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Roughness of the surface underlying the atmospheric boundary layer causes departures
of the near-surface scalar and momentum transport in comparison with aerodynamically
smooth surfaces. Here, we investigate the effect of 56 × 56 homogeneously distributed
roughness elements on bulk properties of a turbulent Ekman flow. Direct numerical
simulation in combination with an immersed boundary method is performed for fully
resolved, three-dimensional roughness elements. The packing density is approximately
10 % and the roughness elements have a mean height in wall units of 10 � H+ � 40.
According to their roughness Reynolds numbers, the cases are transitionally rough,
although the roughest case is on the verge of being fully rough. We derive the friction of
velocity and of the passive scalar through vertical integration of the respective balances.
Thereby, we quantify the enhancement of turbulent activity with increasing roughness
height and find a scaling for the friction Reynolds number that is verified up to Reτ ≈
2700. The higher level of turbulent activity results in a deeper logarithmic layer for the
rough cases and an increase of the near-surface wind veer in spite of higher Reτ . We
estimate the von Kármán constant for the horizontal velocity κm = 0.42 (offset A = 5.44)
and for the passive scalar κh = 0.35 (offset A = 4.2). We find an accurate collapse of the
data under the rough-wall scaling in the logarithmic layer, which also yields a scaling for
the roughness parameters z-nought for momentum (z0m) and the passive scalar (z0h).
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1. Introduction

Roughness characterizes a plethora of turbulent flows at various scales – from the smallest
scales encountered in geophysical flow (such as the roughness of individual surfaces, tree
leaves, etc.) via the bulk roughness of real surfaces to the largest scales in the Earth system,
where topographic undulations present a roughness for synoptic-scale systems. While
under strong conditions on the surface properties, a flow can be considered hydraulically
smooth (Pope 2000), atmospheric flows are virtually always rough due to the small-scale
heterogeneity of the underlying Earth’s surface in combination with the low viscosity of
air. The atmospheric boundary layer (ABL) is the lowest part of the Earth’s atmosphere
with a thickness of 0.1 to 2 km (Garratt 1992) and a prototype rough ABL is the objective
of this study.

Rotation of the Earth is a unique feature of the ABL; despite the small Rossby number,
it causes significant departures in comparison with simpler canonical flows (e.g. closed
channel or pipe flow). It is commonly considered by background rotation around the
vertical axis – giving rise to Ekman flow (Ekman 1905). For a statistical two-point
description of the flow, such rotation breaks the symmetry in the spanwise direction.
Near the ground, surface friction comes into play and decelerates the flow, and the mean
wind rotates in favour of the pressure gradient force, forming the Ekman spiral. Given
the friction velocity uτ and the Coriolis parameter f, the outer scale of the Ekman flow
δ = uτ /f , a scale for the boundary-layer thickness, forms as a consequence of shear
growth and rotational suppression of the boundary layer; though unknown a priori, it
is a constant for neutrally stratified flow and depends on the Reynolds number only –
in stark contrast to spatially evolving boundary layers. Further, the turbulent boundary
layer is complemented by an infinite reservoir of non-turbulent fluid aloft, which can be
entrained into the boundary layer, causing departures of mean-flow statistics with respect
to non-external canonical flows.

Direct numerical simulation (DNS) of Ekman flow is a viable model for ABL
turbulence. Following the seminal work of Coleman, Ferziger & Spalart (1990), it was
studied for hydraulically smooth configurations (Coleman 1999; Shingai & Kawamura
2004; Miyashita, Iwamoto & Kawamura 2006; Spalart, Coleman & Johnstone 2008, 2009;
Ansorge & Mellado 2014, 2016; Deusebio et al. 2014; Shah & Bou-Zeid 2014; Ansorge
2019). Considerations over non-smooth surfaces are scarce: to the authors’ knowledge,
Lee, Gohari & Sarkar (2020), who conduct DNS of the Ekman flow for sinusoidal
surface topography under neutral and stable density stratification, is the only example.
They investigate two-dimensional periodic bumps with H+ = 15 at Reτ = 700, where
H+ is the height of the bumps in viscous units and Reτ the friction Reynolds number,
i.e. in the transitionally rough regime and find increased turbulent kinetic energy (TKE)
production with an increasing slope of the bumps – counteracting buoyancy-induced
suppression of turbulence. Limitations of the study are the absence of sharp edges, thus
limiting flow instability and flow turbulence enhancement, the two-dimensional shape of
their roughness elements and limited scale separation (Reτ ). Here, we complement this
approach by (i) adding square surface elements to represent the small-scale roughness
over homogeneous surfaces encountered frequently underneath the ABL and (ii) by an
increased scale separation.

The effect of a rough boundary in turbulent flow is reviewed by Raupach, Antonia &
Rajagopalan (1991), Finnigan (2000), Jiménez (2004), Kadivar, Tormey & McGranaghan
(2021) and Chung et al. (2021). Homogeneously rough flow, i.e. flow with a statistically
homogeneous description of the roughness elements, is governed by two dimensionless
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Small-scale roughness in Ekman flow

parameters: (i) a roughness Reynolds number

H+ = H
δν

, (1.1)

where H is the height of roughness, δν = ν/uτ the viscous length scale with uτ the
friction velocity and ν the kinematic viscosity, and (ii) the blocking ratio H/δ, where δ is
the boundary-layer thickness. Different roughness regimes are encountered for increasing
H+, ranging from hydraulically smooth – where no roughness effects are found in the
flow statistics above the viscous layer – via transitionally rough to fully rough – where
pressure drag outweighs the skin frictional drag and the buffer layer is replaced by a
roughness sublayer. Values for the regime transitions are reported based on experiments
(cf. table 2 in Kadivar et al. 2021). These are based on the pioneering work of Nikuradse
(1933), who studied pipe flow with uniform sand-grain roughness and on the later work
by Schlichting (1936), who introduced the equivalent sand-grain roughness with the aim
of transferring Nikuradse’s theory to other roughness geometries. In essence, the latter
work suggests there exists an approximate scale z0m representing roughness effects also for
less ideal configurations. This equivalent parameter, the aerodynamic roughness length for
momentum z0m, defines an empirical roughness Reynolds number z+

0m which is commonly
used in studies of rough configurations. The ABL flow is considered hydraulically smooth
flow for z+

0m � 0.135 and fully rough for z+
0m � 2 − 2.5 with the transitionally rough

regime in between (Brutsaert 1982; Andreas 1987). The zero-plane displacement height
d reflects a virtual shift of the effective underlying surface for high packing densities when
fitting the logarithmic law. In the essence of classical scaling theory, the logarithmic law
of the wall for the mean velocity ū(z) under neutral conditions is

ū(z) = uτ

κ
ln

(
z
z0

)
, (1.2)

following the notation of Monin (1970) (cf. their equation 9a), with the von Kármán
constant κ . For flow over rough surfaces, z is substituted by z − d (in 1.2), for consideration
of the zero-plane displacement height d. This form of the logarithmic law – with the
roughness parameter z0 – forms the cornerstone of the Monin–Obukhov similarity theory
(MOST, cf. Monin 1970; Foken 2006).

The second parameter of the roughness, the blocking ratio H/δ, can be used to describe
the influence of roughness on the logarithmic layer and wall similarity (based on Townsend
1961, 1976, and elaborated by Raupach et al. 1991). Jiménez (2004) found that wall
similarity holds if δ/H > δcrit/H for δcrit/H ≈ 40–80. Notably, for the friction Reynolds
number Reτ = δ+, it is

Reτ = δ

H
H+ = δ+. (1.3)

However, this suggests that the total turbulent scale separation measured in terms of Reτ is
to be considered as geometrically composed of, first, a separation between large eddies and
the roughness scale and, second, a separation between the roughness scale and viscosity.
The scale separation between the inner viscous scale δinner and the outer scale δouter of the
problem in a general formulation is given as

Regen = δouter

δinner
= δ

F(δν, H)
, (1.4)

in the form of the general-Reynolds number Regen. In the smooth limit, it is δinner ∼ δν ,
Regen is the friction Reynolds number Reτ . However, in the fully rough limit δinner ∼ H
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Eddy sizes

Dissipation range Inertial range Energy-containing eddies

Rer

Lr

Reτ /Rer

Reτ ∝ δ/δv

δv δ

Figure 1. Schematic of the scale separation in a turbulent flow as a function of the eddy sizes, with roughness
acting at a range of scale O(Lr). The energy-containing eddies are O(δ) for a turbulent Ekman layer and the
onset of the dissipation range is located at O(δν), with the viscous scale δν = ν/uτ . The Reynolds numbers
Reτ and Rer in this schematic give rise to a reduced Reynolds number Reτ ∝ Reτ /Rer, capturing the scale
separation available for large-scale eddies until they hit the effects of bulk roughness.

and Regen is the blockage ratio δ/H. An overlap and logarithmic layer is only present if the
scale separation in terms of Regen is sufficiently large.

