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1. Introduction. We consider ordinary graphs, that is, finite,

undirected graphs with no Ioops or multiple lines. The product (also called
cartesian product [4]) G1 X G, of two graphs G, and G_ with point sets

2 1 2
V1 and V2 , respectively, has the cartesian product V1 X V2 as its set of
points. Two points (ui, uz) and (Vi’ VZ) are adjacent if u1 = x/"1 and
u,z is adjacent with v, or u, = VZ and u'1 is adjacent with v1. In this

note we investigate the chromatic numbers, planarity and traversability
(often referred to as topological invariants) of G, X G

1 2’
p
. i 1 2 1
2. Notations and Definitions. Let V1 = {v1, MVLEEED v1 Y,
12 P

VZ = {vz,vz,...,v2 }, and let qi denote the number of lines of

i = . h i d +
Gi’ i =14, 2. The graph Gix GZ as p1p2 points an p1q2 qu1

lines. This graph which is isomorphic with G2 X G1 contains p2 disjoint

P
1 2 2
"horizontal'" copies G'1 , G1 yeoos G 1 (ordered from top to bottom) of

p

2
G1 and p1 "vertical'" copies G 2 G2 yee ey Gz1 (ordered from left to
right) of G2 . A horizontal copy Gl1 and a vertical copy G‘; have only

j

one point (v 1

i,
, VZ) in common.

The (point-) chromatic number y(G) of a graph G is the minimum
number of colors required to color points of G in such a way that no two
adjacent points have the same color. The line-chromatic number ' (G)
is defined similarly. The total-chromatic number x"(G) of G [1]is
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the minimum number of colors required to color the elements (points
and lines) of G in such a way that no two adjacent elements (two points
or two lines) and no two incident elements (a point and a line) have the
same color.

A graph is planar if it can be drawn in the plane with no lines
crossing.

A graph G is called hamiltonian if it contains a cycle passing
through all points of G. A connected graph G is called eulerian if
the degree of (that is, the number of lines incident with) every point
of G is even.

3. Chromatic Numbers. In this section the point, line and

total-chromatic numbers of G1 X GZ are investigated. By a proper

coloring of, for example, points of G is meant an assignment of colors
to points of G in such a way that adjacent points receive different colors.
The color of an element e of G will be denoted by c(e). The notation
c (u, v) will be used for the color of the point (u, v).

THEOREM 3.1. x(G, X G,) = max {X(G1) , X(GZ)} .

Proof. Assume, without loss of generality, that X(Gl) > X(GZ).
1
Color the points of G1 with colors 1, 2,..., X(G1) properly and

suppose c(vi , v.) =41. Then color the points of G; with colors

2

1
) = 1. Now

1, 2,..., X(GZ) properly in such a way that c(vi, VZ

color the point (v‘] , vlz), i, j> 1, withcolor m+n -1 mod (X(Gi))'

1
1 i j 1 .

where m = C(vi’ v2) and n = c(vi, vz). In order to show that this

coloring is a proper coloring of points of G1 X G2 it suffices to consider

two points with the same first and with the same second entries.

Let, for example (vi , v;) and (vi s v;) be two adjacent points

of G1>< GZ. We have c(vi,v;) =r+w-1 mod (X(Gl)) and

£ t 1 s
and c(v1,v2)=v+w-'1 mod (X(Gi))’ where c(v1,v2)=r,
1 t 1
c(vi, viz) = w, and c(v1, VZ) = v. Clearly (vi,v;) and

1 t 1
(v1: VZ) are adjacent in the subgraph GZ of Gix GZ. Hence r # v.
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t
This implies c(vi,v;) # c(vl,v ).

1 2

Let max deg G denote the maximum degree among the degree
of points of G. Concerning x'(G), Vizing [5] has shown that
max deg G < yx'(G) < maxdeg G+ 1. Since max deg G1>< G2 =

max deg G1 + max deg G2 we have

THEOREM 3. 2. max deg G1 + max deg G, = x! (Gix GZ) <

max deg Gi+ max deg G2+ 1.

If the Iline-chromatic number of Gi , 1 =1, 2, equals its maximal
degree, we shall show ' (G1 X GZ) equals the maximal degree of
X .
G1 G2
THEOREM 3. 3. Suppose x'(G,) = maxdeg G,, i =41, 2.
E— i i
Then X'(Gix GZ)=maxdegG1+ maxdegGZ.

Proof. Clearly ! (G1)+ x! (GZ) < x' (Gix G_.). The converse

2
is true for every pair of graphs G1 and G2 . To see this color the lines
of each horizontal copy properly with colors 1, 2,..., x' (Gi) and each

vertical copy properly with colors ' (Gi) +1, ' (G1) +2,...,
x' (G + X! (G,).

Assuming x' (G.) = max deg G, +1, i =1, 2, one might think
i i
1 = . ig.
X (G1>< GZ) maxdegG1+maxdegG2+1 In Fig. 1 G1 and G2
are taken to be K5 - X, where Kn is the complete graph of order n
and Kn - x denotes Kn minus one line. ' (G1) = x! (GZ) =
max deg G1+ 1. But y!' (G1X GZ) is shown to be max deg G, +

1

max deg G2 = 8. The graph (K5 - x) X (K5 - x) is the smallest graph

with the above property.

