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SPECTRAL PROPERTIES FOR INVERTIBLE 
MEASURE PRESERVING TRANSFORMATIONS 

JEAN-MARC BELLEY 

1. Introduction. An invertible measure preserving transformation T on 
the unit interval I generates a unitary operator U on the space L2(I) of 
Lebesque square integrable functions given by (Uf)(x) = f(Tx) for a l l / in 
L2(I) and x in J. By definition 

(/» g) = fgdx 

for all / , g in L2{I), the bar denoting complex conjugation. By the spectral 
theorem (Halmos [2]) there exists a spectral measure E on the Borel subsets 
of the unit circle C in the complex plane such that for all integers k, 

Uk = f zkE(dz) 
J c 

in the sense of strong convergence. By means of the spectral measure we define 
the resolution of the identity Et on [0, 2TT) such that Et = E({eis:0 ^ 5 < /}). 
Then (Prohorov and Rozanov [5]) in the sense of strong convergence, 

(1) Et = l i m e {e%n - l) IT* + §(£((!}) - £({«"})) 

where 

E{{z\) =\\m-^—±ziJT1 

for all z in C, (eiot — 1)A0 denoting the value t for convenience of notation in 
this paper. It shall be shown that the operator E can be extended to the space 
of Lebesque integrable functions Ll(I) and that for a l l / , g in L2(I) we have 
Etf-Esg = Et+s(fEsg + gEj-fg) + Et(fg - gEtf) + Es(fg -fEsg). From 
this will follow that for any/ , g in L2{I) and h in the space U°(I) of essentially 
bounded functions, (Etf - Esg, h), which we use to denote 

J Etf- Esg • hdx, 
o 
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is a function of bounded variation on the square [0, 2T) X [0, 2T), and that 

E(B)(fg)= f E(Bz-1)f-E(dZ)g 
*>C 

which is a generalization of a result due to Koopman [4] and proved by 
Foias [1] (B is any Borel subset of C). Finally for ergodic transformations it is 
shown that for almost all x in / , 

( JgE(ds)f • E(dz)gyx) = (E(B)gJ), 

which is an extension of a result obtained by Sinai [6]. 

2. The multiplicative property. Let U be extended to Ll(I) by writing 
(Uf) (x) = f(Tx) for a l l / in Ll(I). Clearly by the measure preserving property 
of T, ^ / l ies in L1 CO and \{Ujf, h)\ û \\f \\i\\h\\œ for all A in Lœ(I), the norms 
being the usual ones on Ll(I) and U°(I) respectively. Thus 

n / ijt -J \ 

is a square integrable function with respect to t which we shall denote by 
(Etf, h) and it is easily seen that this is equal to (/, Eth). In a similar manner 
E({z}) can be extended to Ll(I). 

Suppose now tha t / , g are in L2(I) and h is a function in L°°(I). In the case 
of unitary operators induced by invertible measure preserving transformations 
we have the multiplicative property U(fg) = (Uf)(Ug). In fact by a theorem 
of von Neumann (Halmos [3]) this is a necessary and sufficient condition for U 
to be induced by such an operator. Note that 

+ (eZ~k2X'-wli0"'sU""Ak)-
Using this in conjunction with equation (1) we get 

Etf-Esg = (Et+S - Es)(f(Esg - g')) + Et(fg') 

+ (Et+S - Et)(g(Etf-f))+Es(fg) 

where/ ' , g' are functions in L2(I). Setting t and 5 equal to 2w we get 
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and thus 

(2) Etf • Esg = Et+s(fEsg + gEtf - fg) + Et(fg - gEtf) + Es(fg - fEsg). 

Now U maps real functions into real ones and hence (1 — E~t)f = Etf, 
t = 2-K — t, as can be seen by equation (1). Hence equation (2) implies that 
if t' < t and sf < s then 

(3) (Et - Et,)f- (Es - E9.)g = (Et+S - £,,+,,) 

X ( ( £ , - £ , 0 / - (Es-Es,)g)); 

in other words, if B' and B" are two Borel subsets of C corresponding to 
intervals then 

(4) E(B')f-E(B")g = E(B'-B")(E(B')f-E(B")g). 

Later we shall see that this holds for all Borel subsets of C. 

For any Borel subset B of C, if ||-||2 represents the L2(I) norm then 

\(f,E(B)h)\ ^ \\f\U\\E(B)h\U 

( 5 ) ^ II/II2IIAII2 

^ II/II2IIAIU 

from which follows the existence of some constant (depending only on h) such 
that for all sequences {Bj} of disjoint Borel subsets of C the essential supremum 
of 2\E(Bj)h\ is bounded by it, for otherwise there exists a sequence {Bj} 
such that either the real or imaginary part of 2E(Bj)h is much larger than 
H&lloo which contradicts (5) above for appropriate choices of/ in L2(I). Using 
this along with (4) we shall now show that for given / , g in L2(I) and h in 
Lœ(I), (Etf • Esg, h) is of bounded variation on [0, 2TT) X TO, 2TT). For this it is 
sufficient to show the existence of a constant K such that for any partition {Bj} of 
C into intervals of the same length we have 2̂ -2̂ 1 (E(Bf) f • E(Bk)g, h)\ ^ K. 