When interpreting turbulent Ekman flow as an idealized representation of the ABL,
a DNS approach inevitably resorts to the concept of Reynolds-number similarity: the
scale separation necessary for a direct representation of geophysical problems at scale
is out of reach, even using the most modern computational approaches. The common
representation of a prototype turbulent flow shows a cascade of motions from large-scale
energy-containing eddies to the dissipation range (figure 1). If there is sufficient scale
separation in between the two, the inertial range develops a self-similar scaling. In this
regime of fully developed turbulence, i.e. when a sufficiently large inertial range exists
(Dimotakis 2005), the spectral properties are well described by the seminal theory put
forward by Kolmogorov (1941) and Obukhov (1941). Further, some statistics of the
flow – in particular low-order statistics, such as dissipation (Dimotakis 2005) and mean
velocity profiles (Barenblatt 1993) – will cease to depend on the separation of scales,
viz. Reynolds number. While these scales, and thus also Reτ , exist and bear a physical
meaning in the rough configuration, the roughness parameter Lr (characteristic roughness
length scale) defines a new length scale. For all problems of relevance, it is L � Lr,
with L the scale of the largest eddies and in our specific problem we identify L ∼ O(δ)

with the boundary-layer thickness, and Lr � O(δν) (if Lr � δν , the surface must be
aerodynamically smooth; and if Lr reaches O(δ), an obstacle is no longer considered
a roughness element). In analogy to the decomposition of the Reynolds number Reτ

proposed above (1.3), this gives rise to a roughness Reynolds number Rer ∝ Lr/δν which
can be interpreted as a range of eddy sizes locally ‘occupied’ by roughness. This range
is not available for an undisturbed continuation of the inertial range as roughness alters
the scales of turbulent production, as measured by uτ , and local dissipation of turbulence
kinetic energy (Davidson & Krogstad 2014). From the perspective of large-scale motions,
this limitation is similar to reducing the Reynolds number by O(Re−1

r ). In our study
we will hence resort to cases with Rer = O(1) such that the turbulence instability of
the large-scale eddies is retained despite the intermediate Reynolds number achieved
in our DNS. While this limits us to relatively small roughness elements, we retain a
proper turbulent interaction between the inner and outer scales as is observed in the
real-world ABL.

The investigation of roughness gives rise to a huge parameter space, as the geometry,
distribution and arrangement of roughness elements impact on the turbulent flow (Kadivar
et al. 2021). Cubical roughness elements are one preferred set-up for studying the effect
of three-dimensional roughness on wall-bounded turbulent flow in vegetation and urban
canopies, and we choose them also here as the building blocks of the rough surface.
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Small-scale roughness in Ekman flow

There are several numerical studies with staggered or aligned arrays, varying the roughness
density and the size of roughness elements. The problem is investigated through DNS for
channel flow (Coceal et al. 2006; Leonardi & Castro 2010), and for a turbulent boundary
layer (Lee, Sung & Krogstad 2011b). It was also assessed by large-eddy simulation (LES)
(Stoesser et al. 2003; Kanda, Moriwaki & Kasamatsu 2004; Cheng & Porté-Agel 2015)
and through wind tunnel measurements (Castro 2007; Cheng et al. 2007; Perret et al.
2019). Coceal et al. (2006) emphasize the difference between two- and three-dimensional
roughness: mixing and transport are different for a two-dimensional setting. For flow
orthogonal to the elements, there are unrealistically large sheltering effects; for flow
parallel to elements, secondary motions become unrealistically large. Furthermore, their
findings imply that a variable height of the roughness elements is needed to capture
real-world conditions. Indeed, LES studies of Xie, Coceal & Castro (2008) and Yang et al.
(2016), investigated flows over blocks with a Gaussian height distribution. In this study, we
chose blocks with a uniform height and width distribution to represent the randomness of
individual roughness elements. Individual roughness elements are randomly offset from
an equidistant, regular grid to also break symmetry due their positioning. The height of
roughness elements can be considered with respect to the outer scale δ (giving rise to the
blocking ratio) and the inner scale ν/uτ (yielding the roughness Reynolds number H+; cf.
(1.3)). The present work is limited to rectangular roughness blocks with a small blocking
ratio (H/δ � 1.5 %) such that sufficient scale separation exists for a logarithmic layer to
form.

The packing density of roughness elements – and hence the mutual sheltering– gives
rise to three different flow regimes: isolated roughness, wake interference and skimming
flow (Hussain & Lee 1980; Grimmond & Oke 1999). In the skimming regime, the packing
density is sufficiently high such that the flow ‘slides’ over the roughness crests. In the other
extreme case, the isolated roughness, the flow interaction between roughness elements is
negligible and roughness elements can be considered as individual bluff bodies. Leonardi
& Castro (2010) found the drag maximum for a packing density of 15 %, which is in
agreement with Kanda et al. (2013), whereas Ahn, Lee & Sung (2013) measured a
value of 11.1 % to 12.5 % and Cheng & Porté-Agel (2015) a value of 10 %. In the
present study, we use a packing density of approximately 10 %, which falls in between
isolated and wake interference roughness according to Grimmond & Oke (1999) (cf. their
figure 1).

In the current work, we aim to answer the following research questions regarding the
quantitative effects of surface roughness on a prototype ABL: (i) What is the impact
of a controlled and fully resolved surface roughness on bulk parameters and mean flow
properties in the inner and outer layer? (ii) Do the rough-wall scaling and log-layer scaling
follow the expected and widely used approaches in MOST for neutral conditions? (iii) Can
we arrive at meaningful estimates for the zero-plane displacement and roughness length for
momentum and scalar? (iv) How different is the enhanced mixing of the momentum and
of the scalar in the presence of surface roughness? To do so, we extend a well-established
modelling set-up for turbulent Ekman flow by an immersed boundary method (IBM) and
deploy the problem on the supercomputing system Hawk at Höchstleistungsrechenzentrum
Stuttgart (HLRS, Germany) to reach scale separation of up to Reτ ≈ 2700.

2. Methodology

We consider Ekman flow of an incompressible fluid over a horizontal plate on the f-plane,
that is, the Coriolis force only affects the horizontal velocity components and is constant.
Far away from the wall, shear effects vanish and the flow is in geostrophic equilibrium, i.e.
the pressure gradient is balanced by the Coriolis force.
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2.1. Governing equations and parameters
The three-dimensional Navier–Stokes equations are numerically solved for an
incompressible, Newtonian fluid with constant fluid properties (density ρ, viscosity ν)
subject to steady system rotation about the vertical axis. The problem is discretized
on the Cartesian coordinate system Xi = (X, Y, Z)T, where X, Y is the streamwise,
spanwise and Z the wall-normal coordinate, and we solve it on a cubic domain of size
[0, 0, 0] ≤ [X, Y, Z] ≤ [Lx, Ly, Lz]. The streamwise direction is defined with respect to
the smooth-wall flow; the flow direction deviates with increasing height and surface
roughness. The dynamical system is governed by the following parameters: (i) the

geostrophic wind vector G = (G1, G2, 0)T and force G =
√

G2
1 + G2

2, and (ii) the Coriolis
parameter f. Both scales yield the Rossby radius ΛRo = G/f as a length scale. Thus, the
governing flow equations are non-dimensionalized with the characteristic scales G, f , ΛRo
and read

∂ui

∂xi
= 0,

∂ui

∂t
+ uj

∂ui

∂xj
= −∂π

∂xi
+ 1

ReΛ

∂2ui

∂x2
j

+ f εik3(uk − gk). (2.1a,b)

Here, t is the non-dimensional time, u = (u, v, w)T = (u1, u2, u3)
T is the non-dimensional

velocity vector, xi = (x, y, z)T the non-dimensional coordinates and ∂π/∂xi the
non-dimensional, non-hydrostatic, ageostrophic pressure gradient. Further, g = (g1, g2, 0)T

with gj = Gj/G is the normalized geostrophic wind (by construction g = ‖g‖ = 1) and
εijk is the alternating unit tensor. The boundary conditions for the velocities are no slip at
the bottom and free slip at the top boundary; periodic boundary conditions are applied
in the horizontal directions. Equations (2.1b) solely depend on the Reynolds number
ReΛ = ΛRoG/ν. For comparison with other studies, we refer to the Reynolds number

ReD = GD
ν

=
√

2ReΛ, (2.2)

with D =
√

2νf −1 the laminar Ekman layer thickness. Both Rossby and Ekman scalings
lose their relevance once the system is in a fully turbulent state. Then, the system is
scaled by the friction velocity uτ (non-dimensionalized form u
 = uτ /G), the turbulent
boundary-layer thickness δ = uτ /f (non-dimensionalized form δ
 = δ/ΛRo = u
) and the
eddy-turnover scale f −1. These turbulent scales result in the friction Reynolds number
Reτ = uτ δ/ν with

u2

 = 1

ReΛ

√(
∂〈u〉
∂z

∣∣∣∣
z=0

)2

+
(

∂〈v〉
∂z

∣∣∣∣
z=0

)2

, (2.3)

such that Reτ equals the non-dimensional wind-speed gradient at the surface. The
definition (2.3) of u
 is valid for a smooth wall located at z = 0. Over a non-flat surface, it
is u2


 = ‖τw‖/(ρG2) = ‖τ 
‖, where τw is the total surface shear stress (non-dimensional
form τ 
) and ρ the constant fluid density. As a consequence of rotation, the surface shear
stress is not aligned with the geostrophic wind vector and the wind veers towards the
surface as

α(z)�(〈u(z)〉, g) and α
�(−τ 
, g). (2.4a,b)

The values u
, α
 and δ
 are unknown a priori but can be approximated as functions of ReD
(Spalart 1989). In external flow, there is a duality of scales, where the inner layer scales
in inner units and the corresponding normalized quantities are denoted by (·)+, while the
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Small-scale roughness in Ekman flow

outer layer scales in outer units, denoted by (·)−. The non-dimensional length and velocity
scales are defined as

x+
i = xiu
ReΛ = Xi

δν

, u+
i = ui

u


, x−
i = xi

u


= Xi

δ
, u−

i = ui. (2.5a–d)

The scalings are mapped by x+
i = Reτ x−

i and u−
i = u
u+

i . Spatial averaging of flow
variables in the horizontal is denoted by 〈(·)〉 and temporal averaging by (·).

