), we have:

(i) f is well-defined, and

‖f(u)‖2 � 2β2
0‖u‖2 + 2‖α‖2, ∀ u ∈ l2. (2.2)

(ii) f is locally Lipschitz continuous; that is, for every R > 0, there exists a
positive constant Lf

R such that for all u, v ∈ l2 with ‖u‖ ∨ ‖v‖ � R,

‖f(u) − f(v)‖2 � Lf
R‖u − v‖2. (2.3)

(iii) σk is well-defined and∑
k∈N

‖σk(u)‖2 � 2‖β‖2‖u‖2 + 2‖δ‖2, ∀ u ∈ l2. (2.4)

(iv) σk is locally Lipschitz continuous; more precisely, for every R > 0, there exists
a positive constant Lσ

R such that for all u, v ∈ l2 with ‖u‖ ∨ ‖v‖ � R,∑
k∈N

‖σk(u) − σk(v)‖2 � Lσ
R‖u − v‖2. (2.5)

With the above notation, problem (1.1) can be rewritten as the following form
in l2:⎧⎪⎨⎪⎩

duε(t) + i|uε(t)|2uε(t) dt + λuε(t) dt + iAuε(t) dt
= f(uε(t − ρ))dt + g dt +

√
ε
∑
k∈N

(hk + σk(uε(t − ρ))) dWk(t), t > 0,

uε(0) = u0, uε(s) = ξ(s), s ∈ (−ρ, 0),

(2.6)

where u0 = (u0
n)n∈Z, |uε(t)|2uε(t) = (|uε

n(t)|2uε
n(t))n∈Z, g = (gn)n∈Z, hk = (hk,n)n∈Z

and ξ = (ξn)n∈Z.
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From now on, we denote the segment of uε by uε
t which is defined by

uε
t (s) = uε(t + s), ∀ s ∈ (−ρ, 0).

Under conditions (A1)–(A5), for every u0 ∈ L2(Ω, F0; l2) and ξ ∈ L2(Ω, F0;L2

((−ρ, 0); l2)), system (2.6) admits a unique solution uε (see [15, Theorem 2.2]) in
the sense that uε(t), t � −ρ, is an l2-valued stochastic process such that

• uε(t) for t � 0 is pathwise continuous and Ft-adapted.

• uε(0) = u0, uε
0 = ξ and uε ∈ L2(Ω;C([0, T ]; l2)) for all T > 0.

• For t � 0, P-almost surely,

uε(t) = u0 +
∫ t

0

(−iAuε(s) − i|uε(s)|2uε(s) − λuε(s) + f(uε(s − ρ)) + g
)

ds

+
√

ε
∑
k∈N

∫ t

0

(hk + σk(uε(s − ρ))) dWk(s) in l2.

Moreover, one can verify that for every T > 0,

E

[
‖uε‖2

C([0,T ];l2)

]
� M0e

M0T

(
E[‖u0‖2] +

∫ 0

−ρ

E[‖ξ(s)‖2] ds + T‖g‖2 + T‖h‖2

)
,

(2.7)
where M0 is a positive constant independent of u0, ξ and T .

Based on the well-posedness of solutions of (2.6), we will prove the existence of
invariant measures. For this purpose, we need an additional assumption as follows:
(H)

√
2β0 + 2‖β‖2 < λ.

Theorem 2.1. Suppose that (A1)–(A5) and (H) hold. Then (2.6) has an
invariant measure on l2 × L2((−ρ, 0); l2).

Remark 2.2. Compared with [15, Theorem 4.1], the conditions on the nonlinear
drift and the nonlinear diffusion terms are relaxed due to the fact that the uniform
estimates of higher-order moments of solutions are not required in this paper.

Given (u0, ξ) ∈ l2 × L2((−ρ, 0); l2) and a positive constant T , we will prove the
LDP for the family of solutions {uε} of (2.6) on the finite time interval [0, T ] as
ε → 0, which is given below.

Theorem 2.3. Suppose that (A1)–(A5) hold. Then the family of solutions {uε}
of system (2.6) on [0, T ], as ε → 0, satisfies the large deviation principle on
C([0, T ]; l2) with the good rate function I : C([0, T ]; l2) → [0, ∞] defined by (4.1).

Remark 2.4. We point out that theorem 2.1 and theorem 2.3 still hold with minor
changes in the proofs if we replace the cubic term i|un|2un in (1.1) by a more
general nonlinear term ±iF (|un|)un, where F : [0, ∞] → R is continuous, F (0) = 0,
and there exist LF > 0 and v � 0 such that

|F (|z1|)z1 − F (|z2|)z2| � LF (|z1|v + |z2|v)|z1 − z2|, ∀ z1, z2 ∈ C.
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3. Invariant measures

In this section, we prove the existence of invariant measures of (2.6). To that end, we
need to derive the uniform estimates of the solution as well as its segment process
in the next subsection.

3.1. Uniform estimates

In this subsection, we firstly establish the uniform estimates of the solution of
(2.6). Note that by (H), there exist constants α1 > 0 and γ > 0 such that

√
2β0(1 + eγρ) − 2λ + α1 + γ + 4‖β‖2eγρ < 0. (3.1)

Lemma 3.1. Suppose that (A1)–(A5) and (H) hold. Then for any (u0, ξ) ∈
L2(Ω; l2) × L2(Ω;L2((−ρ, 0); l2)), the solution uε of (2.6) satisfies that for all t � 0
and 0 < ε < 1,

E[‖uε(t)‖2] � M1

(
1 + E[‖u0‖2] +

∫ 0

−ρ

E[‖ξ(s)‖2] ds

)
, (3.2)

where M1 is a positive constant independent of u0, ξ and ε.

Proof. Applying Itô’s formula to (2.6), we obtain for all t � 0 and 0 < ε < 1,

d(‖uε(t)‖2) � − 2λ‖uε(t)‖2 dt + 2Re (uε(t), f(uε(t − ρ))) dt

+ 2Re (uε(t), g) dt + ε
∑
k∈N

‖hk + σk(uε(t − ρ))‖2 dt

+ 2
√

εRe
∑
k∈N

(uε(t), hk + σk(uε(t − ρ))) dWk(t). (3.3)

Let γ > 0 be the positive constant satisfying (3.1). Then we get from (3.3) that

eγt
E[‖uε(t)‖2] � E[‖u0‖2] + (γ − 2λ)

∫ t

0

eγs
E[‖uε(s)‖2] ds

+ 2Re
∫ t

0

eγs
E [(uε(s), f(uε(s − ρ)))] ds

+ 2Re
∫ t

0

eγs
E [(uε(s), g)] ds

+ ε
∑
k∈N

∫ t

0

eγs
E

[
‖hk + σk(uε(s − ρ))‖2

]
ds. (3.4)
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We now deal with the right-hand side of (3.4). For the third term on the right-hand
side of (3.4), by Young’s inequality and (2.2) we have

2Re
∫ t

0

eγs
E [(uε(s), f(uε(s − ρ)))] ds

� 2
∫ t

0

eγs
E [‖uε(s)‖‖f(uε(s − ρ))‖] ds

�
√

2β0

∫ t

0

eγs
E
[‖uε(s)‖2

]
ds +

1√
2β0

∫ t

0

eγs
E
[‖f(uε(s − ρ))‖2

]
ds

�
√

2β0

∫ t

0

eγs
E
[‖uε(s)‖2

]
ds +

√
2‖α‖2

γβ0
(eγt − 1)

+
√

2β0e
γρ

∫ t−ρ

−ρ

eγs
E
[‖uε(s)‖2

]
ds

�
√

2β0(1 + eγρ)
∫ t

0

eγs
E
[‖uε(s)‖2

]
ds

+
√

2β0e
γρ

∫ 0

−ρ

E
[‖ξ(s)‖2

]
ds +

√
2‖α‖2

γβ0
eγt. (3.5)

Let α1 > 0 be a constant satisfying (3.1). By Young’s inequality we get

2Re
∫ t

0

eγs
E [(uε(s), g)] ds � α1

∫ t

0

eγs
E
[‖uε(s)‖2

]
ds +

‖g‖2

α1γ
eγt. (3.6)

For the last term on the right-hand side of (3.4), by (2.4) we obtain

ε
∑
k∈N

∫ t

0

eγs
E[‖hk + σk(uε(s − ρ))‖2] ds

� 2
∑
k∈N

∫ t

0

eγs
E[‖hk‖2] ds + 2

∑
k∈N

∫ t

0

eγs
E[‖σk(uε(s − ρ))‖2] ds

� 2‖h‖2

γ
eγt +

4‖δ‖2

γ
eγt + 4‖β‖2

∫ t

0

eγs
E
[‖uε(s − ρ)‖2

]
ds

� 2‖h‖2

γ
eγt +

4‖δ‖2

γ
eγt + 4‖β‖2eγρ

∫ t

0

eγs
E
[‖uε(s)‖2

]
ds

+ 4‖β‖2eγρ

∫ 0

−ρ

E
[‖ξ(s)‖2

]
ds. (3.7)
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It follows from (3.4)–(3.7) that for all t � 0,

eγt
E[‖uε(t)‖2]

� E[‖u0‖2] +
[
γ − 2λ +

√
2β0(1 + eγρ) + α1 + 4‖β‖2eγρ

] ∫ t

0

eγs
E[‖uε(s)‖2]ds

+ (
√

2β0 + 4‖β‖2)eγρ

∫ 0

−ρ

E
[‖ξ(s)‖2

]
ds +

√
2‖α‖2

γβ0
eγt

+
‖g‖2

α1γ
eγt +

2‖h‖2

γ
eγt +

4‖δ‖2

γ
eγt,

which along with (3.1) indicates that for all t � 0,

E[‖uε(t)‖2] � e−γt
E[‖u0‖2] + (

√
2β0 + 4‖β‖2)e−γ(t−ρ)

∫ 0

−ρ

E
[‖ξ(s)‖2

]
ds

+
√

2‖α‖2

γβ0
+

‖g‖2

α1γ
+

2‖h‖2

γ
+

4‖δ‖2

γ
.

This implies (3.2), and thus completes the proof. �

Next we give the uniform estimates of the solution in probability.

Lemma 3.2. Suppose that (A1)–(A5) and (H) hold. If (u0, ξ)∈ L2(Ω; l2)×
L2(Ω;L2((−ρ, 0); l2)) satisfies that E[‖u0‖2] ∨ ∫ 0

−ρ
E[‖ξ(s)‖2] ds � R for some R > 0,

then for any T > 0 and ε′ > 0, there exists a positive constant M2 = M2(ε′, T, R),
independent of ε ∈ (0, 1), such that

P

({
sup

s∈[t,t+T ]

‖uε(s)‖ � m

})
� 1 − ε′, ∀ t � 0, m � M2.

Proof. For any t � ρ and m ∈ N, let

τ t
m = inf{s � t : ‖uε(s)‖ > m},

and we set τ t
m = ∞ if {s � t : ‖uε(s)‖ > m} = ∅.

For any T > 0, applying Itô’s formula to (2.6), we have

E[‖uε((t + T ) ∧ τ t
m)‖2]

� E[‖uε(t)‖2] − 2λ

∫ (t+T )∧τt
m

t

E[‖uε(s)‖2] ds
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+ 2Re
∫ (t+T )∧τt

m

t

E [(uε(s), f(uε(s − ρ)))] ds

+ 2Re
∫ (t+T )∧τt

m

t

E [(uε(s), g)] ds

+ ε
∑
k∈N

∫ (t+T )∧τt
m

t

E[‖hk + σk(uε(s − ρ))‖2] ds. (3.8)

For the third term on the right-hand side of (3.8), by (2.2) we obtain

2Re
∫ (t+T )∧τt

m

t

E [(uε(s), f(uε(s − ρ)))] ds

� 2β2
0

∫ (t+T )∧τt
m

t

E[‖uε(s − ρ)‖2] ds + 2‖α‖2T +
∫ (t+T )∧τt

m

t

E[‖uε(s)‖2] ds.

