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ALMOST ALL CHORDAL GRAPHS SPLIT
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Abstract

A chordal graph is a graph in which every cycle of length at least 4 has a chord. If G is a random
n-vertex labelled chordal graph, the size of the larget clique in about n/2 and deletion of this clique
almost surely leaves only isolated vertices. This gives the asymptotic number of chordal graphs and
information about a variety of things such as the size of the largest clique and connectivity.

1980 Mathematics subject classification (Amer. Math. Soc): 05 C 99.

A chordal graph is a graph in which every cycle of length at least 4 has a chord.
They have also been called triangulated graphs, rigid circuit graphs and perfect
elimination graphs. See [1], [2], [4], [5] and [6] for further information. A split graph
is a graph whose vertices can be partitioned into two sets, one of which induces a
clique and the other an independent set. This can be viewed as a bipartite graph
with added edges joining all the vertices in one part. It is easily seen that every
split graph is chordal. We will show that almost all chordal graphs are split.

If G is a labelled chordal graph, let c(G) be the size of the largest clique of G.
Let T(n) be the number of n-vertex labelled chordal graphs G and let T(n,r) be
the number with c(G) = r. All probability statements refer to chordal graphs
chosen uniformly at random from the set of all labelled /i-vertex chordal graphs.
Let \H\ be the number of vertices in the graph H.

The following result has been proved with "each clique" replaced by "some
clique" by Rose [4]. See also Dirac [2].
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[ 21 Almost all chordal graphs split 215

LEMMA 1. For each chordal graph G and each clique R of G there is a sequence

R = Gr,Gr+1,...,Gn = G

of graphs such that Gi+1 is obtained from G, by adjoining a new vertex to one of its
cliques. If u, v £ R, {u, v} is an edge, andu is adjoined before v, then C(v) D R c
C(M) n R, where C(w) is the clique to which w is adjoined.

PROOF. Suppose the lemma is false and let G be a counterexample with the least
number of vertices, say n. Also assume that the connectivity k of G is as large as
possible given n. Since the theorem is true for complete graphs, k =f= n and G has a
A:-cutset K of vertices. By Dirac's Theorem 1 [2], K induces a clique in G. Let C be
a component of G - K such that

• "

contains R. Since G is minimal and subgraphs of chordal graphs are chordal, the
lemma holds for H starting with R. Similarly, the lemma holds for G — C starting
with the clique on K. Thus G can be built up by first building H and then
building G — C, a contradiction.

The last claim in the lemma follows from the fact that C(v) is a clique
containing u and all the edges between u and R end in C(u) n R.

LEMMA 2. We have

T ~ r - I ) " « T(n, r) < »K»_j^]L2«-,),

the number of maximal cliques in T(n, r) is at most n — r + 1, and log2 T(n) ~
n2/4.

PROOF. The lower bound on T(n, r) is proved joining each of n — r vertices to
at most r — 2 vertices of a complete graph on r vertices. (It is necessary to use
r — 2 rather than r — 1 to avoid overcounting due to more than one r-clique.) We
now prove the upper bound. By Lemma 1, all chordal graphs G with c(G) — r are
constructed by the following algorithm.

(1) Choose r vertices and let H be the clique on those vertices.
(2) Choose a vertex v $ H and a (possibly empty) clique C(v) c H of less than

r vertices.
(3) Replace H by H together with v and all possible edges between C(v) and v.

(called adjoining v.)
(4) If vertices remain, go to Step 2; otherwise set G = H.

Selecting the clique in Step 1 gives a factor of ("). Ordering the remaining vertices
for Step 2 gives a factor of (n — r)\. The clique in Step 2 can be specified by
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choosing a subclique of a maximal clique of H. After k — 1 vertices have been
adjoined, there are at most k maximal chques and each has at most r vertices, so
we obtain a factor of klr. Multiplying factors gives the upper bound. Since we
have n — r vertices to adjoin, there are at most n — r + 1 maximal cliques.

We prove the asymptotic claim. Let r = [n/2] and assume that n is large. From
the proved bounds,

2'("-'>< T(n,r) < T(n)

< nmaxT(n,x) < n(n\)2max 2x("-x) = n(n\)22r("-r\
X X

Since log(n!) = o(n2), the theorem follows.

LEMMA 3. / / / ( « ) / }/n log n -> 00 as n -» 00 andA1 < 1, then for all sufficiently
large n,

Pr{\c{G) -n/2\ > / ( « ) } < exp(-AJ(n)2).