Along with the conservation equation of momentum, we solve the transport equation
of a passive scalar s. Boundary conditions for the passive scalar are of Dirichlet type,
with a constant difference between the lower and upper walls �s = s|z=Lz − s|z=w, with
s|z=Lz = 1 and s|z=w = 0. The conservation equation of the scalar is non-dimensionalized
with the additional characteristic scale �s, and it reads as

∂s
∂t

+ uj
∂s
∂xj

= 1
ReΛSc

∂2s

∂x2
j
, (2.6a)

with

Sc = ν

κd
, (2.6b)

where Sc is the Schmidt number and κd the constant molecular diffusivity for the scalar.
Analogously to the friction velocity we define a non-dimensional reference friction value
for the scalar with

s
 = q


u


and q
 = 1
ReΛSc

∂s
∂z

∣∣∣∣
z=0

, (2.7a,b)

where q
 is the surface flux of the scalar for a smooth surface at z = 0. The scalar in inner
units is given by s+ = s/s
 and in outer units by s− = s, since s is scaled by �s.

Following Ansorge (2017), a Rayleigh-damping layer is introduced on the uppermost 20
grid points to suppress spurious boundary effects, that may occur as a consequence of a
finite domain height.

2.2. Intrinsic averaging
Intrinsic averaging implies that only values inside the fluid domain are considered for
averaging, in contrast to extrinsic averaging, where all values in the whole domain are
taken into account. Since there is a mismatch between the volume share covered by
roughness elements (figure 2a, red and blue shaded area) and the corresponding share
of grid points, a volume approach (figure 2b) yielding a fluid fraction for the volume in the
box around each grid point is used and described in detail in Appendix A. In this study, we
apply intrinsic averaging to all mean vertical profiles and global flow parameters, within
the roughness layer z ≤ Hmax, where Hmax is the height of the largest roughness element.

2.3. Numerical approach of the DNS code
Simulations in this study use the open source DNS code tlab (https://github.com/
turbulencia/tlab). The governing equations are advanced in time with a fourth-order
five-stage low-storage Runge–Kutta scheme (Williamson 1980). Spatial derivatives are
computed with finite differences of sixth-order accuracy (Lele 1992). Biased compact
schemes of reduced order are used at the vertical (non-periodic) boundaries. The applied
discretization results in an overall fourth-order accuracy of the code. Incompressibility
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Figure 2. (a) Two-dimensional schematic of a solid object (red points) covering the area A1 immersed in a
fluid domain (black points) covering the area A0. The blue-shaded area belongs to the fluid, but field values in
the area would be represented by the value on the solid surface. (b) Corresponding indicator field with volume
fractions of the fluid εF(xi) = [1 − εS(xi)].

is enforced with the fractional step method (Chorin 1968; Témam 1969) to ensure
divergence-free velocity fields up to machine accuracy. The Poisson solver uses a
Fourier-spectral approach in the periodic horizontal directions, and an inverse-compact
approach along the vertical (Mellado & Ansorge 2012). Originally, pressure and velocities
are computed on the same grid in tlab. This collocated arrangement is well known to
cause spurious pressure oscillations (Laizet & Lamballais 2009) in combination with an
IBM. Hence, the existing code was extended by a partially staggered pressure grid in the
horizontal and a compact filter (Lele 1992) for the pressure in the vertical to circumvent
the deterioration of the data by numerical artefacts in the pressure.

2.4. Immersed boundary method
The representation of flow obstacles with vertical walls and rigid boundaries challenges
DNS codes of high-order accuracy and may cause numerical artefacts, referred to as
spurious force oscillations (SFOs). With the aim of using Cartesian grids, an IBM is
implemented in tlab and tested against reference data to ensure sufficient resolution and
absence of SFOs that deteriorate the flow statistics.

The Gibbs phenomenon and SFOs are known artefacts to occur in moving-body
problems (Lee et al. 2011a), but also for non-moving bodies represented through an IBM
(Li, Bou-Zeid & Anderson 2016). The SFOs appear as high-frequency oscillations near
a solid boundary (Fornberg 1996, p. 11). They can severely deteriorate the numerical
solution. Not only may this impact instantaneous realizations of the flow, but also the
long-time averages of flow quantities. In our case of rigid bodies represented by an
IBM, SFOs are caused by a stepwise signal of the IBM forcing at the solid boundary
in combination with a spectral-like compact differencing scheme. The oscillations may
contaminate the flow field due to the non-local character of these schemes. Filtering
and smoothing procedures in physical and frequency space can be used to reduce or
control SFOs (Goldstein, Handler & Sirovich 1993; Kim, Kim & Choi 2001; Lamballais
& Silvestrini 2002; Tseng, Meneveau & Parlange 2006; Fang et al. 2011).

The direct forcing IBM approach was introduced by Mohd-Yusof (1997) and Fadlun et
al. (2000). It tries to avoid SFOs through an artificial flow in the solid regions that reduces
discontinuities at the interface while fulfilling the boundary conditions. This leaves the
external flow unaffected by the artificial flow (Fadlun et al. 2000). While the method
was extended towards higher-order derivative schemes (Parnaudeau et al. 2004, 2008),
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it remains limited to simple geometries like cylinders, and is problematic for objects with
sharp edges (Giannenas & Laizet 2021, figure 2 on p. 610).

The alternating direction reconstruction (ADR) IBM, proposed by Gautier, Laizet &
Lamballais (2014), allows simulations with more complex geometries while preserving
the homogeneity of spatial operators. The flow is artificially expanded into solid regions
to ensure the smoothness of fields across the interface, while the boundary conditions
ui|interface = 0 are met. Gautier et al. (2014) used one-dimensional Lagrangian polynomials
for interpolation, which are evaluated in the respective direction before a spatial derivative
of the governing equations is evaluated in this direction. This procedure is repeated
anew for each derivative and the values within the solid regions are not considered for
subsequent calculations.

Lagrangian polynomials suffer from Runge’s phenomenon (Runge 1901), where
large amplitudes occur at the boundaries for equidistant grids. As objects get wider,
numerical instabilities can occur due to unphysically large derivatives at the interface and
corresponding large pressure signals inside the solid. Giannenas & Laizet (2021) use cubic
splines, avoiding the Runge phenomenon at boundary nodes, which results in reduced
amplitudes of the auxiliary field within the solid. They demonstrate that the ADR IBM
with cubic splines is well suited for sixth-order compact schemes and does not degrade
the overall convergence order of the DNS code. Further, no additional stability constraints
emerge and the computational overhead is marginal. Finally, the ADR IBM is highly
scalable on high-performance computing systems, as the communication overhead of the
parallel algorithm does not increase.

The ADR IBM is well tested for flow around a cylinder against both experimental
and simulation data (Parnaudeau et al. 2008; Gautier, Biau & Lamballais 2013; Gautier
et al. 2014; Giannenas & Laizet 2021) and across different DNS codes (Schäfer et al.
2020; Theobald et al. 2021). More recently, the ADR IBM was also applied for moving
objects (Giannenas & Laizet 2021), to wavy channel turbulence (Khan & Jayaraman 2019;
Jayaraman & Khan 2020), jet control with microjets (Gautier et al. 2014), LES of a circular
cylinder wake flow (Resseguier et al. 2017; Chandramouli et al. 2018), flow over periodic
hill (Xiao et al. 2020) and to channel flow over streamwise-aligned ridges (Schäfer et al.
2019) and with free convection (Schäfer et al. 2022b).

The implementation of the ADR IBM based on cubic splines in tlab enables DNS of
Ekman flow with fully resolved roughness. An indicator field ε(xi) is used to fully describe
the spatial properties of the immersed roughness geometry in the computational domain
Ω , which is decomposed into the solid and interface ΩS and fluid ΩF regions (figure 2),
given by

ε(xi) =
{

1, if xi ∈ ΩS,

0, if xi ∈ ΩF.
(2.8)

Objects are bound to the location of the grid node positions, where the outer grid nodes
labelled as solid represent the exterior of the solid. Hence, a minimum of two solid
points is required for the solid to have a finite size; further, three fluid points at each
side are used to define the cubic spline. The ADR IBM is used to compute the derivatives
(advection, diffusion) for the provisional velocity in the fractional step method, which is
not divergence free. Next, the Poisson equation

�π = ∇{[1 − ε(xi)] fπ}, (2.9)

is solved for π on the staggered grid where no reconstruction is applied when calculating
the pressure forcing ∇fπ. The continuity equation in the presence of the IBM is now
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[1 − ε(xi)]∂ui/∂xi = 0 and the Dirichlet boundary conditions of the velocity fields are
[1 − ε(xi)]ui(xi) = 0. In addition, the ADR IBM is also implemented for a passive scalar,
with the following boundary conditions s(xi) = [1 − ε(xi)]s(xi) + sBCsε(xi), where sBCs
describes the fixed boundary values of the scalar. Here, the reconstruction is used for the
derivatives in the advection and diffusion terms of (2.6a).