E Z \mB,)f-E{Bk)g,h)\ = E I \(E(B})f • E(Bk)g,^ E{Bm)h)\ 
3 k j k m 

^ E E E l ^ (B,)f • E (Bk)g, E (Bm)h) I 
j k m 

=SZ E Z |(£(B,-.B*)(i2(2*,)/ 
j k m 

•E(Bk)g),E(Bm)h)\. 

But for fixed j and m, Bm intersects Bj • Bk for at most two k, m/ and m/' say, 
for which {Bmj>} is a disjoint sequence as is {Bmj>>}. Hence. 
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E E \(E(Bt)fE(Bt)g,h)\ ^ S E |(£(^)/-£(5ro.)g,£(5ra)fe)| 
j k m j 

+ E E \(E(B,)fE(Bmj..)g,E(Bm)h)\ 
m j 

^ 1 ( E |£(5,)/-£(5m/)g|, |£(B-)A|) 

+ Z ( Z |£(£,)/-£(2W-)g|, |£(5«)A|) 
m \ j / 

* Ç ( ( Ç |£(^)/ |2) è(E |£OW)g|2)4, |£(5»)A|) 

+ E ( ( Ç | £ ( ^ ) / | 2 ) * ( E \E(Bmj„)g\*y, \E(Bm)h\) 

^^{{^ |£(^)/ |2)è(E |£(5,)g|2)*, \E{Bm)h\) 

+ E ( ( Ç |£(^)/ |2)è(E |£(^)g|2)è, \E(Bm)h\) 

< 2 (El£(^)/l2)2(El£(^-kl2)5 E \E(Bm)h\ 

éWlUUilU E |£(5J*| 

Thus for K one need but choose the upper bound of ||S|£(5m)fe| ||œ over all 
partitions {Bj} of C (which is finite by above) times | | / 1121l̂ T])s-

As a consequence of bounded variation for any Borel subset A of C X C, 

SL E{du)j • E(dv)g 

converges weakly to a function in LX{I) for all/ , g in Ll(I), equation (4) holds 
for all Borel subsets B' and B" of C, and for all / in Ll(I), Etf denned by 
equation (1) converges weakly to a function in LX(I) for all L To prove the 
last statement, express (Et(f^f*),h) for h in L°°(I) by (1), replace Ujf 
by (Ujf *) (Ujf *) for all integers j , use the spectral theorem, and then use 
Lebesque's dominated convergence theorem. 

THEOREM 1. A unitary operator with spectral measure E is induced by an 
invertible measure preserving transformation if and only if for all f, g in L2 (I) 
and any Borel subset B of C 

(6) E(B)(Jg) = f f E(du)f • E(dv)g. 

Proof. If the unitary operator induced by an invertible measure preserving 
transformation then we get (4) and as a consequence (6), since by (4) 

https://doi.org/10.4153/CJM-1973-082-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-082-1


810 JEAN-MARC BELLEY 

UP E(B)(fg) = 22(B) \E (du)f-E(dv)g 

= ff E(du)f • E(dv)g. 

By von Neumann's theorem (introduced above) to prove the converse it is 
sufficient to show that for a l l / , g in L2(I) such that fg also lies in L2(I) we 
have U(fg) = (Uf)(Ug). As shown by Foias [1], equation (6) implies 

U(fg) = JzE(dz)(fg) 

= jzE(dz)[ JJE(du)f • E(dv)g) 

= I I uvE(du)f - E(dv)g 

= [JuE(du)f){JvE(dv)g] 

= (Uf)(Ug). 

3. Ergodic transformations. Define the integral J E(du)f • E(du)g, f, g 
in L2(I), to be the limit in LX(I) of sums XjE(Bj) f • E(Bj)g as the mesh of 
the finite partition {Bj\ of C tends to zero. By (6) this is equivalent to E({1}} (fg) 
(recall that for any Borel subset B of C, since U maps real functions into real 
ones we have E{B) f = E(B) f). By BirkhofFs ergodic theorem (Halmos [3]) 
a transformation is ergodic if and only if the function E({ 1} ) (fg) is a constant 
almost everywhere for all / , g in L2(I). Clearly we can extend the integral 
above to the case 

E(du)f'• E(du)g, 
U B 

B a Borel subset of C. 

THEOREM 2. If an invertible measure preserving transformation on the unit 
interval I with spectral measure E is ergodic, then for any Borel subset B of C 
and functions f, g in L2 (I) we have for almost all x in I 

(7) [jBE(du)f.E(du)g)(x) = (E(B)gJ). 

In particular, for almost all x in I 

(8) ( JB \E (du)f |2) (x) = (E (B)f, f). 
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Proof. Using the fact that E({l})(fg) is a constant almost everywhere 
we obtain 

J E(du)f • E(du)g = JE(du)f • E(du)E(B)g 

= E({l})(fE(B)g) 

= JiE({l})UE(B)g)dx 

-xu E (du)f • E (du)g)dx 

= f (E(du)g,E(du)f) 
v B 

= (E(B)gJ). 
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