(3.9)

For the fourth term on the right-hand side of (3.8), by Young’s inequality we have

2Re
∫ (t+T )∧τt

m

t

E
[(

uε(s), g
)]

ds �
∫ (t+T )∧τt

m

t

E[‖uε(s)‖2] ds + ‖g‖2 T. (3.10)

For the last term on the right-hand side of (3.8), by (2.4) we get

ε
∑
k∈N

∫ (t+T )∧τt
m

t

E[‖hk + σk(uε(s − ρ))‖2] ds

� 2‖h‖2 T + 4‖δ‖2 T + 4‖β‖2

∫ (t+T )∧τt
m

t

E[‖uε(s − ρ)‖2] ds. (3.11)

From (3.8)–(3.11) and lemma 3.1, it follows that there exists a positive constant
CT,R depending only on R and T such that for all t � ρ,

E[‖uε((t + T ) ∧ τ t
m)‖2]

� E[‖uε(t)‖2] + (2 − 2λ)
∫ (t+T )∧τt

m

t

E[‖uε(s)‖2] ds

+ (‖g‖2 + 4‖δ‖2 + 2‖α‖2 + 2‖h‖2)T + (2β2
0 + 4‖β‖2)

∫ t+T−ρ

t−ρ

E[‖uε(s)‖2] ds

�
[
1 + (2 − 2λ + 2β2

0 + 4‖β‖2)T
]
M1

(
1 + E[‖u0‖2] +

∫ 0

−ρ

E[‖ξ(s)‖2] ds

)
+ (‖g‖2 + 4‖δ‖2 + 2‖α‖2 + 2‖h‖2)T

� CT,R. (3.12)
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Recalling the definition of τ t
m, we obtain by (3.12) that for all t � ρ,

m2
P({τ t

m < t + T}) � E
[‖uε(τ t

m)‖2I{τt
m<t+T}

]
� E[‖uε((t + T ) ∧ τ t

m)‖2] � CT,R.

Then, we have

P({τ t
m < t + T}) � CT,R

m2
. (3.13)

By (3.13) we find that for every ε′ > 0, T > 0 and R > 0, there exists m1 =
m1(ε′, T, R) > 0 such that for m � m1,

P({τ t
m < t + T}) � ε′

2
, ∀ t � ρ,

which implies that

P

({
sups∈[t,t+T ] ‖uε(s)‖ > m

})
� ε′

2
, ∀ t � ρ, m � m1. (3.14)

On the other hand, making use of (2.7) and the Chebyshev inequality, we obtain
that there exists m2 = m2(ε′, R) > 0 such that

P
({

sup0�s�ρ ‖uε(s)‖ > m
})

�
E
[
sup0�s�ρ ‖uε(s)‖2

]
m2

� ε′

2
, ∀ m � m2,

which along with (3.14) implies that there exists M2 = M2(ε′, T, R) > 0 such that

P

({
sups∈[t,t+T ] ‖uε(s)‖ > m

})
� ε′, ∀ t � 0, m � M2,

as desired. �

By lemma 3.2, we have the uniform estimates of the segment of the solution in
probability as follows.

Remark 3.3. If T = 2ρ in lemma 3.2, then we obtain

P

({
sup

s∈[t,t+ρ]

‖uε
s‖C([−ρ,0];l2) � m

})
� 1 − ε′, ∀ t � ρ, m � M2.

Moreover, if (u0, ξ) ∈ L2(Ω; l2) × L2(Ω;C([−ρ, 0]; l2)), from the proof of lemma
3.2, we can proceed to obtain that for any T > 0 and ε′ > 0, there exists a positive
constant M2 = M2(ε′, T, R), independent of ε ∈ (0, 1), such that

P

({
sup

s∈[t,t+T ]

‖uε
s‖C([−ρ,0];l2) � m

})
� 1 − ε′, ∀ t � 0, m � M2,

when E[‖u0‖2] ∨ E[sups∈[−ρ,0] ‖ξ(s)‖2] � R for some R > 0.
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Lemma 3.4. Suppose (A1)–(A5) and (H) hold. If (u0, ξ)∈ L2(Ω; l2) ×
L2(Ω;L2((−ρ, 0); l2)) satisfies that E[‖u0‖2] ∨ ∫ 0

−ρ
E[‖ξ(s)‖2] ds � R for some R >

0, then for any ε′ > 0 and δ1 > 0, there exists η = η(ε′, δ1, R) ∈ (0, ρ), independent
of ε ∈ (0, 1), such that

P

({
sup

t1,t2∈[−ρ,0],|t1−t2|<η

‖uε
t (t1) − uε

t (t2)‖ � δ1

})
� ε′, ∀ t � ρ.

Proof. For any ε′ > 0, it follows from remark 3.3 that there exists m3 = m3(ε′, R) >
0 such that for any t � ρ,

P

({
sup

t�s�t+ρ
‖uε

s‖C([−ρ,0];l2) � m3

})
� 1 − ε′

2
. (3.15)

For each r � ρ, define a stopping time τr by

τr = inf{s � r : ‖uε
s‖C([−ρ,0];l2) > m3},

and we set τr = ∞ if {s � r : ‖uε
s‖C([−ρ,0];l2) > m3} = ∅. By (3.15) we know that

P{τr < r + ρ} � ε′

2
, ∀ r � ρ. (3.16)

By (2.6) we have for any ρ � r � t,

‖uε(t) − uε(r)‖ � (λ + 4)
∫ t

r

‖uε(s)‖ds +
∫ t

r

‖uε(s)‖3 ds +
∫ t

r

‖f(uε(s − ρ))‖ds

+ ‖g‖|t − r| + √
ε

∥∥∥∥∥∑
k∈N

∫ t

r

(hk + σk(uε(s − ρ))) dWk(s)

∥∥∥∥∥,
and hence for any r � ρ, 0 < η < ρ and p > 1, we get

sup
t∈[r,r+η]

‖uε(t ∧ τr) − uε(r)‖2p

� 52p−1(λ + 4)2p sup
t∈[r,r+η]

(∫ t∧τr

r

‖uε(s)‖ds

)2p

+ 52p−1 sup
t∈[r,r+η]

(∫ t∧τr

r

‖uε(s)‖3 ds

)2p

+ 52p−1 sup
t∈[r,r+η]

(∫ t∧τr

r

‖f(uε(s − ρ))‖ds

)2p

+ 52p−1‖g‖2pη2p

+ 52p−1εp

[
sup

t∈[r,r+η]

∥∥∥∑
k∈N

∫ t∧τr

r

(hk + σk(uε(s − ρ))) dWk(s)
∥∥∥2p

]
. (3.17)
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By (2.2), (2.4), the Hölder inequality and the Burkholder–Davis–Gundy (BDG)
inequality, it follows from (3.17) that for any r � ρ, 0 < η < min{1, ρ},

E

[
sup

t∈[r,r+η]

‖uε(t ∧ τr) − uε(r)‖2p

]
� 52p−1(λ + 4)2pm2p

3 η2p + 52p−1m6p
3 η2p + 52p−1(2‖α‖2 + 2β2

0m2
3)

pη2p

+ 52p−1‖g‖2pη2p + 52p−1Cp(4‖δ‖2 + 4‖β‖2m2
3 + 2‖h‖2)pηp

� C0η
p(1 + ηp) � 2C0η

p, (3.18)

where Cp is the coefficient of the BDG inequality and C0 is a positive constant
independent of η, r and ε ∈ (0, 1). From (3.16) and (3.18), we can derive that for
any δ1 > 0 and t � 2ρ,

P

({
sup

t1,t2∈[−ρ,0],|t1−t2|�η
‖uε

t (t1) − uε
t (t2)‖ � δ1

})

� P({τt−ρ < t}) + P

({
τt−ρ � t, sup

t1,t2∈[−ρ,0],|t1−t2|�η
‖uε

t (t1) − uε
t (t2)‖ � δ1

})

= P({τt−ρ < t}) + P

({
τt−ρ � t, sup

t1∈[−ρ,0],t2∈[t1,(t1+η)∧0]
‖uε(t + t1) − uε(t + t2)‖ � δ1

})

� ε′

2
+ P

({
τt−ρ � t, max

0�k�
[

ρ
η

] sup
s∈[t−(k+1)η∧ρ,t−kη]

‖uε(s) − uε(t − (k + 1)η ∧ ρ)‖ � δ1

3

})

� ε′

2
+

[ρ/η]∑
k=0

P

({
τt−ρ � t, sup

s∈[t−(k+1)η∧ρ,t−kη]
‖uε(s) − uε(t − (k + 1)η ∧ ρ)‖ � δ1

3

})

� ε′

2
+

[ρ/η]∑
k=0

P

({
τt−(k+1)η∧ρ � t, sup

s∈[t−(k+1)η∧ρ,t−kη]
‖uε(s) − uε(t − (k + 1)η ∧ ρ)‖ � δ1

3

})

� ε′

2
+

[ρ/η]∑
k=0

P

({
sup

s∈[t−(k+1)η∧ρ,t−kη]
‖uε(s ∧ τt−(k+1)η∧ρ) − uε(t − (k + 1)η ∧ ρ)‖ � δ1

3

})

� ε′

2
+

([
ρ

η

]
+ 1

)
32p2C0ηp

δ2p
1

. (3.19)

Let

η1 =

(
ε′δ2p

1

4(1 + ρ)C032p

)1/p−1

∧ 1 ∧ ρ.

Then by (3.19) we obtain that for any t � 2ρ,

P

({
sup

t1,t2∈[−ρ,0],|t1−t2|�η1

‖uε
t (t1) − uε

t (t2)‖ � δ1

})
� ε′. (3.20)
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On the other hand, since uε ∈ L2(Ω;C([0, 2ρ]; l2)), we find that there exists a
constant η2 = η2(δ1, ε′) > 0 such that for any ρ � t � 2ρ,

P

({
sup

t1,t2∈[−ρ,0],|t1−t2|�η2

‖uε
t (t1) − uε

t (t2)‖ � δ1

})
� ε′,

which along with (3.20) yields that

P

({
sup

t1,t2∈[−ρ,0],|t1−t2|�η

‖uε
t (t1) − uε

t (t2)‖ � δ1

})
� ε′, ∀ t � ρ,

where η = η1 ∧ η2, as desired. �

Remark 3.5. If (u0, ξ) ∈ L2(Ω; l2) × L2(Ω;C([−ρ, 0]; l2)), from the proof of lemma
3.4, we can further obtain that for any ε′ > 0 and δ1 > 0, there exists η =
η(ε′, δ1, R) ∈ (0, ρ), independent of ε ∈ (0, 1), such that

P

({
sup

t1,t2∈[−ρ,0],|t1−t2|<η

‖uε
t (t1) − uε

t (t2)‖ � δ1

})
� ε′, ∀ t � 0,

when E[‖u0‖2] ∨ E[sups∈[−ρ,0] ‖ξ(s)‖2] � R for some R > 0.

Lemma 3.6. Suppose that (A1)–(A5) and (H) hold. Then for every compact sub-
set E of L2(Ω; l2) × L2(Ω;L2((−ρ, 0); l2)) and ε′ > 0, there exists a positive integer
N1 = N1(ε′, E) such that for all m � N1, ε ∈ (0, 1) and t � 0, the solution uε(t)
of (2.6) with (u0, ξ) ∈ E satisfies

∑
|n|�m

E[|uε
n(t)|2] � ε′.