3. Surface roughness configuration

The targeted examination of small-scale roughness requires a small blocking ratio H/δ

(Jiménez 2004), and is in contrast to urban-like geometries or other canopy flows where
obstacles may cover a considerable portion of the boundary layer. This necessitates
sufficient scale separation to yield values of H of the order of tens of wall units while
keeping the blocking ratio limited below ≈1/100. In comparison with simulations over
aerodynamically smooth surfaces, the grid resolution needs consideration in all three
directions: first, the viscous sublayer is not restricted to z+ � 5 (Pope 2000) but forms
around the obstacles, also on top of the elements such that we may expect a viscous
sublayer up to z+ < H+ + 5. Second, the flow is also forced to rest at vertical walls,
accompanied by sharp velocity gradients in the spanwise direction and an upward
deflection in the streamwise direction. Hence, the horizontal grid must be sufficient for
resolution of viscous sublayers at the vertical walls, which imposes additional constraints
on the horizontal resolution.

We consider four simulations, one smooth and three rough cases with labels [s, r1,
r2, r3]. The roughness properties are defined a priori in terms of the inner scaling
of the smooth case (subscript (·)s), since the drag over the rough surface is unknown.
The roughness consists of 562 elements of horizontally squared shape. The centroids
of these elements are slightly displaced according to the roughness grid by up to ±2
grid points in the horizontal directions, to break the symmetry (figure 3a). Heights
and widths of the elements are uniformly distributed in the range of �H+

s ≈ 10 and
�W+

s ≈ 20, that is Hs ∈ [H+
s − �H+

s /2, H+
s + �H+

s /2] and similar for Ws, with mean
heights of H+

s = [9.9, 19.8, 29.5] and a uniform width of W+
s = [39.8, 39.8, 39.9]. The

volume fraction covered by the roughness (A3d) at the ground is γ S = 1 − γ F = 0.099
and equals the plan area density λp =̂ γ S. The frontal solidities of the three rough cases
are λf = [0.023, 0.047, 0.071]. The surface area increases with respect to the horizontal
Lxy-plane for the rough cases by �Aeff = 4λf , since the roughness elements have a square
base.

For consistency, we use the same computational grid and forcing parameters at
ReD = 1000 (note that simulation parameters are listed in table 1) for all four cases. The
large-scale forcing is such that the mean velocity of the smooth case on the ground is
approximately shear aligned, thus τ
s = τ
s,x. In the vertical, the grid spacing is �z+

s ≈ 1
up to the top of the roughness elements with z+

s ≥ 35, where stretching begins. In the
horizontal it is [�x+

s , �y+
s ] ≈ 2.3. Obstacles increase the drag, therefore the resolution

in terms of wall units is expected to be coarser, which results in slight oscillations in
velocities close to the roughness elements. Preliminary simulations showed that this effect
is resolution dependent and is suppressed by a spectral cutoff filter at highest frequencies.

Interpolated turbulent fields from precursor simulations are used as initial conditions
for the smooth simulation. In rotating systems, disturbances from the equilibrium state
cause pervasive inertial oscillations with a period 2π/f (Appendix B, figure 17). We
reduce those by replacing the mean in the three-dimensional velocity fields by a time
and horizontal average over one inertial period. Once the smooth case has converged, we
use velocity and passive scalar fields to initialize the rough simulations. The insertion of
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Figure 3. (a) Top view of the horizontal distribution of elements for case r1 and close-up view, colour coded
according to their height; the horizontal axes are scaled by outer units of the smooth case. (b) Fluid fraction
γ F(z+

s ) as a function of the distance from the wall for the rough cases r1, r2, r3 to illustrate the uniform height
distribution of the elements; the vertical distance is scaled in smooth inner units. Round markers indicate the
vertical position of grid nodes.

ReΛ ReD Sc Nxy × Nz (Lxy × Lz)/δ
3
s �xy+

s × �z+
s,min

5 × 105 103 1.0 30722 × 656 5.12 × 4.9 2.32 × 1.0

Case (ID) H+
s W+

s �H+
s �W+

s λp [%] λf [%] �Aeff [%]

Rough (r1) 10 40 10 20 10 2.3 9.2
Rough (r2) 20 40 10 20 10 4.7 18.8
Rough (r3) 30 40 10 20 10 7.1 28.4

Table 1. Upper table: grid, domain parameters and external Reynolds number for all cases presented in this
study (subscript (·)s relates to the smooth case), and the computational domain size normalized with the Rossby
radius is (Lxy × Lz)/Λ

3
Ro = 0.272 × 0.26. Lower table: average height H+

s and width W+
s of the roughness

elements for the rough cases, and their range of heights �H+
s and widths �W+

s . Also given are the plan area
density λp, frontal solidity λf and the effective increase of the surface area �Aeff .

roughness elements in fully turbulent fields is possible since the numerical methods are
stable and robust. Statistics of rough simulations are collected once the flow has adapted
to the new boundary conditions. In eddy-turnover times, f −1, flow statistics are collected
for a timespan of [6.8, 2.3, 1.9, 6.3] (Appendix B); scalar statistics are considered over the
final eddy-turnover time (§ 4.7).

The data used for statistical analyses in the remainder of this study are available for
download at Kostelecky & Ansorge (2024) (http://dx.doi.org/10.17169/refubium-43215).

4. Results

4.1. Momentum budget and wall shear stress
For our configuration, roughness enhances the drag in comparison with smooth flow.
However, the quantitative impact of our roughness arrangement (§ 3) on scalar and
momentum transfer is unknown a priori. Total surface drag is the sum of pressure drag
(also called ‘form’ drag), acting normal to the vertical walls of the cuboids, and of skin
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friction drag, acting tangentially. The frictional drag may further be decomposed into
ground-surface drag at z = 0 and roughness-element-surface drag (Shao & Yang 2008).
The vertical component of the frictional drag on the roughness elements, the lift, is not of
interest here.

Accurate quantification of horizontal drag exerted by roughness is essential for the
subsequent analysis. A key feature of the Ekman flow is the veering of the wind with
greater distance from the ground, due to the triadic balance of Coriolis, pressure gradient
and frictional forces. This manifests in a non-zero spanwise component τzy such that

〈τ̄ 〉(z) =
√

〈τ̄ 〉2
zx + 〈τ̄ 〉2

zy. (4.1)

Over smooth surfaces, the wall shear stress τ
s = 〈τ̄ 〉|z=0 reduces to the streamwise
component τ
s = 〈τ̄ 〉zx ≡ 1/ReΛ∂〈ū〉/∂z|z=0, since we align the streamwise direction of
the computational grid with τ
s (§ 3 and figure 4, dashed lines). Over rough surfaces, we
determine the total drag from the vertically integrated momentum equations (2.1b) in the
streamwise and spanwise directions

〈τ̄ 〉zi(z) = −
∫ z

0

∂〈ū〉i

∂t
dz︸ ︷︷ ︸

T

+ f
∫ z

0
εik3(〈ū〉k − gk) dz︸ ︷︷ ︸

C

+ 1
ReΛ

∂〈ū〉i

∂z︸ ︷︷ ︸
V

−〈u′
iw

′〉︸ ︷︷ ︸
R

. (4.2)

The total surface drag is composed of the temporal tendency (T ), Coriolis (C), viscous (V)
and turbulent stress contributions (R) (figure 4). Here, we define the turbulent contribution
as the sum of turbulent (Reynolds) and dispersive stresses, since we study small-scale
roughness.

The integrated temporal tendency is a measure of the convergence of a simulation
towards its statistically steady equilibrium, and indeed cases s and r3 appear as
statistically converged (∂t(·)/∂t ≈ 0). For the rough cases r1, r2, we observe that they
have not fully converged towards equilibrium in the outer layer, whereas in the near-wall
region z+ < 300 the integrated tendency is negligible. This behaviour is attributed to the
different averaging times of the cases (Appendix B). Disturbances from the ground, i.e.
the introduction of roughness elements into the flow, slowly progress to the outer layer,
starting at z− � 0.12 and the relatively slower process of equilibration in the outer layer is
apparently not converged after approximately 2–3 eddy-turnover periods.

Viscous friction dominates the momentum budget close to the wall (figure 4a), where
the largest velocity gradient for the smooth case appears at z = 0, followed by a rapid
decrease. With increasing roughness height a second peak develops for the cases r2,
r3, linked to large velocity gradients at the top of the roughness elements. The turbulent
stress dominates in the near-wall region away from the wall, with a maximum located
above the roughness elements and a share of up to 80 %. Turbulent stress increases
with the roughness height in absolute values, pointing to enhanced turbulent mixing.
The contribution of the Coriolis term is non-negligible within the roughness layer. At
the top of the elements its contribution reaches up to 10 %. With increasing roughness
height, the veering of the wind inside the roughness layer is enhanced, underpinning the
importance of the term C to close the momentum budget in the roughness sublayer. Above
the boundary-layer height, (4.2) is a balance between the Coriolis term, the total friction
term, and for the non-converged cases the temporal tendency term.

The total surface drag of the smooth case is τ
s = 2.82 × 10−3, as estimated from
the velocity gradient at z = 0. For the rough cases, τ reaches its maximum at
the crest height of the highest elements, and it is ‖τ 
‖ = [3.36, 4.39, 5.38] × 10−3.
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Figure 4. Integration of the mean momentum conservation in the streamwise (a,c) and spanwise directions
(b,d), the terms according to (4.2). For clarity case r2 is not shown and the total drag 〈τ̄ 〉zi(z) is moved to the
lower panels of the plots. Colour shaded areas in the near-wall region in (a,b) correspond to the range of top
heights of the roughness elements (cf. colour coding figure 3b), mean heights are displayed by vertical dotted
lines. Shear stress components of the cases in the near-wall region (a,b) are scaled with the respective 1/u2


 and
in the outer region in (c,d) with 10−3/G2.