Given two graphs G'1 and G2 we have X(Gi) < X"(GZ) or

X(GZ) < X"(Gi). Suppose X(G1) > x"(Gy). Then X”(Gi) >
X(G,) > X"(G,) > x(G,) imply x(G,) < X"(G,).
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THEOREM 3. 4., If X(G1) < x" (GZ), then max deg 61 +

max deg G, + 1 < x" (Gix GZ) < X" (GZ) + X' (Gi).

2

Proof. The first inequality is obvious. Color the elements of
G; and the lines of each horizontal copy properly with colors
1, 2,000, x(G)see ey X" (G,) and colors x"(G,)+1,
¥ (GZ) + 2,0, X" (GZ) + x' (G1), respectively. Suppose

1 1
c(v , Vv

1 2) = 1. Then color the points of Gi with colors

5

1
1, 2,004, X(Gi) properly in such a way that the point (v 10 Va2

receives color 1. Next, consider GJZ, j=2,..., p1 and let e be
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1
an element of G To e corresponds an element e' of GZ. Let

J
2"’
1
c(e) = c(v s VZ) + c(e') - 1 mod (X"(G )). Now it is an easy matter

to check that this coloring is a proper coloring of the elements of

G1 X GZ; completing the proof.

Remarks. (i) The bounds given in Theorem 3.4 cannot, in
general, be improved. That is, for two positive integers m and n
there exist two graphs G1 and G2 with y! (G1) = m, X”(GZ) = n,
and X”(G1 X GZ) = x! (Gi) + X"(GZ). In fact, let G1 = K1,m and

G2 = Ki, not’ where Km,n denotes the complete bigraph of order

m + n. Incidently, for these graphs max deg 61 + max deg G2 +1

equals X"(G1X GZ)’ too.

(ii) The second inequality in the theorem cannot be changed to an
equality as can be seen by considering C4 X C4, where C , n > 3,
n z

denotes the cycle of length n.

(iii) It was conjectured by one of the authors [1] that for any
graph G maxdeg G + 1 < x"(G) < maxdeg G + 2. This conjecture
has been proved to be true for many special classes of graphs [1, 3].
However, Theorem 3.4 together with the theorem of Vizing stated
earlier imply that if the conjecture is true for prime graphs, then for
a composite graph G the number maxdeg G + 3 is an upper bound
for x'"(G).

(iv) ¥ x(G,) < x"(G,) and x(G,) < x"(G,), then

X" (G, X GZ) < min {X"(GZ) + x' (Gi)' X"(G1) + x! (GZ)} .

1

4. Planarity. Without loss of generality, in this section, we

consider only connected graphs. For Gi’ G2 é¢ {K1 , KZ} we have

.. , , , th i
THEOREM 4.1 _I£G1 Gz¢{K1 Kz} then Glx G, is

planar if and only if both are paths or one is a path and the other is a cycle.

Proof. If 61 and G2 are both paths or one is a path and the
other is a cycle, then it is clear that G1 X G2 is planar. In order to

prove the converse we consider two cases.

(i) Gi, for example, has a point of degree three. Then K1 3
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is a subgraph of G1 and K is a subgraph of G2 . The graph

1,2
Ki, 3 X Ki,Z which is homeomorphic with K3’ 3 is a subgraph of
G'1 X G2 . Hence by a well-known theorem of Kuratowski =~ a graph

G is planar if and only if it has no subgraph homeomorphic with K _ or

K:‘;’3 - G1 X G2 is not planar.

(ii) Both G, and G, are cycles. It is not difficult to show

1 2
that C_ X C contains a subgraph homeomorphic with K3 3 in this
m n ,
case, too. Hence, in order for G1 X G2 to be planar neither factors
can have a point of degree three nor both can be cycles; implying the
theorem.

In Theorem 4.1 we assumed that Gy, G2 ¢ {Ki’ KZ} . If

G.2 = K1,

Before we study the case G2 = K

then clearly G1 X K1 is planar if and only if G 1 is planar.

50 Wwe consider outer-planar graphs.
A graph G 1is said to be homeomorphic from a graph H if G

is obtained from H by inserting points (of degree 2) on some lines of

H. An outer-planar graph is a graph G which can be embedded in the

plane so that every point of G lies on the exterior region. Chartrand
and Harary [2] have characterized outer-planar graphs as those graphs

which do not contain subgraphs homeomorphic from K or K2 3"

LEMMA. 1If G is an outer-planar graph, then G X KZ is
planar.