Proof. Hereafter, we denote by C a generic positive constant independent of E, T
and ε′. Consider a smooth function θ : R → [0, 1] satisfying

θ(s) = 0 for |s| � 1; and θ(s) = 1 for |s| � 2. (3.21)

Fixed m ∈ N, denote by θm = (θ(n/m))n∈Z and θmu = (θ(n/m)un)n∈Z for u =
(un)n∈Z ∈ l2. Then by (2.6) we have

d(θmuε(t)) +
(
iθmAuε(t) + iθm|uε(t)|2uε(t) + λθmuε(t)

)
dt

= θmf(uε(t − ρ)) dt + θmg dt

+
√

ε
∑
k∈N

(θmhk + θmσk(uε(t − ρ))) dWk(t). (3.22)
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Similar to (3.4), by (3.22) we get that for all t � 0,

eγt
E[‖θmuε(t)‖2] =E[‖θmu0‖2] + (γ − 2λ)

∫ t

0

eγs
E[‖θmuε(s)‖2] ds

− 2Re
∫ t

0

eγs
E
[(

θ2
muε(s), iAuε(s)

)]
ds

− 2Re
∫ t

0

eγs
E
[(

θ2
muε(s), i|uε(s)|2uε(s)

)]
ds

+ 2Re
∫ t

0

eγs
E [(θmuε(s), θmf(uε(s − ρ)))] ds

+ 2Re
∫ t

0

eγs
E [(θmuε(s), θmg)] ds

+ ε
∑
k∈N

∫ t

0

eγs
E

[
‖θmhk + θmσk(uε(s − ρ))‖2

]
ds. (3.23)

By the argument of (4.4)–(4.6) in [31], we have

− 2Re
∫ t

0

eγs
E
[(

θ2
muε(s), iAuε(s)

)]
ds

= −2Re
∫ t

0

eγs
E
[(

B(θ2
muε(s)), iBuε(s)

)]
ds

� C

m

∫ t

0

eγs
E[‖uε(s)‖2] ds. (3.24)

For the fifth term on the right-hand side of (3.23), by assumption (A3) we obtain

2Re
∫ t

0

eγs
E [(θmuε(s), θmf(uε(s − ρ)))] ds

�
√

2β0

∫ t

0

eγs
E
[‖θmuε(s)‖2

]
ds +

1√
2β0

∫ t

0

eγs
E[‖θmf(uε(s − ρ))‖2] ds

�
√

2β0(1 + eγρ)
∫ t

0

eγs
E
[‖θmuε(s)‖2

]
ds +

√
2

β0γ
eγt

∑
|n|�m

|αn|2

+
√

2β0e
γρ

∫ 0

−ρ

E
[‖θmξ(s)‖2

]
ds. (3.25)

By Young’s inequality we have

2Re
∫ t

0

eγs
E [(θmuε(s), θmg)] ds � α1

∫ t

0

eγs
E
[‖θmuε(s)‖2

]
ds

+
1

α1γ
eγt

∑
|n|�m

|gn|2. (3.26)
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For the last term on the right-hand side of (3.23), by assumption (A4) we get

ε
∑
k∈N

∫ t

0

eγs
E

[
‖θmhk + θmσk(uε(s − ρ))‖2

]
ds

� 2
∑
k∈N

∑
|n|�m

|hk,n|2 eγt

γ
+ 2

∑
k∈N

∫ t

0

eγs
E

[
‖θmσk(uε(s − ρ))‖2

]
ds

� 2
∑
k∈N

∑
|n|�m

|hk,n|2 eγt

γ
+ 4

∑
k∈N

∑
|n|�m

|δk,n|2 eγt

γ
+ 4‖β‖2eγρ

∫ 0

−ρ

E
[‖θmξ(s)‖2

]
ds

+ 4‖β‖2eγρ

∫ t

0

eγs
E
[‖θmuε(s)‖2

]
ds. (3.27)

It follows from (3.23)–(3.27) that for all t � 0,

E[‖θmuε(t)‖2] � E[‖θmu0‖2]e−γt

+
[
γ − 2λ +

√
2β0(1 + eγρ) + α1 + 4‖β‖2eγρ

] ∫ t

0

eγ(s−t)
E
[‖θmuε(s)‖2

]
ds

+
2
γ

∑
|n|�m

∑
k∈N

|hk,n|2 +
4
γ

∑
|n|�m

∑
k∈N

|δk,n|2 +
1

α1γ

∑
|n|�m

|gn|2 +
√

2
β0γ

∑
|n|�m

|αn|2

+
C

m

∫ t

0

eγ(s−t)
E[‖uε(s)‖2] ds + (

√
2β0 + 4‖β‖2)eγ(ρ−t)

∫ 0

−ρ

E
[‖θmξ(s)‖2

]
ds.

(3.28)

Since ‖h‖2 ∨ ‖δ‖2 ∨ ‖α‖2 ∨ ‖g‖2 < ∞, we infer that there exists m4 = m4(ε′) � 0
such that for all m � m4,∑

|n|�m

∑
k∈N

|hk,n|2 ∨
∑

|n|�m

∑
k∈N

|δk,n|2 ∨
∑

|n|�m

|gn|2 ∨
∑

|n|�m

|αn|2 � ε′. (3.29)

For any ε′ > 0, since E is compact in L2(Ω; l2) × L2(Ω;L2((−ρ, 0); l2)), then
it has a finite open cover of balls with radius

√
ε′/2, which is denoted by{

B
(
(uj , ξj),

√
ε′/2

)}l

j=1
. Since (uj , ξj) ∈ L2(Ω; l2) × L2(Ω;L2((−ρ, 0); l2)) for

j = 1, 2, · · · , l, there exists m5 = m5(ε′, E) � m4 such that for all m � m5 and
j = 1, 2, · · · , l,

∑
|n|�m

(
E[|uj

n|2] +
∫ 0

−ρ

E[|ξj
n(s)|2] ds

)
� ε′

4
,

which implies for all m � m5 and (u0, ξ) ∈ E,

∑
|n|�m

(
E[|u0

n(s)|2] +
∫ 0

−ρ

E[|ξn(s)|2] ds

)
� ε′.
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We therefore obtain that for all m � m5 and (u0, ξ) ∈ E,

∫ 0

−ρ

E
[‖θmξ(s)‖2

]
ds �

∫ 0

−ρ

∑
|n|�m

E
[|ξn(s)|2] ds � ε′, (3.30)

and

E[‖θmu0‖2] �
∑

|n|�m

E[|u0
n|2] � ε′. (3.31)

On the other hand, by lemma 3.1 we know that there exists m6 = m6(ε′, E) � m5

such that for all m � m6 and t � 0,

C

m

∫ t

0

eγ(s−t)
E[‖uε(s)‖2] ds � C1

m

∫ t

0

eγ(s−t) ds � ε′, (3.32)

where C1 > 0 is a constant depending only on E. Substituting (3.29)-(3.32) into
(3.28), we obtain for all m � m6 and t � 0,

E[‖θmuε(t)‖2] � 2ε′ +
2ε′

γ
+

4ε′

γ
+

ε′

α1γ
+

√
2ε′

β0γ
+ (

√
2β0 + 4‖β‖2)eγρε′ � Cε′,

which implies that for all m � m6 and t � 0,

∑
|n|�2m

E[|uε
n(t)|2] � E[‖θmuε(t)‖2] � Cε′,

as desired. �

Lemma 3.7. Suppose that (A1)–(A5) and (H) hold. Then for every compact
subset E of L2(Ω; l2) × L2(Ω;L2((−ρ, 0); l2)), the solution uε(t) of (2.6) with
(u0, ξ) ∈ E satisfies

lim sup
m→∞

sup
(u0,ξ)∈E

sup
t�0

E[ sup
t�s�t+T

∑
|n|�m

|uε
n(s)|2] = 0.

Proof. Let θ be the smooth cut-off function as given by (3.21). It follows from
lemma 3.6 that for every ε′ > 0, there exists N1 = N1(ε′, E) > 0 such that for any
t � 0 and m � N1,

E[‖θmuε(t)‖2] � ε′. (3.33)
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Applying Itô’s formula to (3.22), we obtain for all t � 0, r ∈ [t, t + T ], ε ∈ (0, 1)
and m � N1,

‖θmuε(r)‖2 =‖θmuε(t)‖2 − 2Re
∫ r

t

(
iAuε(s), θ2

muε(s)
)

ds

− 2Re
∫ r

t

(
i|uε(s)|2uε(s), θ2

muε(s)
)

ds − 2λ

∫ r

t

‖θmuε(s)‖2 ds

+ 2Re
∫ r

t

(θmf(uε(s − ρ)), θmuε(s)) ds

+ 2Re
∫ r

t

(θmg, θmuε(s)) ds +
∑
k∈N

∫ r

t

‖θmhk + θmσk(uε(s − ρ))‖2ds

+ 2Re
∑
k∈N

∫ r

t

(θmhk + θmσk(uε(s − ρ)), θmuε(s)) dWk(s). (3.34)

For the second term on the right-hand side of (3.34), similar to (3.24), we have

− 2Re
∫ r

t

(
iAuε(s), θ2

muε(s)
)

ds � C

m

∫ r

t

‖uε(s)‖2 ds. (3.35)

Then by (3.34)–(3.35) we get

E

[
sup

t�r�t+T
‖θmuε(r)‖2

]
� E[‖θmuε(t)‖2] +

C

m

∫ t+T

t

E[‖uε(s)‖2] ds

+ 2
∫ t+T

t

E [‖θmf(uε(s − ρ))‖‖θmuε(s)‖] ds + 2
∫ t+T

t

E[‖θmg‖‖θmuε(s)‖] ds

+
∑
k∈N

∫ t+T

t

E[‖θmhk + θmσk(uε(s − ρ))‖2] ds

+ 2E

[
sup

t�r�t+T

∣∣∣∣∣∑
k∈N

∫ r

t

(θmhk + θmσk(uε(s − ρ)), θmuε(s)) dWk(s)

∣∣∣∣∣
]

. (3.36)

For the second term on the right-hand side of (3.36), by lemma 3.1 we know that
there exists N2 = N2(ε′, E) � N1 such that for m � N2,

C

m

∫ t+T

t

E[‖uε(s)‖2] ds � ε′T. (3.37)
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For the third term on the right-hand side of (3.36), by (A3) and (3.33) we have
for m � N2,

2
∫ t+T

t

E[‖θmf(uε(s − ρ))‖‖θmuε(s)‖] ds

� 2β2
0

∫ t+T−ρ

t−ρ

E[‖θmuε(s)‖2] ds + 2
∑

|n|�m

|αn|2 T +
∫ t+T

t

E[‖θmuε(s)‖2] ds

� (2β2
0 + 1)ε′T + 2

∑
|n|�m

|αn|2 T + 2β2
0

∫ 0

−ρ

E[‖θmξ(s)‖2] ds. (3.38)

For the fourth term on the right-hand side of (3.36), by (3.33) and Young’s
inequality we get for m � N2,

2
∫ t+T

t

E[‖θmg‖‖θmuε(s)‖] ds �
∑

|n|�m

|gn|2T + ε′T. (3.39)

For the fifth term on the right-hand side of (3.36), by (A4) we have for m � N2,

∑
k∈N

∫ t+T

t

E[‖θmhk + θmσk(uε(s − ρ))‖2] ds

� 2
∑

|n|�m

∑
k∈N

|hk,n|2 T + 4
∑

|n|�m

∑
k∈N

|δk,n|2T

+ 4‖β‖2ε′T + 4‖β‖2

∫ 0

−ρ

E[‖θmξ(s)‖2]ds. (3.40)

For the last term on the right-hand side of (3.36), by (A4) and the BDG inequality
we obtain for m � N2,

2E

[
sup

t�r�t+T

∣∣∣∣∣∑
k∈N

∫ r

t

(θmhk + θmσk(uε(s − ρ)), θmuε(s)) dWk(s)

∣∣∣∣∣
]

� 1
2

E[ sup
t�r�t+T

‖θmuε(s)‖2] + C
∑

|n|�m

∑
k∈N

|hk,n|2 T

+ 2C
∑

|n|�m

∑
k∈N

|δk,n|2 T + 2C‖β‖2ε′T + 2C‖β‖2

∫ 0

−ρ

E[‖θmξ(s)‖2] ds. (3.41)
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It follows from (3.36)-(3.41) that

E

[
sup

t�r�t+T
‖θmuε(r)‖2

]
� 4ε′T + 2(2β2

0 + 1)ε′T

+ 4
∑

|n|�m

|αn|2 T + 2
∑

|n|�m

|gn|2T + 2ε′

+ 2(C + 2)
∑

|n|�m

∑
k∈N

|hk,n|2 T + 4(C + 2)
∑

|n|�m

∑
k∈N

|δk,n|2T

+ 4(C + 2)‖β‖2ε′T +
[
4(C + 2)‖β‖2 + 4β2

0

] ∫ 0

−ρ

E[‖θmξ(s)‖2] ds. (3.42)

Similar to (3.29)–(3.30), we obtain that there exists N3 = N3(ε′, E) � N2 such that
for all m � N3,∑

|n|�m

∑
k∈N

|hn,k|2 ∨
∑

|n|�m

∑
k∈N

|δn,k|2 ∨
∑

|n|�m

|gn|2 ∨
∑

|n|�m

|αn|2 � ε′,

and ∫ 0

−ρ

E[‖θmξ(s)‖2] ds � ε′,

which along with (3.42) implies that for all t � 0 and m � N3,

E

[
sup

t�r�t+T
‖θmuε(r)‖2

]
� CT ε′,

where CT > 0 depends only on T but not on ε′, m or E. This completes this proof.
�

As an immediate consequence of lemma 3.7, we have the following result.