This gives a relative increase of the drag with respect to the smooth case of
�rel ‖τ 
‖ = [19.1 %, 55.7 %, 90.8 %]; this corresponds to an increase of geostrophic drag
of approximately 10 %–40 % (table 2). Notably, when the surface stress is determined from
the values of the maximum turbulent stress in the constant-flux layer (where turbulent
fluxes vary less than 10 %, Stull 1988; Garratt 1992), approximately 20 %–30 % of the
total stress is neglected (cf. figure 4a) for the configurations considered here. While this
figure is likely on the upper end of expected outcomes for atmospheric conditions at higher
Reynolds number, this illustrates that estimates of skin friction from inner-layer stress may
experience considerable biased over rough surfaces.
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Case (ID) Smooth (s) Rough (r1) Rough (r2) Rough (r3)

H+ — 10.8 24.7 40.8
u
 0.0531 0.0580 0.0663 0.0733
α
 18.6 22.3 28.4 33.2
δ95/δ
 0.612 0.621 0.594 0.578
δ+

CF [39, 91, 52] [42, 101, 59] [51, 121, 70] [65, 147, 82]
Reτ = δ+ 1408 1680 2196 2688
Ret = maxz{ e2

νε
} 764 895 1049 1254

Rek =
√

Kδ
ν

316 389 528 676

Table 2. Integral flow properties of the cases. The boundary-layer thickness δ95 refers to the height, where the

total vertical flux is
√

〈u′w′〉2 + 〈v′w′〉2 = 0.05u2

 . The constant-flux layer δ+

CF refers to the layer between the
maximum of the total vertical flux and the height where it is reduced by 10 % of the maximum, and given as
[start, end, extend] in inner units. The maximum for the Reynolds number of isotropic turbulence Ret (defined
in Ansorge & Mellado 2014, table 2, equation 5b) is always located above the highest roughness elements,
and the Reynolds number for turbulence intensity Rek is defined according to Schäfer, Frohnapfel & Mellado
(2022a), where K = ∫ δ

0 e dz is the integrated TKE e ≡ 0.5〈u′
iu

′
i〉 within the boundary layer.

4.2. Scalar budget and scalar wall stress
The scalar flux is determined by the vertical integration of the scalar budget (2.6a)

〈q〉(z) = −
∫ z

0

∂〈s〉
∂t

dz︸ ︷︷ ︸
Ts

+ 1
ReΛSc

∂〈s〉
∂z︸ ︷︷ ︸

Vs

−〈w′s′〉︸ ︷︷ ︸
Rs

, (4.3)

with the temporal tendency Ts, the viscous term Vs and the scalar flux term Rs (cf. their
behaviour in figure 5), which incorporates again the Reynolds and dispersive stresses.
Unlike the momentum budget, the passive scalar concentration in the boundary layer
evolves in time. Hence, the vertical integration (4.3) precedes time averaging. Near the
wall, again the tendency Ts is small and the viscous contribution is relevant. For increasing
roughness, the viscous stress is smeared out over the height of the roughness sublayer
and a second peak similar to the one discussed for the momentum budget forms. This
second peak becomes more dominant for increasing roughness and will eventually govern
the viscous stress for large roughness elements or skimming flow. While the share of the
turbulent contribution R was limited to ≈80 % for momentum, mixing of the scalar is
by far turbulence dominated, with a share of �90 %. In the outer region, the balance –
in the absence of a rotational term – is governed by the turbulent scalar flux Rs and the
integrated tendency Ts.

The surface flux of the scalar q
s is estimated for the smooth case at z = 0 and for the
rough cases, q reaches its maximum and at the same time constant value at the height of
the highest elements, where q
 is estimated. If temporal averaging of (4.3) is omitted, the
development of q
(t) and the friction of the scalar s
(t) = q
(t)/u
(t) with the respective
friction velocity u
(t) are estimated (§ 4.7 and figure 14).

4.3. Global flow properties
The most prominent features when the turbulent flow is exposed to a rough surface are
an increase in turbulence production associated with increased bulk shear stress ‖τ 
‖, a
deeper boundary layer and higher turbulent Reynolds numbers (table 2). As δ+ = Reτ
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Figure 5. Integration of the mean passive scalar conservation (4.3). For clarity r2 is not shown and the scalar
flux 〈q〉(z) is moved to the lower panels of the plots. (a) Terms in the near-wall region and (b) terms in the outer
region are scaled with the respective 1/q
 and temporal averaging over the final eddy-turnover time (cf. colour
coding and shaded areas in figure 4).

and ‖τ 
‖ are linearly related, also Reτ grows by up to 91 % (for the case r3). For the
range of blocking ratios considered here, Reτ appears to be a linear function of the
height of the roughness elements; with ReD = const. = 1000, this implies u
 ∝ (H+)1/2.
As a consequence of increased u
, the grid resolution of case r3 in wall units is
�xy+ × �z+

min = 3.22 × 1.4 (compared with 2.32 × 1.0 for the smooth case). In inviscid
units, i.e. normalized with ΛRo, the boundary-layer thickness δΛ = uτ /( f ΛRo) also
increases with H+ (not shown in table 2). This illustrates an enhanced level of turbulence
in the rough cases, quantifiable by an increase of Ret and Rek (table 2). Changes in global
flow properties of case r1 are comparatively small, underpinning that the set-up is close
to the aerodynamically smooth case s.

4.4. Wind veer in the surface layer
Due to surface friction, the wind veers in favour of the pressure gradient force as it
approaches the surface (figure 6), giving rise to the Ekman spiral. While α
, the veer
of the near-surface wind with respect to the outer layer is commonly taken into account by
a rotation of the reference frame for surface-layer similarity (Ansorge 2019), wind veer
within the atmospheric surface (Prandtl) layer, is commonly neglected (Monin 1970).
Under this neglect, the surface layer becomes a componentwise ‘constant’-flux layer,
i.e. the total vertical turbulent flux and its partitioning to the components is constant
with height (commonly, a deviation of less than 10 % from the maximum value, usually
measured close to the ground, is accepted). For the rough cases, the position of the
constant-flux layer shifts upwards with H+, and it grows in extent when measured in inner
units. Consistently with the increased scale separation, manifest in larger Reτ , Rek and
Ret, the constant-flux layer’s thickness increases both when expressed relative to ΛRo and
when expressed in wall units by approximately 15 %.

Within the roughness sublayer, the direct effect of surface friction is strong, and we
observe a veer of up to approximately 33◦ for case r3, nearly twice the veer of the smooth
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Figure 6. (a) Hodograph and (b) veering of the wind shown by means of the turning angle α (2.4a) of the
surface shear stress to the geostrophic wind. Symbols in panel (b) correspond to the heights as labelled in panel
(a), i.e. the end of the constant-flux layer as defined by a 10 % stress reduction and the upper bound of the inner
layer z− = 0.15 are marked.

case (18◦). Close to the ground, for z+ < H+, both streamwise and spanwise velocity are
slower compared with the smooth case (figure 6a), but the reduction of streamwise velocity
is relatively stronger – manifest in the increased veer. In reach of the roughness tops, the
turning angle α stays constant for r3, visible in the kink of the green curve in figure 6(b),
which occurs for cases r2 and r3. As a consequence of the different wind veers within
the surface roughness, the roughness field is approached at different angles for the cases
presented here.

We find here that wind veer within the surface layer is not negligible for the current
rough cases – and this effect appears to become stronger with increasing roughness. From
previous studies on smooth Ekman flow and scaling arguments (Rossby & Montgomery
1935; Coleman et al. 1990), it is known that u
 and α
 decrease with higher Re (Shingai &
Kawamura 2004) and increases for stably stratified conditions (Ansorge & Mellado 2014).
Roughness, which acts to increase the scale separation in terms of Reτ counteracts this
relation by an increase in u
 and α
; that means, the dependence of α on the Reynolds
number is outweighed by a stronger coupling of the outer and inner layers in the case
of a rough surface such that overall the veering decreases. Roughness apparently comes
into play as another important factor in real-world conditions for the strong dependence of
both α and u
 on the height of the roughness elements (figure 6). In fact, our simulations
suggest that the dependence of wind veer on both roughness and surface friction is stronger
than the effects of intermediate Reynolds number (a change of u
 and α by 50 % due to
variation of the Reynolds number requires a change of Re by several orders of magnitude
while we have only varied the roughness height by approximately a factor three).