PROOF. From the previous lemma, T(n, r) < (n!)22n2/42<f-n/2)2. Thus

Pr{\c(G) - n/2\ > /(„)} = T(n)-1 £ T(n, r)

<exp(6>(«logn)-/(«)2).

LEMMA 4. Let s(G) be the maximum possible size of the largest clique in G — R,
the graph obtained from G by deleting a maximum clique R. Iff(n)/ ^n logn -* 00
ay n -* 00 andA2 < 1/4, then for all sufficiently large n,

Pr{s(G) > / (« )} < cxp(-A2f(n)2).

PROOF. We will bound T(n, r, s), the number of chordal graphs on n vertices
with c(G) = r and s(G) = s. Rather than use the algorithm, we create R and
G — R separately and then connect them. The number of choices for the vertex
labels of R is ("). Since G is chordal, so is G — R. Hence there are T(n — r, s)
choices for the graphs G — R given R. How many ways can R and G — R be
connected? Let S be an s-vertex clique in G - R. If v e S, let R(v) be the vertices
in R to which v is joined. It follows from the latter half of Lemma 1 that for some
ordering vlf...,vs of S, R(vt) c R(vi+1). Hence 5 can be connected to R in at
most *!(* + l ) r ways. The remaining n — r — s vertices of G - R can each be
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connected to R in at most 2r ways. Thus

T(n, r, s) < (n
r)T(n - r, s)s\(s + l ) ^ " " ' " ' >

We now sum over 5 > / ( « ) and over all r with \n/2 - r\ < f(n)/2. Thus
r + s > (n + / ( n ) ) / 2 in the sum. The sum can be shown to be small by the same
method used in proving Lemma 3, and the neglected range gives a small
contribution by Lemma 3. The lemma follows.

THEOREM. Ifa>jj3,nis sufficiently large and G is a random n-vertex chordal

graph, then

Pr{G is a split graph } > I - a".

PROOF. L e t / ( n ) = «2 / 3 . By Lemmas 3 and 4, the fraction of n-vertex chordal
graphs which do not satisfy \n/2 — r\ < / ( « ) and s < / ( « ) , where r = c{G) and
s = s(G), is o(a"). Hence we neglect them. Note that n = (1 + o( l ) ) r and

nf(n) = (i + O(1)Y, facts we shall find useful at times in the proof.
We will give a refined version of the algorithm for generating chordal graphs

that eliminates many of the duplicate ways to produce a graph. We will begin by
picking out a maximal independent set of edges B in G — R, and denote the set of
ends of edges in B by U. Note that Z = (G — R) — B consists only of isolated
vertices. We will adjoin the vertices of Z to H as soon as possible, respecting the
lexicographic order (i.e., increasing numerical order of labels) of Z when we can.
Since no pair of vertices in Z are joined by an edge, each is joined to the last U
vertex preceding it, and the vertices of Z adjoined between the adjoining of any
two vertices of U are in lexicographic order. Here "between" has the obvious
meaning before the first vertex in U is adjoined or after the last. It will be useful
to distinguish X, the set of vertices u e U with C(u) large. Here is the modified
algorithm.

(1) Choose r vertices and let H = R be the clique on those vertices.
(2) Choose an ordered set U of 2b of the remaining vertices. Let Z be the

remaining vertices and let X be a subset of U containing x vertices.
(3) Pair the vertices of U to specify a set B of b edges.
(4) Order the vertices for adjoining subject to the conditions that all vertices in

U are in the same order as in Step 2 and that all vertices in Z between two
vertices in U are in lexicographic order.

(5) For the next vertex v to be adjoined choose a (possibly empty) clique
C(v) c H of less than r vertices subject to the following constraints.

(a) If v G U, {u, v) e B, and M has been adjoined, then u e C(v).
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(b) If v e X, then \C(v)\ > r - 2f(n).
(c) If o e U - X, then \C(v)\ < r - 2/(«).
(d) If p G Z, the last vertex in U that was adjoined to H is in C(v) and

C(v)C\Z= 0.
(6) Replace H by H together with v and all edges between C(v) and v.
(7) If vertices remain, go to Step 5; otherwise set G = H.
There are (?) choices at Step 1, less than n2b(2b)x = (1 + o(l))br at Step 2, and

(2b)\/b\2b < n2b = (1 + o(l))6r at Step 3. Hence there are at most

(1) (J)(l + o(l))"r

choices for the first three steps.
We now turn to Steps 4 and 5. These are best handled together, for each vertex

v & R. Step 4 can be viewed as associating each vertex v e Z with the last vertex
of U adjoined before it (or with 0 if v is adjoined before any vertex in U). As
argued in Lemma 2, there are less than «2r choices for C(v). This is too crude an
estimate for many cases. We begin by improving the estimate for vertices in U. By
the above view of Step 4, there are no choices at Step 4 for U. A vertex in X can
be adjoined in at most

(2) n £

ways. Suppose {«, v} e B. We bound iV(w, v), the number of ways to choose
C(u) and C(v).