Corollary 3.8. Suppose (A1)–(A5) and (H) hold. If (u0, ξ)∈ L2(Ω; l2)×
L2(Ω;L2((−ρ, 0); l2)), then the solution uε of (2.6) satisfies that for every δ2 > 0
and T > 0,

lim sup
m→∞

sup
t�0

P

⎛⎝⎧⎨⎩ sup
s∈[t,t+T ]

∑
|n|�m

|uε
n(s)|2 > δ2

⎫⎬⎭
⎞⎠ = 0.

Proof. By the Chebyshev inequality, we obtain that

P

⎛⎝⎧⎨⎩ sup
s∈[t,t+T ]

∑
|n|�m

|uε
n(s)|2 > δ2

⎫⎬⎭
⎞⎠ � 1

δ2
E

⎡⎣ sup
s∈[t,t+T ]

∑
|n|�m

|uε
n(s)|2

⎤⎦ ,

which together with lemma 3.7 completes the proof. �
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Remark 3.9. If (u0, ξ) ∈ L2(Ω; l2) × L2(Ω;C([−ρ, 0]; l2)), from the proofs of
lemma 3.7 and corollary 3.8, we can further obtain that for every δ2 > 0 and T > 0,

lim sup
m→∞

sup
t�−ρ

P

⎛⎝⎧⎨⎩ sup
s∈[t,t+T ]

∑
|n|�m

|uε
n(s)|2 > δ2

⎫⎬⎭
⎞⎠ = 0.

3.2. Existence of invariant measures

3.2.1. Transition semigroup. In this subsection, we first introduce the transition
semigroup of (2.6), and then show the Feller property and the Markov property of
the transition semigroup, which will play a crucial role in proving the existence of
invariant measures on l2 × L2((−ρ, 0); l2).

For any initial time t0 � 0 and initial data (u0, ξ) ∈ L2(Ω; l2) × L2(Ω;L2((−ρ, 0);
l2)), we know that (2.6) has a unique solution on [t0, ∞), which is denoted by
uε(t; t0, u0, ξ). The segment of uε(t; t0, u0, ξ) on (t − ρ, t) with t � t0 is written as
uε

t (t0, u0, ξ); that is,

uε
t (t0, u

0, ξ)(s) = uε(t + s; t0, u0, ξ), ∀ s ∈ (−ρ, 0).

Then we have uε
t (t0, u0, ξ) ∈ L2(Ω;L2((−ρ, 0); l2)) for all t � t0.

If ϕ : l2 × L2((−ρ, 0); l2) → C is a bounded Borel function, then for 0 � r � t
and (u0, ξ) ∈ l2 × L2((−ρ, 0); l2), we set

(pε
r,tϕ)(u0, ξ) = E

[
ϕ
(
uε(t; r, u0, ξ), uε

t (r, u
0, ξ)

)]
.

The family {pε
r,t}0�r�t is called the transition semigroup of (2.6), and pε

0,t is written
as pε

t for simplicity. In particular, for Γ ∈ B(l2 × L2((−ρ, 0); l2)), 0 � r � t and
(u0, ξ) ∈ l2 × L2((−ρ, 0); l2), we set

pε(r, (u0, ξ); t,Γ)=(pε
r,tIΓ)(u0, ξ)= P

({
ω ∈ Ω : (uε(t; r, u0, ξ), uε

t (r, u
0, ξ)) ∈ Γ

})
,

where IΓ is the characteristic function of Γ. Recall that a probability measure με

on l2 × L2((−ρ, 0); l2) is called an invariant measure of (2.6), if∫
l2×L2((−ρ,0);l2)

(pε
tϕ)(u0, ξ) dμε =

∫
l2×L2((−ρ,0);l2)

ϕ(u0, ξ) dμε, ∀ t � 0, (3.43)

for every bounded Borel function ϕ : l2 × L2((−ρ, 0); l2) → C.
Given (un, ξn), (u0, ξ) ∈ l2 × L2((−ρ, 0); l2), R > 0 and r0 � 0, define

Tn
R = inf{t � r0 : ‖uε(t; r0, u

0, ξ)‖ > R or ‖uε(t; r0, u
n, ξn)‖ > R}.

Next we show the continuity of (uε(t0; r0, u0, ξ), uε
t0(r0, u0, ξ)) with respect to

initial data in l2 × L2((−ρ, 0); l2), which is useful for proving the Feller property of
{pε

r,t}0�r�t.
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Lemma 3.10. Suppose that (A1)–(A5) and (H) hold. If (un, ξn) → (u0, ξ) in
l2 × L2((−ρ, 0); l2), then for every 0 � r0 � t0,

lim
n→∞ E

[ ∥∥uε (t0 ∧ Tn
R; r0, u

n, ξn) − uε
(
t0 ∧ Tn

R; r0, u
0, ξ

)∥∥2

+
∫ t0

t0−ρ

∥∥uε (t ∧ Tn
R; r0, u

n, ξn) − uε
(
t ∧ Tn

R; r0, u
0, ξ

)∥∥2
dt
]

= 0. (3.44)

Proof. For simplicity, we write uε(t; r0, un, ξn) as un,ε(t) and uε(t; r0, u0, ξ) as
uε(t). By (2.6) and Itô’s formula, we get for all r0 � t � t0,

‖un,ε (t ∧ Tn
R) − uε (t ∧ Tn

R)‖2

�
∥∥un − u0

∥∥2
+2

∣∣∣∣∣
∫ t∧T n

R

r0

i
(|un,ε(s)|2un,ε(s)−|uε(s)|2uε(s), un,ε(s) − uε(s)

)
ds

∣∣∣∣∣
+ 2

∣∣∣∣∣
∫ t∧T n

R

r0

(f(un,ε(s − ρ)) − f(uε(s − ρ)), un,ε(s) − uε(s)) ds

∣∣∣∣∣
+ ε

∑
k∈N

∫ t∧T n
R

r0

‖σk(un,ε(s − ρ)) − σk(uε(s − ρ))‖2 ds

+ 2
√

ε

∣∣∣∣∣∑
k∈N

∫ t∧T n
R

r0

(σk (un,ε(s−ρ))−σk (uε(s−ρ)) , un,ε(s)− uε(s)) dWk(s)

∣∣∣∣∣ .
(3.45)

For the second term on the right-hand side of (3.45), we know that there exists
C1,R > 0 depending only on R such that

2

∣∣∣∣∣
∫ t∧T n

R

r0

i
(|un,ε(s)|2un,ε(s) − |uε(s)|2uε(s), un,ε(s) − uε(s)

)
ds

∣∣∣∣∣
� C1,R

∫ t∧T n
R

r0

‖un,ε(s) − uε(s)‖2 ds. (3.46)

For the third term on the right-hand side of (3.45), by (2.3) we have

2

∣∣∣∣∣
∫ t∧T n

R

r0

(f (un,ε(s − ρ)) − f (uε(s − ρ)) , un,ε(s) − uε(s)) ds

∣∣∣∣∣
� (1 + C2,R)

∫ t∧T n
R

r0

‖un,ε(s) − uε(s)‖2ds +
∫ 0

−ρ

‖f (ξn(s)) − f (ξ(s)) ‖2ds,

(3.47)
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where C2,R > 0 depends only on R. For the fourth term on the right-hand side of
(3.45), by (2.5) we get

ε
∑
k∈N

∫ t∧T n
R

r0

‖σk (un,ε(s − ρ)) − σk (uε(s − ρ))‖2 ds

� C3,R

∫ t∧T n
R

r0

‖un,ε(s) − uε(s)‖2 ds +
∑
k∈N

∫ 0

−ρ

‖σk (ξn(s)) − σk (ξ(s)) ‖2 ds,

(3.48)

where C3,R > 0 depends only on R. It follows from (3.45)–(3.48) that

E

[
sup

r0�r�t
‖un,ε (r ∧ Tn

R) − uε (r ∧ Tn
R)‖2

]

�
∥∥un − u0

∥∥2
+
∫ 0

−ρ

‖f (ξn(s)) − f (ξ(s)) ‖2 ds

+
∑
k∈N

∫ 0

−ρ

‖σk (ξn(s)) − σk (ξ(s)) ‖2 ds

+ (C1,R + C2,R + C3,R + 1)
∫ t

r0

E

[
sup

r0�s�r
‖un,ε (s ∧ Tn

R) − uε (s ∧ Tn
R) ‖2

]
dr

+ 2
√

εE

[
sup

r0�r�t∧T n
R

∣∣∣∣∑
k∈N

∫ r

r0

(
σk (un,ε(s − ρ))

− σk (uε(s − ρ)) , un,ε(s) − uε(s)
)

dWk(s)
∣∣∣∣
]
.

(3.49)

By (2.5) and the BDG inequality, we obtain that there exists a constant C4,R > 0
depending only on R such that

2
√

εE

[
sup

r0�r�t∧T n
R

∣∣∣∣∑
k∈N

∫ r

r0

(σk (un,ε(s − ρ)) − σk (uε(s − ρ)) , un,ε(s) − uε(s)) dWk(s)
∣∣∣∣
]

� 1
2

E

[
sup

r0�r�t
‖un,ε (r ∧ Tn

R) − uε (r ∧ Tn
R) ‖2

]
+ C4,R

∫ t

r0

E

[
sup

r0�s�r
‖un,ε (s ∧ Tn

R) − uε (s ∧ Tn
R) ‖2

]
dr

+ C4,R

∑
k∈N

∫ 0

−ρ

‖σk (ξn(s)) − σk (ξ(s)) ‖2 ds. (3.50)
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By (3.49)–(3.50) we have for all t ∈ [r0, t0],

E

[
sup

r0�r�t
‖un,ε (r ∧ Tn

R) − uε (r ∧ Tn
R)‖2

]
� 2(C1,R + C2,R + C3,R + C4,R + 1)

·
∫ t

r0

E

[
sup

r0�s�r
‖uε

1 (s ∧ Tn
R) − uε

2 (s ∧ Tn
R) ‖2

]
dr

+ 2
∥∥un − u0

∥∥2
+ 2

∫ 0

−ρ

‖f (ξn(s)) − f (ξ(s)) ‖2 ds

+ 2(C4,R + 1)
∑
k∈N

∫ 0

−ρ

‖σk (ξn(s)) − σk(ξ(s))‖2 ds. (3.51)

By Gronwall’s inequality and (3.51) we get

E

[
sup

r0�t�t0

‖un,ε (t ∧ Tn
R) − uε (t ∧ Tn

R)‖2

]
� e2(C1,R+C2,R+C3,R+C4,R+1)(t0−r0)