4.5. Aerodynamic parameters of the momentum
For the subsequent estimation of aerodynamic parameters, we use the total magnitude of
the horizontal wind, defined as

〈ūh〉+ =
√

(〈ū〉+)2 + (〈v̄〉+)2. (4.4)

This choice is in accordance both with atmospheric observations, where the wind
magnitude is measured at different heights, and with previous numerical studies of Ekman
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Figure 7. Intrinsically averaged velocity profiles in inner units. Displayed are the mean streamwise (〈ū〉+,
dash-dotted lines), spanwise (〈v̄〉+, dashed lines) and total horizontal velocity magnitudes (〈ūh〉+, solid lines).
For reference, the logarithmic and viscous laws are shown for the smooth case by thin dash-dotted and dotted
lines, respectively. Parameters of the smooth logarithmic law are κm = 0.42, A = 5.44.

flow (Shingai & Kawamura 2004; Deusebio et al. 2014; Jiang, Wang & Sullivan 2018).
For reference, we commence by consideration of the mean velocity profile for the smooth
case s (figure 7) in inner and outer units. This profile agrees well with previous work
(Spalart et al. 2008, 2009; Ansorge & Mellado 2014; Ansorge 2019): in the vicinity of the
ground (0 < z+ � 5), the viscous sublayer has a linear velocity profile 〈ūh〉+ = z+. Above
the viscous sublayer and the adjacent buffer layer, where turbulent production peaks, the
logarithmic layer is found (Von Kármán 1930; Prandtl 1961; Zanoun, Durst & Nagib 2003)

∂〈ūh〉+
∂z+ = 1

κmz+ or in the integrated form 〈ūh〉+ = 1
κm

ln(z+) + A. (4.5a,b)

Here, κm is the von Kármán constant and A an integration constant encoding the lower
boundary condition, i.e. the integrated velocity profile of the viscous and buffer layers. The
exact vertical bounds of the logarithmic layer are a matter of debate; following Marusic
et al. (2013), the logarithmic region for the streamwise turbulent intensity is located at
3
√

Reτ < z+ < 0.15Reτ . For the smooth case, we choose z+ > 30 as a common value for
the lower boundary (Tennekes & Lumley 1972) and z+ < 0.15Reτ as the upper boundary.
Within this region, we estimate κm = 0.42 and A = 5.44 from a least squares fit.

Over rough surfaces, the logarithmic law is expressed as

〈ūh〉+ = 1
κm

ln(z − dm)+ + A − �〈ūh〉+ = 1
κm

ln
(

z − dm

z0m

)
, (4.6)

where dm is the zero-plane displacement height, a function of the packing density
of roughness elements (Placidi & Ganapathisubramani 2015), and �〈ūh〉+ = A +
κ−1

m ln(z+
0m) is the roughness function (Clauser 1954; Hama 1954), which describes the

additional momentum loss due to roughness. Also, A is an integration constant. The
roughness function measures the deceleration of the velocity with respect to smooth
flow within the logarithmic region (figure 8a). If the surface is smooth, the parameters
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Figure 8. (a) Roughness function for the horizontal velocity magnitude. (b) Relative error εL2 of the present
velocity profiles and the logarithmic law fit for an optimal z0m as a function of the normalized displacement
height dm/H.

dm, �〈ūh〉+ are zero. The aerodynamic roughness length z0m for the smooth case is
z+

0m = e−κmA ≈ 0.1. Traditionally, the equivalent sand-grain roughness Reynolds number
k+

s = ksu
/ν is used to compare different roughness set-ups. The roughness function
follows, in the fully rough regime, a logarithmic law �〈ūh〉+ = κ−1

m ln(k+
s ) + A − A′

FR
(cf. equation 2.2 in Squire et al. 2016). With the constant A′

FR = 8.5 (Nikuradse 1933)
the relation k+

s ≈ 35.5z+
0m directly appears and is valid under fully rough conditions.

Both forms of the rough log law (4.6) are interchangeable, whereas the first expression
is preferably used in an engineering context and the second in a meteorological context.

In the quest for a universal scaling for the mean velocity profiles in the logarithmic
region, an optimization problem over the set of parameters {κm, z0m, dm} arises, which
is challenging to solve. Therefore, the following assumptions are drawn. First, the von
Kármán constant is universal in this study, since the only difference in the simulation
set-ups of the cases are in the surface conditions. The observed dependence of the
von Kármán constant on the roughness Reynolds number κm = f (z+

0 ) in atmospheric
measurement data in the fully rough regime (Frenzen & Vogel 1995a,b) is according
to Andreas et al. (2006) an artificial consequence of correlation when calculating the
parameters. We follow the notion of κm as a universal constant for canonical flows over
smooth (Nagib & Chauhan 2008) and rough surfaces (Castro & Leonardi 2010). As shown
below, the roughness Reynolds number varies by approximately one decade in the current
cases. The increase of roughness heights among cases r1–r3 is considered via an adjusted
fitting interval for the logarithmic law (4.6). That is, second, we assume the logarithmic
layer is located in the range z+

log,m < z+ < 0.15Reτ , where we use z+
log,m = 30 + d+

m . (Due
to the small value of H, the choice of z+

log,m fits the data, and should not be interpreted as
predictive or general; great care should be taken with respect to higher-order statistics.)
The subsequent analysis shows that we are still well within the logarithmic range of the
flow with the choice of the lower limit z+

log,m. Third, the normalized displacement height
dm/H is assumed to be constant for all rough cases. In fact, this ratio is known to be mainly
governed by the roughness density λp and an unclear relation of λf for λf < 0.1 (Placidi
& Ganapathisubramani 2015, figure 11).
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Figure 9. Collapse of the mean horizontal velocity profiles onto the logarithmic law of the wall, with the
zero-plane displacement height dm/H = 0.59. Coloured arrows and vertical dotted lines indicate the fitting
interval for the logarithmic law of each case.

To determine the optimal value of dm/H, an error norm εL2 is defined for each of the
corresponding intervals in (figure 8b)

εL2(〈ūh〉+)|dm,z0m = 1
n

√√√√√ n∑
i∈{z+|z+log,m<z+<0.15Reτ }

[
〈ūh〉+i − 1

κm
ln

(
zi − dm

z0m

)]2

. (4.7)

The optimum value of dm/H minimizes the expression {∑n
k∈{r1,r2,r3} εL2}. We find the

optimal value of dm/H ≈ 0.59 (cf. black curve in figure 8b) in accordance with literature
data for λp = 0.1 (Kanda et al. (2004) with LESs over cube roughness dm/H ≈ 0.65,
Leonardi & Castro (2010) with DNS over staggered cube roughness with dm/H ≈ 0.6 and
Brutsaert (1982) for crop covered surfaces dm/H ≈ 2/3). Excluding case r1 (which is
almost aerodynamically smooth) from the sum would result in a negligible change of the
optimal value of dm/H ≈ 0.61.

The mean velocity profiles collapse onto the proposed rough log law (4.6) when scaled
with u
 and the vertical distance with z−

m = (z − dm)/z0m (figure 9). We obtain values
of the normalized aerodynamic roughness length of z0m/H = [0.022, 0.034, 0.049] and
scaled in inner units z+

0m = Rez0m = [0.24, 0.84, 2.01]. In the ABL, the onset of the
fully rough regime is assumed for z+

0m � 2–2.5, and the transitionally rough regime for
0.135 � z+

0m � 2–2.5 (Brutsaert 1982; Andreas 1987). By this definition, cases r1, r2
are transitionally rough and r3 is on the edge of being fully rough when considered in
terms of z+

0m. Taking into account that the transition between roughness regimes is highly
dependent on the type of roughness, we conclude that case r3 is fully rough for (i) its
sharp-edged geometry, (ii) the occurrence of a dual peak in the viscous stress and (iii) the
strong signature of roughness in all turbulent statistics. Figure 9 illustrates that the increase
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Figure 10. (a) Temporal evolution of the horizontally averaged scalar profile in inner units, shown together
with the temporal mean (solid black lines). The viscous law (magenta dotted line) with 〈s̄〉+ = z+Sc and the
logarithmic law (magenta dashed-dotted line) 〈s̄〉+ = κ−1

h ln(z+) + A with κh = 0.35, A = 4.2 are shown for
case s. (b) Relative error εL2 of the present scalar profiles and the logarithmic law fit for an optimal z0h as a
function of the normalized displacement height dh/H.

of Reτ for the rough cases also manifests in a deeper logarithmic layer, i.e. the common
bounds of the logarithmic region also hold over the rough surface. In fact, the previous
lower limit of z+ > z+

log,m can be adjusted downward to z+ > 25 + d+
m or to z+ > 0.8

√
Reτ

as a function of the Reynolds number, without z+
0m differing by more than ±5 % from the

above values. The proposed procedure of estimating the aerodynamic properties of the
flow is robust to the choice of the displacement height, since changing dm/H = 0.6 ± 0.1
results in maximum deviation of the presented z+

0m values of ±4.5 % (cf. small variation
of εL2 vs dm/H in figure 8b).

4.6. Aerodynamic parameters of the passive scalar
Despite the temporal evolution of mean scalar profiles 〈s〉− (figure 10a), 〈s̄〉+ is statistically
steady in the logarithmic layer: the inner layer is in quasi-equilibrium with the scalar
evolution in the outer layer. In the immediate vicinity of a smooth wall (case s) we resolve
the conductive sublayer with 〈s̄〉+ = z+Sc. In analogy with the momentum logarithmic
layer (4.6), the scalar one reads as

〈s̄〉+ = 1
κh

ln(z − dh)
+ + A(Sc) − �〈s̄〉+ = 1

κh
ln

(
z − dh

z0h

)
, (4.8)

where κh is the von Kármán constant and the constant of integration A(Sc) encodes the
surface information. For (aerodynamically) smooth surfaces, it is dh = 0 and �〈s̄〉+ = 0;
for rough surfaces, the displacement height dh > 0, the roughness function �〈s̄〉+ /= 0
and an aerodynamic roughness length z0h emerges. We determine the parameters from
our simulation data following the procedure described above and find the von Kármán
constant κh ≈ 0.35. While existing data of experiments appear to agree on κh ≈ 0.47,
DNS data yield a large spread in the range 0.28 � κh � 0.46 (table 3). The experimental
data available (table 3) do, however, not consider external flow while externality of the
flow is known to impact estimates of κ and can explain a substantial share of the variation
in κ from simulation data (Ansorge & Mellado 2016).
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Reference Type (BCs) Reτ Sc κh A(Sc)