Case 1. If u, v <= X, then JV(M, U) = (1 + o(l))'by (2).

Case!. If u e Xandu e £/ - A', thenAT(«( u) < (1 + o(l))rn2r = (1 + o(l))r2r

by previous observations.

Case 3. Suppose that u, v e U — X and M is adjoined first. Choose a maximal
clique M, of which there are less than n and none have more than r vertices.
Choose a subclique C(u) of Af. By Lemma 1, C(v) n R c C(M). Thus, given M,
we can specify C(w) and C(v) n Rin 3|A/| < 3r ways. The remainder of C(v) is a
clique outside R and so can be specified in less than nV = (1 + o(l))r ways. Thus
N(u, v) < 3'(1 +

Synthesis. Let a be the number of edges in B with both ends in X and /? the
number with one end in X. Then x = 2a + B. The total contribution from
adjoining the vertices in U is at most

(3) (1 + o(l))br2<iry<b-'-f» = 3*'(2/3)/?r(l/v/3~)2"'(l + o(l))br
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Consider v e Z.

Case 1. If we associate v with 0 for the ordering of Step 4, then there is one
choice for when to adjoin v and at most 2r choices for C(v) since C(v) c R.

Case 2. How many ways can we have C(v) n (U — X) ¥= 0? there are less than
n choices at Step 4 for ordering v. Suppose that u & C(v) C\ (U ~ X) ¥= 0 .By
Lemma 1, C(v) n R c C(u). Also, |C(u)| < r - 2/(«). Since there are less than
n choices for u, there are less than n2r~2/(n) choices for C(v) n R. The remainder
of C(v) is a clique outside /? and so can be specified in less than n2s ways. Thus
there are at most n22r~f(n) choices for Steps 4 and 5.

Case 3. How many ways can we have 0 * C(v) n U c X? By Step 5(d), Step
4 must associate v with some vertex u e X This can be done in JC ways. Thus
C{v) c C(M) U U and M G C(D). Hence there are at most x2|C(u)l < x2r~1 ways
to carry out Steps 4 and 5.

Synthesis. Combining the above, we see that there are less than

2'<""'- 26>(1 + x/2 + n22-f^)n~r~2b

2 '<"-'-26)(l + /2)"-r{\ + o{\))

ways to order and adjoin the n — r - 2b vertices that lie in Z, where (1 + o(l))
comes from nlog(l + «22"/(n)) = o(l).

By (1), (3) and (4), the number of graphs constructed by the algorithm is at
most

(5)

Summing over x < 2b is simple: The maximum of t(x) = (2/3)r*(l + x/2)"~r

occurs at

n-r l + o(l)
" < 2 4 ?

Hog(3/2) < log(3/2) 2-4?-

Since f(0) and /(I) are both (1 + o(l))r, we see that (5) summed on x is bounded
by

Summing this on b > 1, we get
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Summing this on r with \r — w/2| < /(«) and using the comment at the beginning
of this proof, we obtain

")2r ("" r ) + o(a"T(n)).T(n)Pr{b> 0} < ( | + o(

By Lemma 2 the sum is O(T(n)).

Since the structure of typical chordal graphs is so simple, we can easily derive a
variety of corollaries such as the following. Here n denotes the number of vertices
in each graph.

COROLLARY 1. The number of chordal graphs, the number of split graphs, twice
the number of triangle-free graphs, and twice the number of bipartite graphs are all
asymptotic to

n
n - \

k 00

2»2/4

if n is even;

, if n is odd.

PROOF. Erdos, Kleitman and Rothschild obtained asymptotics for the number
of triangle-free graphs [3]. The rest of the claims follow from the theorem and the
fact that the number of split graphs is twice the number of bipartite.

COROLLARY 2. / / / («) -» oo, then Pr{\c(G) - n/2\ > /(«)} -» 0 as n -> oo.

PROOF. This amounts to estimating the sums in Corollary 1 for \k\ > /(«).

COROLLARY 3. Let k(G) denote the connectivity of G. Iff(n)/ y/w log n -» oo as
n -» oo,

Pr{\k(G)-n/4\>f(n)}->0 asn^oo.

PROOF. It suffices to consider split graphs. The connectivity of a split graph is
the minimum vertex degree. This is easily seen to be about n/4.
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