·
(

2
∥∥un − u0

∥∥2
+ 2

∫ 0

−ρ

‖f (ξn(s)) − f (ξ(s)) ‖2 ds

+ 2(C4,R + 1)
∑
k∈N

∫ 0

−ρ

‖σk (ξn(s)) − σk (ξ(s)) ‖2 ds

)
. (3.52)

Since (un, ξn) → (u0, ξ) in l2 × L2((−ρ, 0); l2), by (2.2), (2.4) and the
Vitali convergence theorem, we infer that

∫ 0

−ρ
‖f(ξn(s)) − f(ξ(s))‖2 ds → 0 and∑

k∈N

∫ 0

−ρ
‖σk(ξn(s)) − σk(ξ(s))‖2 ds → 0. Thus by (3.52) we know that

E

[
sup

r0�t�t0

‖un,ε (t ∧ Tn
R) − uε (t ∧ Tn

R)‖2

]
→ 0. (3.53)

Since ‖ξn − ξ‖L2((−ρ,0);l2) → 0, it follows from (3.53) that

E

[∫ t0

t0−ρ

‖un,ε (t ∧ Tn
R) − uε (t ∧ Tn

R)‖2 dt + ‖un,ε (t0 ∧ Tn
R) − uε (t0 ∧ Tn

R)‖2

]
� E

[∫ 0

−ρ

‖ξn(t) − ξ(t)‖2 dt +
∫ t0

r0

‖un,ε (t ∧ Tn
R) − uε (t ∧ Tn

R)‖2 dt

+ ‖un,ε (t0 ∧ Tn
R) − uε (t0 ∧ Tn

R)‖2

]
�
∫ 0

−ρ

‖ξn(t) − ξ(t)‖2dt + E

[
sup

r0�t�t0

‖un,ε (t ∧ Tn
R) − uε (t ∧ Tn

R)‖2

]
(t0 − r0 + 1)

−→ 0 as n → 0,
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as desired. �

By lemmas 3.2 and 3.10 and the arguments of [17, pp. 250-252], we can obtain
the following properties of {pε

r,t}0�r�t.

Lemma 3.11. Suppose that (A1)–(A5) and (H) hold. Then we have:

(1) {pε
r,t}0�r�t is Feller; that is, if ϕ : l2 × L2((−ρ, 0); l2) → C is bounded and

continuous, then for any 0 � r � t, the function pε
r,tϕ : l2 × L2((−ρ, 0); l2) →

C is also bounded and continuous.

(2) {pε
r,t}0�r�t is homogeneous; that is, for all 0 � r � t,

pε(r, (u0, ξ); t, ·) = pε(0, (u0, ξ); t − r, ·), ∀ (u0, ξ) ∈ l2 × L2((−ρ, 0); l2).

(3) For any 0 � s � r � t, the Chapman–Kolmogorov equation holds true:

pε(s, (u0, ξ); t,Γ) =
∫

l2×L2((−ρ,0);l2)

pε(s, (u0, ξ); r, dx)pε(r, x; t,Γ),

where (u0, ξ) ∈ l2 × L2((−ρ, 0); l2) and Γ ∈ B(l2 × L2((−ρ, 0); l2)).

3.2.2. Proof of theorem 2.1. Now we are in a position to present the proof of
theorem 2.1.

Proof. For simplicity, we now write uε(t; 0, 0, 0) as uε(t) and uε
t (0, 0, 0) as uε

t . By
remark 3.3 we see that for given ε′ > 0, there exists R1 = R1(ε′) > 0 such that for
all t � 0,

P
({‖uε

t‖C([−ρ,0];l2) > R1

})
<

ε′

3
. (3.54)

By remark 3.5, we know that for given ε′ > 0 and m ∈ N, there exists ηm,ε′ > 0
depending only on m and ε′ such that for all t � 0,

P

({
sup

t1,t2∈[−ρ,0],|t1−t2|<ηm,ε′
‖uε

t (t1) − uε
t (t2)‖ >

1
2m

})
<

ε′

4m
,

and thus

P

( ∞⋃
m=1

{
sup

t1,t2∈[−ρ,0],|t1−t2|<ηm,ε′
‖uε

t (t1) − uε
t (t2)‖ >

1
2m

})
<

∞∑
m=1

ε′

4m
� ε′

3
.

(3.55)
It follows from remark 3.9 that for given ε′ > 0 and m ∈ N, there exists an integer
nm,ε′ > 0 depending only on m and ε′ such that for all t � 0,

P

⎛⎝⎧⎨⎩ sup
t−ρ�r�t

∑
|n|�nm,ε′

|uε
n(r)|2 >

1
2m

⎫⎬⎭
⎞⎠ <

ε′

4m
,
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and hence we obtain for all t � 0,

P

⎛⎝ ∞⋃
m=1

⎧⎨⎩ sup
t−ρ�r�t

∑
|n|�nm,ε′

|uε
n(r)|2 >

1
2m

⎫⎬⎭
⎞⎠ <

∞∑
m=1

ε′

4m
� ε′

3
. (3.56)

Given ε′ > 0, denote by

Z1,ε′ = {ξ ∈ C([−ρ, 0]; l2) : ‖ξ‖C([−ρ,0];l2) � R1}, (3.57)

Z2,ε′ =

{
ξ ∈ C([−ρ, 0]; l2) : sup

t1,t2∈[−ρ,0],|t1−t2|<ηm,ε′
‖ξ(t1) − ξ(t2)‖ � 1

2m

for all m ∈ N

}
, (3.58)

Z3,ε′ =

⎧⎨⎩ξ ∈ C([−ρ, 0]; l2) : sup
−ρ�s�0

∑
|n|�nm,ε′

|ξn(s)|2 � 1
2m

for all m ∈ N

⎫⎬⎭ ,

(3.59)

and

Zε′ = Z1,ε′
⋂

Z2,ε′
⋂

Z3,ε′ . (3.60)

It follows from (3.54)–(3.56) that for all t � 0,

P({uε
t ∈ Zε′}) > 1 − ε′. (3.61)

By (3.57), (3.59)–(3.60), we know that the set {z(0) : z ∈ Zε′} is precompact
in l2. Moreover, according to the Ascoli–Arzalà theorem and (3.57)-(3.60),
one can show that Zε′ is a precompact subset of C([−ρ, 0]; l2). Since the
embedding C([−ρ, 0]; l2) ↪→ L2((−ρ, 0); l2) is continuous, Zε′ is precompact in
L2((−ρ, 0); l2). Thus we conclude that Z̃ε′ = {(z(0), z) : z ∈ Zε′} is precompact
in l2 × L2((−ρ, 0); l2).

On the other hand, by (3.61) we obtain that for all t � 0,

P

({
(uε(t), uε

t ) ∈ Z̃ε′
})

= P({uε
t ∈ Zε′}) > 1 − ε′,

which along with the precompactness of Z̃ε′ implies that the distributions of the
family {(uε(t), uε

t ) : t � 0} are tight on l2 × L2((−ρ, 0); l2).
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We denote the distributions of the family {(uε(t), uε
t ) : t � 0} by {Lε

t}t�0 for
simplicity. For given k ∈ N, we set

με
k =

1
k

∫ k

0

Lε
t (·) dt. (3.62)

By (3.61), we know that for all k ∈ N,

με
k(Z̃ε′) > 1 − ε′. (3.63)

Consequently, it follows from (3.62)–(3.63) that {με
k}∞k=1 is tight, and hence there

exists a probability measure με on l2 × L2((−ρ, 0); l2) such that, up to a subse-
quence, με

k weakly converges to με as k → ∞. Then by lemma 3.11, one can verify
that με is an invariant measure of (2.6) by the argument of [12, Theorem 4.3]. �

4. The large deviation principle

In this section, we will investigate the LDP of the family {uε}ε>0 by the weak
convergence method. We first review the basic concepts of weak convergence theory
in the next subsection.

4.1. Preliminaries

In this subsection, we recall some definitions and results from the theory of large
deviations. Let E be a polish space, and {Xε} be a family of random variables
defined on the space (Ω, F , {Ft}t�0, P) and taking values in E .

Definition 4.1. A function I : E → [0, ∞] is called to be a rate function, if it is
lower semicontinuous on E. A rate function I is called a good rate function, if for
each a ∈ [0, ∞), the level set {x ∈ E : I(x) � a} is a compact subset of E.

Definition 4.2. Let I be a rate function on E. The family {Xε} is said to satisfy
the LDP on E with rate function I if the following two conditions hold:

(1) Large deviation upper bound. For each closed subset F of E,

lim sup
ε→0

ε log P(Xε ∈ F ) � − inf
x∈F

I(x),

(2) Large deviation lower bound. For each open subset G of E,

lim inf
ε→0

ε log P(Xε ∈ G) � − inf
x∈G

I(x).

Definition 4.3. Let I be a rate function on E. The family {Xε} is said to satisfy the
Laplace principle on E with rate function I if for all bounded continuous functions
h : E → R,

lim
ε→0

ε log E

[
exp

(
−h(Xε)

ε

)]
= − inf

x∈E
{h(x) + I(x)}.

Since E is a polish space, the family {Xε} satisfies the large deviation principle
on E with a rate function I if and only if the family {Xε} satisfies the Laplace
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principle on E with the same rate function. In view of this equivalent result, we
will focus on the Laplace principle hereafter. In what follows, we introduce some
notations and a criteria for the Laplace principle, which is useful for proving the
Laplace principle for the family of solutions {uε} of (2.6) on t ∈ [0, T ]. Let

H =
{

u = (uj)∞j=1 :
∑∞

j=1
|uj |2 < ∞

}
.

For every k ∈ N, let ek = (δk,j)∞j=1 with δk,j = 1 for j = k and δk,j = 0 otherwise.
Then {ek, k ∈ N} is an orthonormal basis of H. Let W be the cylindrical Wiener
process on H (which does not take values in H), given by

W (t) =
∑
k∈N

Wk(t)ek, t ∈ R
+,

where the series converges in L2(Ω;C([0, T ];U)) with U being a larger separable
Hilbert space such that the embedding H ↪→ U is Hilbert–Schmidt.

For each a > 0, define

Sa =

{
v ∈ L2([0, T ];H) :

∫ T

0

‖v(s)‖2
H ds � a

}
.

Then Sa is a Polish space under the weak topology of L2([0, T ];H). Henceforth,
wherever we refer to Sa, we will consider it endowed with this topology. Let A denote
the class of H-valued Ft-predictable processes v which satisfy

∫ T

0
‖v‖2

H ds < ∞,
P-almost surely, and for each a ∈ (0, ∞), we define

Aa = {v ∈ A : v(ω) ∈ Sa, P-almost surely}.
For each ε ∈ (0, 1), let Gε : C([0, T ];U) → C([0, T ]; l2) be a measurable map.

The following lemma gives sufficient conditions for the Laplace principle to hold for
the family {Gε(W )} as ε → 0.

Lemma 4.4 [7], theorem 4.4. Suppose that there exists a measurable map G :
C([0, T ];U) → C([0, T ]; l2) such that the following two conditions hold:

(H1) for each a ∈ (0, ∞), the set
{

G(
∫ .

0
v(s) ds) : v ∈ Sa

}
is a compact subset of

C([0, T ]; l2),

(H2) if {vε} ⊂ Aa for some a > 0, and vε converges in distribution to v as
Sa-valued random variables, then Gε(W + ε−1/2

∫ .

0
vε(t) dt) converges in

distribution to G(
∫ .

0
v(t) dt).

Then {Gε(W )} satisfies the Laplace principle on C([0, T ]; l2) with rate function
I : C([0, T ]; l2) → [0, ∞] defined by

I(x) = inf

{
1
2

∫ T

0

‖v(t)‖2
H dt : x = G

(∫ .