Kader (1981) exp. data
(collection)

multiple 1.0 0.47 6.5

Subramanian &
Antonia (1981)

exp. boundary layer multiple — 0.48 ± 0.02 2.0 ± 0.02

Kasagi, Tomita &
Kuroda (1992)

DNS channel (v) 150 0.71 0.36 2.09

Kawamura, Abe &
Matsuo (1999)

DNS channel (f) 180, 395 0.025–0.71 0.4–0.42 —

Johansson &
Wikström (2000)

DNS channel (v) 265 0.71 0.33 0.95

Kawamura, Abe &
Shingai (2000)

DNS channel (f/v) 180, 395 0.025–1.0 0.28 (v), 0.41 (f) —

Pirozzoli,
Bernardini &
Orlandi (2016)

DNS channel 548–4088 0.2–1.0 0.46 —

Pirozzoli et al.
(2022)

DNS pipe flow (v) 6000 1.00 0.459 5.78

Cases of this study
(s, r1, r2, r3)

DNS Ekman flow
(v)

1408–2688 1.00 0.35 4.2

Table 3. Parameters {κh, A(Sc)} for the logarithmic law of the passive scalar. If known, boundary conditions
(BCs) for the scalar are indicated with (v) for constant value or (f) for constant flux. All DNS of turbulent
channel flow are closed channels. Kader (1981) gives a function for the integration constant with A(Sc) =
(3.85Sc1/3 − 1.3)2 + 2.12 ln Sc.
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Figure 11. (a) Shading of the error norm εL2 (according to (4.7)) for the least squares fit of {κh, A} of the
passive scalar of the smooth case s. The red line indicates a polynomial fit to the minimum error norm and the
best fit is marked with red dotted lines. (b) The error norm εL2 as a function of A for an optimal value of κh,opt
in black and κh,opt as function of A in red.

The constants κm and A of the logarithmic law for the mean velocity are known to be
strongly correlated for the momentum log law (4.5; Ansorge & Mellado 2016; Ansorge
2017), which also holds for the scalar and is quantified in figure 11(a). For the smooth
case s, the rather flat curve of the error norm εL2 (evaluated similar to (4.7)) for the scalar
allows values of the von Kármán constant κh in the range of 0.34 � κh � 0.37 (figure 11b).
For the rough cases, we again pose universality of κh = 0.35 and minimize the error norm
analogous to (4.7), which is shown in figure 10(b), to estimate the scalar displacement
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Figure 12. Collapse of the mean scalar profiles onto the logarithmic law of the wall, with the zero-plane
displacement height dh/H = 0.41. Coloured arrows and vertical dotted lines indicate the fitting interval for the
logarithmic law of each case.

height (dh/H)opt = 0.41 for all rough cases; as expected, this height is substantially lower
than that of the momentum, which illustrates the absence of pressure-blocking effects for
the scalar exchange in comparison with momentum exchange.

The collapse of profiles to the proposed logarithmic law is shown in figure 12 with
z+

log,h < z+ < 0.12Reτ for rough cases, where z+
log,h = 30 + d+

h . (Due to the small value
of H, the choice of z+

log,h fits the data, and should not be interpreted as predictive
or general. Great care should be taken with respect to higher-order statistics.) For the
smooth case, we find z+

0h = e−κhA = 0.23, more than twice the momentum roughness
length z0m. And for the rough cases, it is z0h/H = [0.035, 0.037, 0.040] or, in inner
units, z+

0h = [0.38, 0.91, 1.69]. In contrast to the momentum roughness length z0m/H,
which increases by more than a factor two, the normalized scalar roughness length z0h/H
depends only weakly on the blocking ratio. This difference is due to the absence of
pressure-blocking effects in the scalar budgets that hamper vertical momentum exchange
in the viscous region.

4.7. Scaling behaviour of aerodynamic parameters
The z-nought concept with parameters z0m, z0h lumps the roughness effects for the
near-surface transport of scalar and momentum (in addition to their displacement heights
dm and dh commonly considered to be related to the covered volume only). These z-nought
parameters are key for the modelling of surface momentum and scalar exchange (Monin
1970; Foken 2006). The mixing of momentum is determined by both pressure drag and
viscous drag over rough surfaces, while scalar mixing lacks the pressure-blocking effect
and is therefore described by molecular diffusion alone (Cebeci & Bradshaw 1984, p.168),
as already discussed when determining z0h (§ 4.6; cf. also Brutsaert 1982, § 5; Garratt
1992, § 4). In the ABL z0m > z0h, since mixing of momentum is more efficient than scalar
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Figure 13. (a) Aerodynamic roughness lengths of momentum z+
0m and scalar z+

0h as a function of the friction
Reynolds number. (b) Log ratio of the momentum and scalar roughness length plotted as a function of the
logarithm of the roughness Reynolds number ln(Rez0m ), with exponential fitting functions (solid and dotdashed
black lines) and the corresponding values of r2 (coefficient of determination). The dashed and dotted lines are
according to Zilitinkevich (1995) and Kanda et al. (2007).

mixing due to pressure gradients in the roughness sublayer (cf. also LES studies with
cubical roughness by Li & Bou-Zeid 2019 and Li et al. 2020).

Commonly, z0m is determined as a site-specific parameter from wind profiles, with due
regard of roughness geometry and arrangement. Different approaches exist to parametrize
z0h based on z0m. Conventionally, ln(z0m/z0h) ∝ Ren

z0m
is assumed for constant Schmidt

number. A review of classical theories is given by Li et al. (2017). Zilitinkevich (1995)
proposed an exponent n = 1/2 and Brutsaert (1975a,b) an exponent of n = 1/4. For the
roughest case r3 we observe the proposed behaviour of z0m > z0h (figure 13a), which
supports our assertion that case r3 is in between the transitionally and fully rough regimes,
where pressure drag dominates. For the other cases, the scalar roughness length exceeds
the aerodynamic one. Following the scalings of Brutsaert (1982) and Kanda et al. (2007),
we estimate the scaling for the log ratio of roughness lengths as ln(z0m/z0h) = 1.96Re1/4

z0m −
2, whereas the best fit collapses on ln(z0m/z0h) = 1.53Re1/4

z0m − 1.61. An extrapolation to
the fully rough regime z+

0m > 2 is, however, delicate due to the lack of data.
We observe a linear relation of u
 as a function of the height of roughness elements

expressed in external units ΛRo (figure 14a) in the transitionally rough regime. This scaling
appears despite the change in wind direction with which the roughness field is approached
for the cases (cf. figure 6b). The scaling behaviour of the friction values of the passive
scalar is not as conclusive as for u
, since the scalar is evolving in time (figure 14b) and
processes act on different time scales. The imposed initial state of the passive scalar adapts
to the imposed boundary conditions on the shortest possible, namely the viscous, time
scale (cf. near-sudden increase for the rough cases at tf = 0, and strong increase for the
smooth case at tf ≈ −2.7, figure 14b). Following this initial transition, the scalar gets
mixed vertically across the boundary layer by turbulence at the turbulent time scale f −1. If
time is allowed to get sufficiently large, processes at the largest time scale ∝ ReΛ become
relevant. Here, the scalar is mixed by laminar diffusion between the top of the boundary
layer and the top of the computational domain at a time scale ν/G2 (here, ∼ReΛ). This
separation of time scales is indeed supported by the process of scalar mixing across the
ABL (figure 15): after the initial transient, disturbances propagate upwards through the
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Figure 14. (a) Scaling of the friction velocity u
 as function of the mean height H/ΛRo of the roughness
elements, normalized with the Rossby radius ΛRo. The linear function is derived by fitting the slope parameter,
whereby the vertical offset parameter is equal to the value of the smooth case s. With the corresponding r2

value of the linear fit. (b) Temporal evolution of the friction scalar s
(t) and the surface flux q
(t). Time is
scaled with eddy-turnover times f −1 (cf. Appendix B for u
(t)).
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Figure 15. Temporal evolution of the horizontally averaged gradient of the passive scalar for (a) case r3 and
(b) case s, scaled in inner units. The upper boundary of the logarithmic layer is indicated with z+ = 0.12δ+,
the lower boundary with z+ = z+

log,h (d+
h = 0 for case s) and the boundary-layer thickness with δ+. The lowest

part 0 ≤ z+ < 30 of the boundary layer is not shown.

logarithmic layer and above. Mixing in the upper part of the boundary layer is visible
for case r3 (figure 15a) at time tf � 6.5. This is also seen in figure 14(b) in terms of
a decreased rate in q
 and u
 for tf � 6.5. The less rough cases have not reached this
quasi-steady regime, which points to enhanced turbulent mixing for the roughest case.
Nevertheless, mean passive scalar statistics are sufficiently converged in the logarithmic
layer so they have reached a quasi-equilibrium, and they are analysed for the period of the
final eddy-turnover time of each case.

Based on figure 14(b), we find that the change of s
 with respect to H/ΛRo in equilibrium
is small in comparison with the change of u
. From the data available it is, however,
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not clear whether s
 becomes a constant or changes weakly with respect to H/ΛRo.
The key difference between the conservation equations for momentum (2.1b) and passive
scalar (2.6a) is the pressure gradient term −∂π/∂xi. The friction velocity u
 changes by up
to 38 % while the change of q
 is largely explained by a change of u
 such that s
 remain
approximately constants. This behaviour underlines the strong link between roughness
effects on the momentum conservation and the pressure drag.