Proof. From the definition of outer-planar graphs it can be
assumed that every point of an outer-planar graph lies on a cycle. This

and the fact that C X KZ is planar imply the lemma.
n

THEOREM 4.2. G X KZ is planar if and only if G does not

contain a subgraph homeomorphic from K4 or K

2,3°

Proof. Since K4 X K2 (K2,3

) the product of a graph homeomorphic from

X KZ) has a subgraph homeo-

morphic with K _ (K

5 3,3

K4 (KZ 3) and K2 will have a subgraph homeomorphic with

’ K b
KS ( 3,3
G has a subgraph homeomorphic from K4 or K2 37 then G X K2

is not planar. The preceding lemma implies the converse.

respectively) too. Hence by Kuratowski's theorem if
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5. Traversability. An important notion in graph theory is that
of hamiltonian. No one has found yet a criterion for graphs having a

hamilton cycle. Before we give conditions under which G1 X G2 is

hamiltonian, it might be of value to mention that G1 X G2 is eulerian if and

only if points of G1 and G2 are of the same parity and both are connected.

THEOREM 5.1. Let G1 and G_ be two graphs having spanning

2
paths. Then G1 X G2 is not hamiltonian if and only if both have an odd

number of points and none has an odd cycle.

Proof. Assume that 2m + 1 and 2n + 4, m and n positive
integers, are the orders of G1 and G2 , and that

2m+1 1 2n+1
m } and P ={V2,...,v2n } are their

1 2

spanning paths, respectively. Suppose neither G1 nor G2 has an

odd cycle. Moreover, assume that C:1 X G2 is hamiltonian. The

length of a hamilton cycle C of G1 X GZ is odd. Draw G1 X GZ

1
P1 = {V1,...,v

in the plane in such a way that the lines of spanning paths Pi1 (PZJ) in

all copies Gl1 (G‘]z) of G1 X G, are horizontal (vertical) and that

2

£

2) for

neither a line of Gli(GJZ) crosses a line of GII(G

i ;(k (j # g, respectively) nor a line of crosses a line of G']2 more

,2,..4, 2n +1 ., Draw 2n

horizontal (2m vertical) lines '"between' Gl1 and Gli+1, i=1,2,...,

1
1
than once, for i,k=1,2,..., 2m +1; j, £ =1

i+
2 ,
of C cross each of these horizontal (vertical) lines is even. Since there
are 2m + 2n horizontal and vertical lines, the length of the cycle C must

2n (G; and G j=1,2,..., 2m). The number of times the lines

be even, a contradiction to our assumption.
For the converse we need to consider the following cases.

(i) Suppose the order of G1 or G2 is even. It is easy to
see that the product of two paths is hamiltonian if at least one has odd
length. Hence the assertion is true in this case.
(ii) Suppose the order of G1 and G2 is odd, and one, say
G1 , has an odd cycle. To complete the proof of the theorem, it suffices
to show that G1 X G2 is hamiltonian if G 1 is a path of order
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2m + 1 with 2m + 2 lines having a cycle C of odd length and G2

is a path of order 2n+ 1.

Remove the lines of C from G1 to obtain two paths P1 and

P2 and a set of isolated points. (In general F‘1 or P2 might be an

isolated point, too; in which case it will be considered as a path of
length zero.) The length of these paths are of the same parity. According
to their length two cases must be studied.

(i) The length of P1 and P2 is odd.

(ii) The length of P'1 and P2 is even.

Instead of writing a tedious proof for our assertion we show a
method of finding a hamilton cycle for each case in the following figures.

COROLLARY. E G1 and G2 are hamiltonian, then G1 X G

2
is hamiltonian also.

By

LT S T L L U

OB @@ = o m e el 0 gy WG - - e e e R O G e - = = - - jl i
0 e e s e S el — e el € e v e eme o e (e @l e el e ® = m = n o - - - G— 0" 1
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Pl e et i N
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e i e
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Case (ii)

The next two theorems give sufficient conditions under which

G1 X G2 is not hamiltonian,

THEOREM 5.2. If in G'1 three points of degree one are

adjacent to a point and if G_ contains a point of degree one, then

2

01 X G2 is not hamiltonian.

2
Proof. Let vi be adjacent to points v1, v31 and v41 each

of degree one in G, and let v; be a point of degree one in Cv2 .
1 3 1 .4 1, .
2)’ (v 1’ Vz) , and (v 1’ v Z)‘ in G, X G

. 2
Then the points (v 1’ v 1 2

all have degree two and are adjacent with (v : , Vv 12

can contain three lines adjacent with one point, G 1 X G2 cannot be

). Since no cycle

hamiltonian.

THEOREM 5.3. Let Gi have two points of degree one adjacent

with a point of G,, i =1, 2. Then G1 X G2 is not hamiltonian.
yatha poiat ol M, 2aen

2
Proof. Let vi, be adjacent with two points vi and v?,) of
—_— i i
degree one in Gi' i =1, 2. Suppose G1 X G2 is hamiltonian.

1 2 1 2 3 2

. 2 2
Then the lines (Vi’VZ) (vi,vz), (vi, VZ) (v1,v2),
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1 3 1

2 3 3 3 3 3 1 3
(vi,vz) (V1,v2), (v1,v2) (V1’V2)’ (vi,vz) (V1’V2)’

3 2 3 2 2 1 1 2
(V'],'VZ) (Vinvz)’ (V1:V2) (Vi:vz) and (V 1V2) (Vi'VZ)

must be in a hamilton cycle of G, X G2 . These themselves form a

L . 1 1 —
cycle not containing the point (v 1’ v 2) , a contradiction.
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