0

v(t) dt

)
, v ∈ L2([0, T ];H)

}
, (4.1)

where we use the usual convention inf(∅) = ∞.
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4.2. The LDP for solution processes

This subsection is devoted to formulating the Laplace principle for the family of
solutions {uε} of system (2.6) on the finite time interval [0, T ] as ε → 0, from which
we can establish the LDP for the family {uε}. We first specify the maps Gε and G
in the context of system (2.6), and we then use lemma 4.4 to deduce an analogous
criterion of the Laplace principle for the family {uε}.

Given u ∈ l2, define σ(u) : H → l2 by

σ(u)(v) =
∑
k∈N

(hk + σk(u))vk, ∀ v = (vk)∞k=1 ∈ H. (4.2)

We find that σ(u) is well-defined by (2.1) and (2.4). Moreover, the operator is
Hilbert–Schmidt and

‖σ(u)‖L(H;l2) � ‖σ(u)‖L2(H;l2) =

(∑
k∈N

‖hk + σk(u)‖2

)1/2

< ∞,

where L(H; l2) denotes the space of bounded linear operators from H to l2 with
norm ‖ · ‖L(H;l2), and L2(H; l2) denotes the space of Hilbert–Schmidt operators
from H to l2 with norm ‖ · ‖L2(H;l2). In terms of (4.2), system (2.6) on the finite
time interval [0, T ] can be reformulated as⎧⎨⎩

duε(t) = −iAuε(t) dt − i|uε(t)|2uε(t) dt − λuε(t) dt + f(uε(t − ρ)) dt
+g dt +

√
εσ(uε(t − ρ)) dW (t), t ∈ [0, T ],

uε(0) = u0, uε(s) = ξ(s), s ∈ (−ρ, 0),
(4.3)

Given (u0, ξ) ∈ l2 × L2((−ρ, 0), l2), ε ∈ (0, 1) and T > 0, by the existence and
uniqueness of solutions of system (2.6), we infer that there exists a Borel measurable
map Gε : C([0, T ];U) → C([0, T ]; l2) such that uε = Gε(W ), P-almost surely.

Moreover, for any v ∈ Aa with a ∈ (0, ∞), the Girsanov theorem shows that the
stochastic process

W̃ (t) := W (t) + ε−1/2

∫ t

0

v(s) ds

is a cylindrical Wiener process with identity covariance operator under the
probability P

ε
v as given by

dP
ε
v

dP
= exp

{
−ε−1/2

∫ T

0

v(t) dW (t) − 1
2
ε−1

∫ T

0

‖v(t)‖2
H dt

}
.

Let uε
v = Gε(W̃ ). Then uε

v is the unique solution of (4.3) with W replaced by W̃ ,
which implies that uε

v is the unique solution of the following controlled stochastic
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delay system:⎧⎪⎨⎪⎩
duε

v(t) = −iAuε
v(t) dt − i|uε

v(t)|2uε
v(t) dt − λuε

v(t) dt + f(uε
v(t − ρ))dt

+gdt + σ(uε
v(t − ρ))vε(t)dt +

√
εσ(uε

v(t − ρ))dW (t), t ∈ [0, T ],

uε
v(0) = u0, uε

v(s) = ξ(s), s ∈ (−ρ, 0).

(4.4)

To define the map G, we introduce a controlled deterministic delay system
associated with (4.3) as follows:⎧⎪⎨⎪⎩

duv(t) = −iAuv(t) dt − i|uv(t)|2uv(t) dt − λuv(t) dt + f(uv(t − ρ)) dt

+g(t) dt + σ(uv(t − ρ))v(t) dt, t ∈ [0, T ],

uv(0) = u0, uv(s) = ξ(s), s ∈ (−ρ, 0).

(4.5)

By a solution uv of (4.5), we mean uv is a map from [−ρ, T ] to l2 such that uv(t)
is continuous for t ∈ [0, T ], uv(0) = u0 and uv = ξ on (−ρ, 0).

For any v ∈ L2([0, T ];H) and (u0, ξ) ∈ l2 × L2((−ρ, 0); l2), we will prove the
existence and uniqueness of solutions of (4.5) in lemma 4.7 in Subsection 4.3. As
a consequence of lemma 4.7, we will see that the solution of (4.5) is continuous
in C([0, T ]; �2) with respect to the control term v in L2([0, T ];H). Hence we can
define G : C([0, T ];U) → C([0, T ]; l2) by

G(ϕ) =
{

uv, if ϕ =
∫ .

0
v(t) dt for some v ∈ L2([0, T ];H);

0, otherwise, (4.6)

where uv is the unique solution of (4.5) corresponding to the control term v.
By lemma 4.4, we deduce the following result.

Corollary 4.5. If Gε and G defined in this subsection satisfy conditions (H1) and
(H2) presented in lemma 4.4, then the family {uε} satisfies the Laplace principle
on C([0, T ]; l2) with the rate function I given by (4.1).

In the following, we will prove theorem 2.3 by verifying that Gε and G defined
in this subsection satisfy the conditions (H1) and (H2) in lemma 4.4.

4.3. Proof of theorem 2.3

To prove theorem 2.3, we need the following priori estimates for the solutions of
(4.5).

Lemma 4.6. Suppose that (A1)–(A5) hold and T > 0. If (u0, ξ) ∈ l2 ×
L2((−ρ, 0); l2), v ∈ L2([0, T ];H) and uv is a solution of system (4.5), then

‖uv‖2
C([0,T ];l2) � CT

(
‖u0‖2 +

∫ 0

−ρ

‖ξ(t)‖2 dt + 1
)

e
CT (1+‖v‖2

L2([0,T ];H)),

where CT > 0 is a constant depending only on T .
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Proof. By (4.5) we obtain that for all t ∈ [0, T ],

d

dt
‖uv(t)‖2 � − 2λ‖uv(t)‖2 + 2Re (f(uv(t − ρ)), uv(t))

+ 2Re (g, uv(t)) + 2Re (σ(uv(t − ρ))v(t), uv(t)) . (4.7)

For the second term on the right-hand side of (4.7), by (2.2) we get

2Re (f(uv(t − ρ)), uv(t)) � ‖uv(t)‖2 + ‖f(uv(t − ρ))‖2

� 2β2
0‖uv(t − ρ)‖2 + 2‖α‖2 + ‖uv(t)‖2. (4.8)

For the last term on the right-hand side of (4.7), by (2.4) we have

2Re (σ(uv(t − ρ))v(t), uv(t))

� ‖σ(uv(t − ρ))‖2
L(H;l2) + ‖v(t)‖2

H‖uv(t)‖2

�
∑
k∈N

‖hk + σk(uv(t − ρ))‖2 + ‖v(t)‖2
H‖uv(t)‖2

� 2‖h‖2 + 4‖β‖2‖uv(t − ρ)‖2 + 4‖δ‖2 + ‖v(t)‖2
H‖uv(t)‖2. (4.9)

By (4.7)–(4.9) and Young’s inequality we obtain that for all t ∈ [0, T ],

d

dt
‖uv(t)‖2 � (2 + ‖v(t)‖2

H)‖uv(t)‖2 + (2β2
0 + 4‖β‖2)‖uv(t − ρ)‖2

+ ‖g‖2 + 2‖α‖2 + 4‖δ‖2 + 2‖h‖2,

which implies

‖uv(t)‖2 � ‖u0‖2 +
∫ t

0

(2 + ‖v(s)‖2
H + 2β2

0 + 4‖β‖2)‖uv(s)‖2 ds

+ (2β2
0 + 4‖β‖2)

∫ 0

−ρ

‖ξ(s)‖2 ds + (‖g‖2 + 2‖α‖2 + 4‖δ‖2 + 2‖h‖2)T.

(4.10)

By (4.10) we have for all t ∈ [0, T ],

sup
r∈[0,t]

‖uv(r)‖2 � ‖u0‖2 +
∫ t

0

(2 + ‖v(s)‖2
H + 2β2

0 + 4‖β‖2) sup
r∈[0,s]

‖uv(r)‖2 ds

+ (2β2
0 + 4‖β‖2)

∫ 0

−ρ

‖ξ(s)‖2 ds

+ (‖g‖2 + 2‖α‖2 + 4‖δ‖2 + 2‖h‖2)T. (4.11)
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By Gronwall’s inequality, it follows from (4.11) that for all t ∈ [0, T ],

sup
r∈[0,t]

‖uv(r)‖2

�
(
‖u0‖2 + (‖g‖2 + 2‖α‖2 + 4‖δ‖2 + 2‖h‖2)T + (2β2

0 + 4‖β‖2)
∫ 0

−ρ

‖ξ(s)‖2 ds

)
· e

∫ T
0 (2+‖v(s)‖2

H+2β0+4‖β‖2) ds

�
(
‖u0‖2 + (‖g‖2 + 2‖α‖2 + 4‖δ‖2 + 2‖h‖2)T + (2β2

0 + 4‖β‖2)
∫ 0

−ρ

‖ξ(s)‖2 ds

)
· e(2+2β0+4‖β‖2)T+‖v‖2

L2([0,T ];H) ,

which completes the proof. �

Based on above priori estimates of solutions, we next prove the well-posedness of
system (4.5).

Lemma 4.7. Suppose that (A1)–(A5) hold. Then for every (u0, ξ) ∈ l2 ×
L2((−ρ, 0); l2) and v ∈ L2([0, T ];H), system (4.5) has a unique solution
uv in C([0, T ]; l2). Moreover, if v1, v2 ∈ L2([0, T ];H) with ‖v1‖L2([0,T ];H) ∨
‖v2‖L2([0,T ];H) � R1 for some R1 > 0 and ‖u0‖2 ∨ ∫ 0

−ρ
‖ξ(s)‖2 ds � R2 for some

R2 > 0, then the solutions uv1 and uv2 of (4.5) with initial data (u0, ξ) satisfy

‖uv1 − uv2‖2
C([0,T ];l2) � C1‖v1 − v2‖2

L2([0,T ];H), (4.12)

where C1 > 0 is a constant depending on R1,R2 and T .

Proof. Note that system (4.5) on [0, ρ] is equivalent to the following system without
delay:⎧⎨⎩

duv(t) = −iAuv(t) dt − i|uv(t)|2uv(t) dt − λuv(t) dt + f(ξ(t − ρ)) dt
+g dt + σ(ξ(t − ρ))v(t) dt, t ∈ [0, ρ],

uv(0) = u0.
(4.13)

Let F (t, u) = −iAu − i|u|2u − λu + f(ξ(t − ρ)) + g + σ(ξ(t − ρ))v(t). By (2.2) and
(2.4) we find that for every R > 0, there exists CR > 0 depending only on R such
that for all t ∈ [0, T ] and u ∈ l2 with ‖u‖ � R,

‖F (t, u)‖ � CR [(1 + ‖v(t)‖H)‖ξ(t − ρ)‖ + ‖u‖ + ‖v(t)‖H + 1] , (4.14)

and for all t ∈ [0, T ] and u1, u2 ∈ l2 with ‖u1‖ ∨ ‖u2‖ � R,

‖F (t, u1) − F (t.u2)‖ � CR‖u1 − u2‖. (4.15)

Hence, by (4.14)–(4.15) and lemma 4.6, system (4.13) has a unique solution uv

defined on [0, ρ]. Repeating this argument, one can extend the solution uv to the
whole interval [0, T ].