5. Discussion and conclusions

Direct numerical simulations of turbulent Ekman flow with a passive scalar are carried out
for a rough surface resembling a typical ABL configuration over homogeneous roughness.
The roughness is fully resolved and considered through an ADR IBM, which allows
us to maintain a high order of spatial discretization while avoiding SFOs. The fully
resolved small-scale roughness (blocking ratio H/δ of the order of O(1 %)) has the form
of 562 rectangular blocks on the surface; these blocks feature a uniform height and width
distribution. In total, four simulations with identical large-scale forcing are performed: one
smooth case s at Reτ = 1408 and three rough cases r1, r2, r3 with increasing roughness
heights H+ = [10.8, 24.7, 40.8]. Regarding our research questions posed in § 1, we find
the following:

(i) For a controlled and fully resolved surface roughness, friction velocity u
 and
scalar s
 can be determined by integration of the scalar and momentum budgets.
The increase for u
 is up to 38 % and for Reτ up to 91 %. The results of the passive
scalar indicate the importance of the pressure drag on the momentum, especially
for the fully rough case r3, in which momentum transfer is dominated by pressure
drag and scalar transfer by molecular diffusion (Cebeci & Bradshaw 1984, p. 168).
With increasing roughness height the turbulent activity and therefore mixing is
enhanced. The influence of roughness on the turning of the wind and hence the
Ekman spiral manifests in an enhanced turning angle α. This is despite an increasing
scale separation in viscous units, and it illustrates that, in terms of outer scaling,
roughness acts to reduce the Reynolds number; i.e. the scale separation for large
eddies is governed by Reτ /Rez0 rather than by Reτ . This means that – from the
perspective of large eddies – the ABL has a lower Reynolds number than is usually
assumed by a factor Rez0 .

(ii) The DNS data collapse onto the rough-wall scaling in the logarithmic layer for the
mean horizontal velocity and passive scalar. The estimated von Kármán constants
and offset parameters are κm = 0.42, A = 5.44 and κh = 0.35, A = 4.2. A strong
correlation between the von Kármán constant κ and the offset parameter A is
quantified. In the presence of roughness, the extent of the logarithmic layer in inner
units grows with increasing roughness height and therefore scale separation. We,
however, find that the commonly assumed representation of the total drag by the
maximum of the turbulent drag in the lower part of the surface layer may constitute
a substantial bias in rough boundary layers as a substantial fraction of up to 20 %
of the drag is neglected when considering the turbulent drag only. The substantial
variation of drag in the inner layer (below z− ≈ 0.15) comes with rotational effects
(due to the triadic balance between the Coriolis force, pressure gradient and viscous
drag) in the roughness sublayer that manifest in a wind veer across the lowest part of
the ABL, even below the logarithmic layer.

(iii) Based on our data, we estimate the zero-plane displacement height for momentum
to dm/H ≈ 0.6 and for the scalar to dh/H ≈ 0.4 and roughness Reynolds numbers
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of z+
0m = [0.1, 0.24, 0.84, 2.01] and z+

0h = [0.23, 0.38, 0.91, 1.69]. This leaves the
cases r1, r2 in the transitionally rough regime and the roughest case r3 at the edge
of the fully rough regime.

(iv) The log ratios of the roughness lengths ln(z0m/z0h) exhibit a clear scaling ∝
Re1/4, which fits the known exponent of Brutsaert (1975a,b). For the smooth and
transitionally rough regime scalar mixing is enhanced z0m < z0h, whereas in the fully
rough regime z0m > z0h is recovered, due to the importance of the pressure.

With the framework prescribed in this study, we are now able to study the impact of
roughness on the ABL at meaningful scale separations. The extension of these results to
the fully rough regime for the scaling of aerodynamic parameters outside the transitionally
rough regime as well as the effects of heterogeneous surface conditions on the stably
stratified flow are interesting aspects for future work.
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Appendix A. Intrinsic averaging in an inhomogeneous domain

Let us consider a square object immersed in a fluid domain (cf. figure 2a, red shaded area),
which covers a normalized solid area of A1 = 4 and fluid area of A0 = 21 and N1 = 9,
N0 = 16 grid points (superscripts (·)0,1 are used according to (2.8)). The mean of any flow
variable ϕi in the solid and fluid region is defined as follows:

〈ϕi〉0 = 1
N0

∑
i∈A0

ϕi, and 〈ϕi〉1 = 1
N1

∑
i∈A1

ϕi. (A1a,b)

Evidently, this approach neglects contributions to the fluid, because of the mismatch
in A0/(A0 + A1) /= N0/(N0 + N1) (red, blue shaded area), therefore a volume-based
approach (for the three-dimensional case) is needed to take precisely the covered space into
account. Depending on the location of a certain grid point, the distinction between solid
and fluid is augmented by grid points on corners, edges and plane interfaces (cf. figure 2b)
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with

εS(xj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if xi ∈ fluid,

1
2
, if xi ∈ plane interface,

1
4
, if xi ∈ edge,

1
8
, if xi ∈ corner,

0, if xi ∈ solid,

and εF(xi) = [1 − εS(xi)]. (A2a,b)

Expanding the approach to the three-dimensional case leads to height-dependent volume
fractions

γ 0(z) = 〈1 − ε(xi)〉, γ F(z) = 〈1 − εS(xi)〉, (A3a,b)

γ 1(z) = 1 − γ 0(z), γ S(z) = 1 − γ F(z), (A3c,d)

γ rel(z) = γ 0(z)
γ 1(z)

, (A3e)

which are easily validated by γ F(z) − γ 0(z) = γ 1(z) − γ S(z). We are interested in
the mean conditional statistical moments in the fluid region, since any statistics inside
the solid regions are irrelevant. The statistical output of the DNS code provides only
the unconditional mean 〈ϕi〉code and (co-)variances 〈ϕ′

iϕ
′
j〉code of the flow variables.

Following the conditional averaging approach in Pope (2000, p. 169f), the mean can be
easily conditioned to the fluid region with

〈ϕ〉F
i = 1

γ F (〈ϕi〉code − γ S〈ϕi〉S), (A4a)

with

〈ϕi〉S =
{

const., if ϕi is passive scalar,
0, if ϕi is velocity.

(A4b)

Advancing this approach for the (co-)variances gives

〈ϕ′
iϕ

′
j〉F = γ rel[〈ϕ′

iϕ
′
j〉0 + (1 − γ rel)(〈ϕi〉0 − 〈ϕi〉S)(〈ϕj〉0 − 〈ϕj〉S)], (A5)

with

〈ϕ′
iϕ

′
j〉0 =

〈ϕ′
iϕ

′
j〉code

γ 0 − γ 1(〈ϕi〉1 − 〈ϕi〉0)(〈ϕj〉1 − 〈ϕj〉0), (A6)

〈ϕi〉0 = 1
γ 0 (〈ϕi〉code − γ 1〈ϕi〉1), (A7)

〈ϕi〉1 =
{

const., if ϕi is passive scalar,

0, if ϕi is velocity.
(A8)

The values of 〈ϕi〉S and 〈ϕi〉1 have to be known in advance and the (co-)variances
〈ϕ′

iϕ
′
j〉S ≡ 0 and 〈ϕ′

iϕ
′
j〉1 ≡ 0 are always zero.
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Figure 16. Temporal evolution of the friction velocity u
 for the smooth (grey) and the three rough cases (red,
blue, green), with tf = 0 for the start of the rough cases. Thick transparent lines denote the intervals for time
integration of the flow variables. Time is scaled in eddy-turnover times f −1. The averaging time of cases s and
r3 is a full inertial cycle.
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Figure 17. Inertial oscillations of the conducted cases. (a) Mean hodographs are shown with thick solid lines,
and the thin lines show the temporal evolution of 〈u〉, 〈v〉 at specific heights (scaled in inner smooth units).
(b) Temporal streamwise (top half) and spanwise (bottom half) bulk velocities ui,bulk(t) = L−1

z
∫ Lz

0 〈ui(t, z)〉 dz,
with time in eddy-turnover times f −1. Dotted lines in (a) and (b) depict the initial transient of the cases, which
is excluded from time averaging.

Appendix B. Time integration for statistical analysis and inertial oscillations

For initialization of the smooth case s we take the fully turbulent velocity fields of
a previous simulation, which was in a statistically converged state of similar Reynolds
number. Those original fields are interpolated to the current computational grid (table 1).
The passive scalar of the smooth case is introduced with an initial exponentially decaying
profile. The rough cases are initialized to the time instance t = 0 with fully turbulent,
three-dimensional fields (velocities and passive scalar) from the smooth case s, and were
already in a statistically converged state.

A measurement for determining statistical convergence of the cases is the temporal
evolution of the friction velocity u
(t) (figure 16), following the method described in § 4.1.
After an initial transient (adaptation phase of new boundary conditions), u
(t) reaches a
quasi-steady state, which is determined by visual inspection, and from which flow statistics
are collected for temporal integration.
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Another helpful tool for diagnosing statistical convergence and gradual adaptation of
the simulations to the new boundary conditions is the visualizations of inertial oscillations
with the period of 2π/f , which are visible in the hodographs and horizontal bulk velocities
(figure 17). The smooth case s is statistically converged and therefore the amplitude of the
inertial oscillation is negligible. This is also valid in the near-wall region (figure 17a).
Adjusting the boundary conditions by introducing surface roughness increases inertial
oscillations, which then slowly decay over time. Cases s and r3 are averaged over
approximately one full inertial period, whereas r1, r2 are averaged over 0.4, 0.3 inertial
periods.
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