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SOME NOTES ON TWO TYPES OF MINIMAL REPAIR

M. S. FINKELSTEIN,* Electropribor Institute, St Petersburg

Abstract

Two types of minimal repair are discussed. After statistical minimal
repair, the state of a system is statistically identical to what it was just
before the failure. Physical minimal repair restores the failed unit to its
exact physical condition before the failure. Several examples are given.
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1. Introduction

Consider a system with an absolutely continuous failure-time distribution function @P(x)
and failure rate function A(X). A concept of minimal repair was introduced by Barlow and
Proschan [2]: if a failure occurs at time t then, after the minimal repair, the survival
probability to time t + s is (1 - @P(t + s)/(1 - @P(t)) and the failure rate function is A(t + s),
s ~ O. This means that after the repair the state of a system is statistically identical to the state
just before the failure. That is why this type of repair was called by Bergman [3] statistical
minimal repair (SMR), differing from physical minimal repair (PMR) when the failed unit is
restored to the exact physical condition it was in just before the failure. Later Arjas and
Norros [1] introduced the so-called F-minimal repair (FMR) , where F stands for .the
information that identifies the state of a failed device. FMR is a more general notion: when
we have no information to hand it is SMR, when we have complete information, idealizing
the situation of course, it is PMR. Several particular cases of FMR were treated by
Finkelstein [4].

It should be noted that there are two interpretations of SMR. The first one was introduced
to mimic the behaviour of a large system when one of its many components is replaced or
repaired. The second one (which has not so far received proper attention) describes the
situation when the whole system after the failure is replaced by an identical one that had
functioned for the same time and in the 'same way' but had not failed (loaded redundancy).
This second interpretation will help us to treat the examples below.

Natvig [5] conjectured that for the two types of minimal repair the following inequality
holds:

(1)

where @PSMR(X) and @PFMR(X) are the distribution functions of the remaining system lifetimes
just after SMR and FMR respectively, @P(x) == 1 - @P(x).

The inequality (1) (not yet proved) means that the remaining system lifetime after SMR is
stochastically longer than after FMR. Some examples dealing with (1) are presented below.
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2. Three examples

A. Single unloaded redundancy. Let the distribution function of an item be ~(x) =
1- e-Ax

• Then for the system of two identical elements, ~(x) =1- e-Ax(1 + Ax). It is easily
seen that the failure rate function corresponding to the remaining lifetime is A for FMR (the
information to hand leads to the replacement of only one element after the failure of the
system) and As(t) = A2t/(1 + At) for SMR. Finally, because A2t/(1 + At) < A for all t, one can
derive (1).

B. Single loaded redundancy. Let the distribution function of the first element be
~(x) =1- e-

AtX and of the second ~(x) = 2 - e-A~. Assume the system has failed at time t.
Then the following theorem holds.

Theorem. For each t ~ 0 the following inequality holds:

(2) ~MR(X) ~ :PFMR(X),

where ~MR(x) and ~~MR(x) are the distribution functions of the remaining system lifetimes
just after SMR and FMR respectively at time t.

Proof Let At > A2 • In accordance with the definition of SMR and the second interpretation
of minimal repair mentioned above, we can derive the probabilities of a system being just
after SMR in respectively the states where the first element is operating (the second has
failed), P~MR(t); the second element is operating (the first has failed), P~MR(t); and both
elements are operating, P~~R(t). We have

(3)

(4)

(5)

e-A21(1 - e-Atl)

pSMR(t) _ ---~--~-
2 - e-Atl + e-A21 _ e-(At+A2)1'

e-(At+A2)1
PSMR(t) = _

1.2 e-Atl + e-A21 _ e-(At+ A2)1·

After FMR, by definition, the system can obviously be in only one of two states, with
probabilities PfMR(t) and p~MR(t). It is easily seen that

A e-Atl(1 - e-A21)
(6) pFMR(t) t ~ _

t - A te-
Atl(1 _ e-A21) + A2e-A21(1 - e-At)'

A e-A21(1 - e-Atl)

(7) PFMR(t) = 2 _

2 A2e- A21(1 _ e-Atl) + Ate-Atl(1 - e-A21)"

Remembering that At > A 2 , we obtain

(8)

The inequality means that FMR with greater probability than SMR brings the system to the
state where the worst element is functioning. Combining (8) with

pfMR(t) + p~MR(t) = 1

P~MR(t) + p~MR(t) + p~~R(t) = 1

completes the proof of the theorem.

Corollary. The inequality (2) for the systems investigated leads to the inequality (1).

Because t is arbitrary the proof is obvious.
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Figure 1

The result can be easily generalized for n-tuple redundancy (n = 2, 3, ...).

C. Single loaded redundancy with arbitrary fA(x) and ~2(X). One might imagine that (2)
holds for all redundant systems, but a counterexample shows that this is not so. Let
Pl(t) == 1 - fA(t), P2(t) == 1 - ~(t) be as in Figure 1 (we do not need for this counterexample
the assumption of absolute continuity of the distribution functions, which was made only for
simplicity).

Suppose that the system had failed at t = ~t1. If follows from the figure that with probability
1 it is the second element that has failed. After FMR the system will function for
2t1 - ~tl = 1~tl. It is obvious that after SMR it will function stochastically for a shorter period
of time because only some of the realizations will have length 1~t I; others will be ~t I. Thus the
inequality (2) does not hold for t = ~tl' although it is easily seen that it holds for t = t l •

3. Conclusion

Both concepts of minimal repair can be helpful for probability analyses of repairable
systems. SMR is good for describing the replacement of the failed system by an identical one.
FMR is preferable for the replacement of the failed units of a system.

The inequality (2) holds for two-unit systems because 1- e- AtX > 1 --:.e- A
2,X, fs>r all x > o.

Presumably this conclusion is the same for arbitrary fA(x), ~(x), if ~(x) ~ fA(x), for all
x ~ O. If this inequality does not hold for all x > 0, then as shown by the counterexample
there can be x and t that change the sign of inequality (2).
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