Next, we are going to prove (4.12). By lemma 4.6, for v1, v2 ∈
L2([0, T ];H) with ‖v1‖L2([0,T ];H) ∨ ‖v2‖L2([0,T ];H) � R1 for some R1 > 0 and
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‖u0‖2 ∨ ∫ 0

−ρ
‖ξ(s)‖2 ds � R2 for some R2 > 0, there exists K = K(R1, R2, T ) > 0

such that supt∈[0,T ](‖uv1(t)‖ + ‖uv2(t)‖) � K. By (4.5) we get for all t ∈ [0, T ],

‖uv1(t) − uv2(t)‖2 � 2
∫ t

0

‖uv1(s) − uv2(s)‖‖i|uv1(s)|uv1(s) − i|uv2(s)|uv2(s)‖ds

+ 2
∫ t

0

‖uv1(s) − uv2(s)‖‖f(uv1(s − ρ)) − f(uv2(s − ρ))‖ds

+ 2
∫ t

0

‖σ(uv1(s − ρ))v1(s) − σ(uv2(s − ρ))v2(s)‖‖uv1(s) − uv2(s)‖ds. (4.16)

By (2.3) and Young’s inequality we have

2
∫ t

0

‖uv1(s) − uv2(s)‖‖f(uv1(s − ρ)) − f(uv2(s − ρ))‖ds

+ 2
∫ t

0

‖uv1(s) − uv2(s)‖‖i|uv1(s)|uv1(s) − i|uv2(s)|uv2(s)‖ds

� (K1 + 1)
∫ t

0

‖uv1(s) − uv2(s)‖2 ds, (4.17)

where K1 > 0 depends on R1, R2 and T . For the last term on the right-hand side
of (4.16), by (2.5) we get that there exists K2 = K2(R1, R2, T ) > 0 such that

2
∫ t

0

‖σ(uv1(s − ρ))v1(s) − σ(uv2(s − ρ))v2(s)‖‖uv1(s) − uv2(s)‖ds

� 2
∫ t

0

‖σ (uv1(s − ρ)) v1(s) − σ(uv2(s − ρ))v1(s)‖ ‖uv1(s) − uv2(s)‖ds

+ 2
∫ t

0

‖σ(uv2(s − ρ))(v1(s) − v2(s))‖‖uv1(s) − uv2(s)‖ds

�
∫ t

0

∑
k∈N

‖σk(uv1(s − ρ)) − σk(uv2(s − ρ))‖2 ds

+
∫ t

0

‖v1(s)‖2
H‖uv1(s) − uv2(s)‖2ds

+ 2K

∫ t

0

‖σ(uv2(s − ρ))(v1(s) − v2(s))‖ds

� K2

∫ t

0

‖uv1(s) − uv2(s)‖2 ds +
∫ t

0

‖v1(s)‖2
H‖uv1(s) − uv2(s)‖2ds

+ 2K

∫ t

0

‖σ(uv2(s − ρ))(v1(s) − v2(s))‖ds. (4.18)

https://doi.org/10.1017/prm.2024.20 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.20


Invariant measures and large deviation principles for SSDLS 33

Since
∫ 0

−ρ
‖ξ(s)‖2 ds � R2 and supt∈[0,T ] ‖uv2(t)‖ � K, we obtain that there exists

K3 = K3(R1, R2, T ) > 0 such that for all t ∈ [0, T ],

∫ t

0

‖σ(uv2(s − ρ))(v1(s) − v2(s))‖ds

�
(∫ t

0

‖σ(uv2(s − ρ))‖2
L2(H;l2) ds

)1/2 (∫ t

0

‖v1(s) − v2(s)‖2
H ds

)1/2

� K3‖v1 − v2‖L2([0,T ];H). (4.19)

It follows from (4.16)–(4.19) that

‖uv1(t) − uv2(t)‖2 �
∫ t

0

(K1 + K2 + 1 + ‖v1(s)‖2
H)‖uv1(s) − uv2(s)‖2 ds

+ 2KK3‖v1 − v2‖L2([0,T ];H).

Then by Gronwall’s inequality we know that for all t ∈ [0, T ],

‖uv1(t) − uv2(t)‖2 � 2KK3‖v1 − v2‖L2([0,T ];H)e
(K1+K2+1)T+‖v1‖2

L2([0,T ];H) ,

which completes the proof. �

The following lemma shows the continuity of an integral operator.

Lemma 4.8. Suppose that (A1)–(A5) hold. For a fixed ϕ ∈ L∞([0, T ]; l2) ∩
L2((−ρ, T ); l2), define the operator Γ : L2([0, T ];H) → C([0, T ]; l2) by

Γ(v)(t) =
∫ t

0

σ(ϕ(s − ρ))v(s) ds, ∀ v ∈ L2([0, T ];H). (4.20)

Then Γ is continuous from the weak topology of L2([0, T ];H) to the strong topology
of C([0, T ]; l2).

Proof. Note that the operator Γ : L2([0, T ];H) → C([0, T ]; l2) is well-defined. In
fact, by (2.1) and (2.4) we get for every v ∈ L2([0, T ];H),

∫ T

0

‖σ(ϕ(s − ρ))v(s)‖ds

�
∫ T

0

‖σ(ϕ(s − ρ))‖L(H;l2)‖v(s)‖H ds

�
(∫ T

0

‖σ(ϕ(s − ρ))‖2
L2(H;l2) ds

)1/2

‖v‖L2([0,T ];H)
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�
(

2‖h‖2T + 4‖β‖2‖ϕ‖2
L∞([0,T ];l2)T + 4‖δ‖2T + 4‖β‖2

∫ 0

−ρ

‖ϕ(s)‖2ds

)1/2

· ‖v‖L2([0,T ];H) < ∞, (4.21)

which implies that Γ(v) ∈ C([0, T ]; l2) for all v ∈ L2([0, T ];H). Moreover, by (4.21)
we get that Γ : L2([0, T ];H) → C([0, T ]; l2) is bounded. On the other hand, from
(4.2) and (4.20) it is easy to see that Γ : L2([0, T ];H) → C([0, T ]; l2) is linear. Since
the operator Γ : L2([0, T ];H) → C([0, T ]; l2) is strongly continuous and linear, one
can deduce that Γ is weakly continuous. Following the argument of [33, Lemma
4.3] with small modification and the Ascoli–Arzelà theorem, one can further show
that Γ is continuous from the weak topology of L2([0, T ];H) to the strong topology
of C([0, T ]; l2). �

Thanks to this lemma, we can proceed to prove the continuity of uv in C([0, T ]; l2)
with respect to v ∈ L2([0, T ];H) in the weak topology of L2([0, T ];H), which is
crucial to verify condition (H1) for the Laplace principle of {uε}.

Lemma 4.9. Suppose that (A1)–(A5) hold. If vn → v weakly in L2([0, T ];H),
then uvn

→ uv strongly in C([0, T ]; l2), where uvn
and uv are solutions of (4.5)

corresponding to vn and v, respectively.

Proof. Since vn → v weakly in L2([0, T ];H), there exists a constant N1 > 0 such
that ‖v‖L2([0, T ];H) � N1 and ‖vn‖L2([0, T ];H) � N1 for all n ∈ N. Then by lemma
4.6 there exists a constant N2 = N2(N1, T, u0, ξ) > 0 such that

sup
t∈[0,T ]

(‖uvn
(t)‖ ∨ ‖uv(t)‖) � N2, ∀ n ∈ N.

By (4.5) we have

d

dt
(uvn

(t) − uv(t)) = −iA(uvn
(t) − uv(t)) − i(|uvn

(t)|2uvn
(t) − |uv(t)|2uv(t))

− λ(uvn
(t) − uv(t)) + f(uvn

(t − ρ)) − f(uv(t − ρ))

+ σ(uvn
(t − ρ))vn(t) − σ(uv(t − ρ))v(t). (4.22)

We set

Θn(t) =
∫ t

0

σ(uv(s − ρ))(vn(s) − v(s)) ds.

Since vn → v weakly in L2([0, T ];H), by lemma 4.8 we obtain

Θn(t) → 0 in C([0, T ]; l2), as n → ∞. (4.23)

Then by (4.22) and (4.23) one can show uvn
→ uv strongly in C([0, T ]; l2). The

details are similar to [33] and hence omitted here. �

We now prove the map G given by (4.6) fulfills condition (H1) in lemma 4.4.
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Lemma 4.10. Suppose that (A1)–(A5) hold. Then for every a ∈ (0, ∞), the set

Ξa =
{

G

(∫ .

0

v(t) dt

)
: v ∈ Sa

}
(4.24)

is a compact subset in C([0, T ]; l2).

Proof. Let {uvn
} be any sequence in Ξa and {vn} ⊂ Sa ⊂ L2([0, T ];H). Since Sa

is a polish space under the weak topology of L2([0, T ];H), there exist v ∈ Sa and
a subsequence {vnk

} such that vnk
→ v weakly. Then, by lemma 4.9 we know that

uvnk
→ uv in C([0, T ]; l2), which implies that Ξa is compact in C([0, T ]; l2). �

Next, we derive the uniform estimates for the solutions of (4.4).

Lemma 4.11. Suppose that (A1)–(A5) hold, v ∈ Aa for some a ∈ (0, ∞) and
(u0, ξ) ∈ l2 × L2((−ρ, 0); l2) with ‖u0‖2 ∨ ∫ 0

−ρ
‖ξ(s)‖2 ds � R for some R > 0. Let

uε
v be the unique solution of system (4.4) with v. Then there exists a constant C2 > 0

depending only on a, R and T such that

sup
ε∈(0,1)

E

[
sup

s∈[0,T ]

‖uε
v(s)‖2

]
� C2. (4.25)

Proof. Applying Itô’s formula to (4.4), we obtain that for all t ∈ [0, T ],

‖uε
v(t)‖2 � ‖u0‖2 + 2Re

∫ t

0

(uε
v(s), f(uε

v(s − ρ))) ds + 2Re
∫ t

0

(uε
v(s), g) ds

+ 2Re
∫ t

0

(uε
v(s), σ(uε

v(s − ρ))vε(s)) ds + ε

∫ t

0

‖σ(uε
v(s − ρ))‖2

L2(H;l2) ds

+ 2
√

εRe
∫ t

0

(uε
v(s), σ(uε

v(s − ρ)) dW (s)) . (4.26)

By (2.4) and the Hölder inequality we obtain

2Re
∫ t

0

(uε
v(s), σ(uε

v(s − ρ))v(s)) ds

� 2 sup
0�s�t

‖uε
v(s)‖

∫ t

0

‖σ(uε
v(s − ρ))‖L2(H;l2)‖v(s)‖H ds

� 2 sup
0�s�t

‖uε
v(s)‖

(∫ t

0

‖σ(uε
v(s − ρ))‖2

L2(H;l2) ds

)1/2 (∫ t

0

‖v(s)‖2
H ds

)1/2
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� 1
4

sup
0�s�t

‖uε
v(s)‖2 + 4a

∫ t

0

‖σ(uε
v(s − ρ))‖2

L2(H;l2) ds

� 1
4

sup
0�s�t

‖uε
v(s)‖2 + 8aT‖h‖2 + 16a‖δ‖2 T + 16a‖β‖2

∫ t

0

‖uε
v(s)‖2 ds

+ 16a‖β‖2

∫ 0

−ρ

‖ξ(s)‖2 ds. (4.27)

It follows from (2.4), (4.8), (4.26)–(4.27) and Young’s inequality that for all t ∈
[0, T ] and ε ∈ (0, 1),

3
4

E

[
sup

0�s�t
‖uε

v(s)‖2

]
� ‖u0‖2 + (2β2

0 + 4‖β‖2 + 2 + 16a‖β‖2)
∫ t

0

E

[
sup

0�r�s
‖uε

v(r)‖2

]
ds

+ (2β2
0 +4‖β‖2+16a‖β‖2)

∫ 0

−ρ

‖ξ(s)‖2 ds+2‖α‖2T + 4‖δ‖2T

+ ‖g‖2T + 2‖h‖2T + 8aT‖h‖2 + 16a‖δ‖2 T

+ 2
√

εE

[
sup

0�r�t

∣∣∣∣Re
∫ r

0

(uε
v(s), σ(uε

v(s − ρ)) dW (s))
∣∣∣∣] . (4.28)

For the last term on the right-hand side of (4.28), by the Burkholder inequality we
have for all t ∈ [0, T ] and ε ∈ (0, 1),

2
√

εE

[
sup

0�r�t

∣∣∣∣Re
∫ r

0

(uε
v(s), σ(uε

v(s − ρ)) dW (s))
∣∣∣∣]

� 6E

[(∫ t

0

‖uε
v(s)‖2‖‖σ(uε

v(s − ρ)‖2
L2(H;l2) ds

)1/2
]

� 1
4

E

[
sup

0�s�t
‖uε

v(s)‖2

]
+ 36

∫ t

0

‖σ(uε
v(s − ρ))‖2

L2(H;l2) ds

� 1
4

E

[
sup

0�s�t
‖uε

v(s)‖2

]
+ 36

(
2‖h‖2T + 4‖δ‖2T

+ 4‖β‖2

∫ 0

−ρ

‖ξ(s)‖2 ds + 4‖β‖2

∫ t

0

E

[
sup

0�r�s
‖uε

v(r)‖2

]
ds

)
. (4.29)

Then (4.25) follows from (4.28)–(4.29) and Gronwall’s inequality. �

We now prove G and Gε satisfy condition (H2) in lemma 4.4.

Lemma 4.12. Suppose that (A1)–(A5) hold and {vε} ⊆ Aa for some a ∈ (0, ∞).
If {vε} converges in distribution to v as Sa-valued random variables, then Gε(W +
1/
√

ε
∫ .

0
vε(t) dt) converges to G(

∫ .

0
v(t) dt) in distribution.
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Proof. Notice that uv = G(
∫ .

0
v(t) dt) is the solution of (4.5) with the control v. Let

uε
vε = Gε(W + 1/

√
ε
∫ .

0
vε(t) dt). Then uε

vε is the solution of the following system:

⎧⎨⎩
duε

vε(t) = −iAuε
vε(t) dt − i|uε

vε(t)|2uε
vε(t) dt − λuε

vε(t) dt + f(uε
vε(t − ρ)) dt

+gdt + σ(uε
vε(t − ρ))vε(t)dt +

√
εσ(uε

vε(t − ρ))dW (t), t ∈ [0, T ],
uε

vε(0) = u0, uε
vε(s) = ξ(s), s ∈ (−ρ, 0).

(4.30)
In order to show that uε

vε converges to uv in C([0, T ]; l2) in distribution, we first
establish the convergence of uε

vε − uvε , where uvε = G(
∫ .

0
vε(t) dt) is the solution of

the following system:

⎧⎨⎩
duvε(t) = −iAuvε(t) dt − i|uvε(t)|2uvε(t) dt − λuvε(t) dt + f(uvε(t − ρ)) dt

+g dt + σ(uvε(t − ρ))vε(t) dt, t ∈ [0, T ],
uvε(0) = u0, uvε(s) = ξ(s), s ∈ (−ρ, 0).

(4.31)
Thus by (4.30)–(4.31) we have

d(uε
vε(t) − uvε(t)) =−iA (uε

vε(t) − uvε(t)) dt − λ (uε
vε(t) − uvε(t)) dt

− i
(|uε

vε(t)|2uε
vε(t) − |uvε(t)|2uvε(t)

)
dt

+ (f(uε
vε(t − ρ)) − f(uvε(t − ρ))) dt

+ (σ(uε
vε(t − ρ))vε(t) − σ(uvε(t − ρ))vε(t)) dt

+
√

εσ(uε
vε(t − ρ)) dW (t). (4.32)

For a given constant M > 0, we define a stopping time τε by

τε = inf{t � 0 : ‖uε
vε(t)‖ � M} ∧ T,

and the infimum of the empty set is taken to be ∞. Applying Itô’s formula to (4.32)
yields that for all t ∈ [0, T ],

sup
0�r�t

‖uε
vε(r ∧ τε) − uvε(r ∧ τε)‖2

� 2
∫ t∧τε

0

∥∥|uε
vε(s)|2uε

vε(s) − |uvε(s)|2uvε(s)
∥∥ ‖uε

vε(s) − uvε(s)‖ ds

https://doi.org/10.1017/prm.2024.20 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.20


38 Z. Chen, X. Sun and B. Wang

+ 2
∫ t∧τε

0

‖f(uε
vε(s − ρ)) − f(uvε(s − ρ))‖‖uε

vε(s) − uvε(s)‖ds

+ 2
∫ t∧τε

0

‖σ(uε
vε(s − ρ))vε(s) − σ(uvε(s − ρ))vε(s)‖‖uε

vε(s) − uvε(s)‖ds

+ 2
√

ε sup
0�r�t

∣∣∣∣∣
∫ r∧τε

0

(uε
vε(s) − uvε(s), σ(uε

vε(s − ρ)) dW (s))

∣∣∣∣∣
+ ε

∫ t∧τε

0

‖σ(uε
vε(s − ρ))‖2

L2(H;l2) ds. (4.33)

For fixed (u0, ξ) ∈ l2 × L2((−ρ, 0); l2) and {vε} ⊂ Aa, by lemma 4.6 there exists a
positive constant C3 = C3(a, u0, ξ, T ) such that for all ε ∈ (0, 1), P-almost surely,

sup
t∈[0,T ]

‖uvε(t)‖ � C3. (4.34)

For the first term on the right-hand side of (4.33), by (4.34) we get

2
∫ t∧τε

0

∥∥|uε
vε(s)|2uε

vε(s) − |uvε(s)|2uvε(s)
∥∥ ‖uε

vε(s) − uvε(s)‖ ds

� C4

∫ t∧τε

0

‖uε
vε(s) − uvε(s)‖2 ds

� C4

∫ t

0

sup
0�r�s

‖uε
vε(r ∧ τε) − uvε(r ∧ τε)‖2 ds, (4.35)

where C4 > 0 depends on a, u0, ξ, T and M . For the second term on the right-hand
side of (4.33), by (2.3) we get

2
∫ t∧τε

0

‖f(uε
vε(s − ρ)) − f(uvε(s − ρ))‖‖uε

vε(s) − uvε(s)‖dt

�
∫ t∧τε

0

‖f(uε
vε(s − ρ)) − f(uvε(s − ρ))‖2 ds +

∫ t∧τε

0

‖uε
vε(s) − uvε(s)‖2 ds

� (C5 + 1)
∫ t

0

sup
0�r�s

‖uε
vε(r ∧ τε) − uvε(r ∧ τε)‖2 ds, (4.36)

where C5 > 0 depends on a, u0, ξ, T and M . For the third term on the right-hand
side of (4.33), by (2.5) we obtain

2
∫ t∧τε

0

‖σ(uε
vε(s − ρ))vε(s) − σ(uvε(s − ρ))vε(s)‖‖uε

vε(s) − uvε(s)‖ds

�
∫ t∧τε

0

‖vε(s)‖2
H‖uε

vε(s) − uvε(s)‖2 ds
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+
∫ t∧τε

0

∑
k∈N

‖σk(uε
vε(s − ρ)) − σk(uvε(s − ρ))‖2 ds

�
∫ t

0

(‖vε(s)‖2
H + C6) sup

0�r�s
‖uε

vε(r ∧ τε) − uvε(r ∧ τε)‖2 ds, (4.37)

where C6 depends on a, u0, ξ, T and M . For the last term on the right-hand side
of (4.33), by (2.4) we get

ε

∫ t∧τε

0

‖σ(uε
vε(s − ρ))‖2

L2(H;l2) ds

� 2ε

∫ t∧τε

0

(‖h‖2 + 2‖β‖2‖uε
vε(s − ρ)‖2 + 2‖δ‖2) ds

� 2ε‖h‖2 T + 4ε‖δ‖2 T + 4ε‖β‖2M2 T + 4ε‖β‖2

∫ 0

−ρ

‖ξ(s)‖2 ds. (4.38)

It follows from (4.33)–(4.38) that for all t ∈ [0, T ],

sup
0�r�t

‖uε
vε(r ∧ τε) − uvε(r ∧ τε)‖2

�
∫ t

0

(C4 + C5 + C6 + 1 + ‖vε(s)‖2
H) sup

0�r�s
‖uε

vε(r ∧ τε) − uvε(r ∧ τε)‖2 ds

+ 2
√

ε sup
0�r�T

∣∣∣∣∣
∫ r∧τε

0

(uε
vε(s) − uvε(s), σ(uε

vε(s − ρ)) dW (s))

∣∣∣∣∣
+ 2ε‖h‖2 T + 4ε‖δ‖2 T + 4ε‖β‖2M2 T + 4ε‖β‖2

∫ 0

−ρ

‖ξ(s)‖2 ds. (4.39)

By (4.39) and Gronwall’s inequality, we obtain that for all t ∈ [0, T ],

sup
0�r�t

‖uε
vε(r ∧ τε) − uvε(r ∧ τε)‖2

� 2C7

√
ε sup

0�r�T

∣∣∣∣∣
∫ r∧τε

0

(uε
vε(s) − uvε(s), σ(uε

vε(s − ρ)) dW (s))

∣∣∣∣∣
+ 2C7ε‖h‖2T + 4C7ε‖δ‖2T + 4C7ε‖β‖2M2T + 4C7ε‖β‖2

∫ 0

−ρ

‖ξ(s)‖2ds,

(4.40)
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where C7 = e(C4+C5+C6+1)T+a. By Doob’s maximal inequality and (4.34), we now
estimate the first term on the right-hand side of (4.40),

4εE

⎡⎣ sup
0�r�T

∣∣∣∣∣
∫ r∧τε

0

(uε
vε(s) − uvε(s), σ(uε

vε(s − ρ)) dW (s))

∣∣∣∣∣
2
⎤⎦

� 16εE

[∫ T∧τε

0

‖uε
vε(s) − uvε(s)‖2‖σ(uε

vε(s − ρ))‖2
L2(H;l2) ds

]

� 16ε(M + C3)2E

[∫ T∧τε

0

‖σ(uε
vε(s − ρ))‖2

L2(H;l2) ds

]

� 32ε(M + C3)2
(
‖h‖2 T + 2‖δ‖2 T + 2‖β‖2M2 T + 2‖β‖2

∫ 0

−ρ

‖ξ(s)‖2 ds

)
.

(4.41)

From (4.40)–(4.41), it follows that

lim
ε→0

sup
0�r�T

‖uε
vε(r ∧ τε) − uvε(r ∧ τε)‖2 = 0 in probability. (4.42)

Recalling the definition of τε, by the Chebyshev inequality and lemma 4.11 we
obtain

P(τε < T ) = P

(
sup

t∈[0,T ]

‖uε
vε(t)‖ � M

)
� 1

M2
E

[
sup

t∈[0,T ]

‖uε
vε(t)‖2

]
� C2

M2
.

Hence it follows that

P

(
sup

0�t�T
‖uε

vε(t) − uvε(t)‖ > η

)
� P

(
sup

0�t�T
‖uε

vε(t) − uvε(t)‖ > η, τε = T

)
+ P

(
sup

0�t�T
‖uε

vε(t) − uvε(t)‖ > η, τε < T

)
� P

(
sup

0�t�T
‖uε

vε(t ∧ τε) − uvε(t ∧ τε)‖ > η

)
+

C2

M2
, (4.43)

which implies that

lim
ε→0

sup
0�t�T

‖uε
vε(t) − uvε(t)‖2 = 0 in probability. (4.44)

Since {vε} converges in distribution to v as Sa-valued random variables, according
to Skorokhod’s representation theorem, there exist a probability space (Ω̃, F̃ , P̃ ),
and Sa-valued random variables {ṽε} and ṽ with the same distribution as {vε} and
v, respectively, such that {ṽε} → ṽ P̃ -almost surely in Sa. By lemma 4.9 we infer
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that uṽε → uṽ P̃ -almost surely in C([0, T ]; l2). Then uṽε → uṽ in C([0, T ]; l2) in
distribution, and hence

uvε → uv in C([0, T ]; l2) in distribution, (4.45)

which together with (4.44) implies the desired result. �

By lemma 4.10, lemma 4.12 and corollary 4.5, we see that the family {uε} satisfies
the LDP provided (A1)–(A5) hold. This completes the proof of theorem 2.3.
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