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Classifying Spaces for Monoidal Categories
Through Geometric Nerves

M. Bullejos and A. M. Cegarra

Abstract. The usual constructions of classifying spaces for monoidal categories produce CW-com-

plexes with many cells that, moreover, do not have any proper geometric meaning. However, geometric

nerves of monoidal categories are very handy simplicial sets whose simplices have a pleasing geometric

description: they are diagrams with the shape of the 2-skeleton of oriented standard simplices. The

purpose of this paper is to prove that geometric realizations of geometric nerves are classifying spaces

for monoidal categories.

1 Introduction

The theory of classifying spaces of categorical structures has become an essential part

of the machinery of algebraic topology and algebraic K-theory, and one of the main

reasons for this is that the classifying space constructions transport categorical coher-

ence to homotopical coherence.

The classifying space |C| of a small category C is the geometric realization of

the simplicial set nerve of C, and the classifying space ||S|| of a simplicial category

S : ∆∠
op → Cat is defined as Segal’s realization [16] of the simplicial space

|S| : ∆∠
op → Top; [n] 7→ |Sn|. An alternative construction of ||S|| proceeds by the

so-called Grothendieck category ∆∠
op
∫

S [7, 6], since from [15, Theorem 1.2] the exis-

tence of a natural homotopy equivalence ||S|| ≃ |∆∠ op
∫

S| follows . Indeed, Grothen-

dieck’s construction is usually used to define the classifying space of any pseudo-

simplicial category, that is, any pseudo-functor S : ∆∠
op ///o/o Cat [15, 9]. The result-

ing space ||S|| = |∆∠ op
∫

S| is homotopy equivalent to the classifying space ||S̃|| of the

rectified simplicial category S̃ : ∆∠
op → Cat obtained by applying Street’s first con-

struction [18], to the pseudo-simplicial category S [13, §3].

If M⊗
= (M,⊗, a, e, ℓ, r) is a monoidal category [12], its classifying space ||M⊗||

is defined as the classifying space ||W M
⊗|| of the pseudo-simplicial category WM

⊗

that M⊗ defines by the familiar bar construction. That is, the category of n-simplices
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is W nM
⊗

= Mn, (W 0M
⊗

= {e}). The face and degeneracy functor are defined on

objects by

di(x1, . . . , xn) =











(x2, . . . , xn) i = 0,

(x1, . . . , xi+1 ⊗ xi , . . . , xn) 0 < i < n,

(x1, . . . , xn−1) i = n,

si(x1, . . . , xn) = (x1, . . . , xi, e, xi+1, . . . , xn), 0 ≤ i ≤ n,

and similarly on arrows, and the natural isomorphisms didi
∼= didi+1, disi

∼= Id and

di+1si
∼= Id are those arising from the associativity and unit constraints of M

⊗ (see

[8, 9]). In particular, the space at level 1 of the spectrum associated to a symmet-

ric monoidal category (M⊗, c) is the space ||M⊗||. Furthermore, let us remark that

when M⊗ is a strict monoidal category, that is, when it is an internal monoid in Cat,

then W M
⊗ is a genuine simplicial category whose classifying space ||M⊗|| is just the

classifying space of the topological monoid with underlying space |M|, the classify-

ing space of the underlying category M, and composition-law induced by the tensor

functor⊗.

The classifying space ||M⊗|| of a monoidal category M
⊗ gives a CW-complex, but

its cells do not enjoy any proper geometric meaning. However, there is another con-

vincing way of associating a space to M⊗. This way goes through what Duskin [3]

called the geometric nerve ∆M⊗ of the monoidal category and it was developed (even

in the more general context of bicategories) by Street and Duskin himself (cf. [19]).

This geometric nerve ∆M⊗ is a simplicial set that encodes the entire monoidal and

categorical structure of M⊗, and whose simplices have the following pleasing geo-

metrical description:

There is only one 0-simplex in ∆M⊗, say e. Its 1-simplices are the objects of

M that are placed on edges 0
x0,1
−−→ 1. Its 2-simplices are arrows in M of the form

x0,1,2 : x0,2 → x1,2 ⊗ x0,1 that are placed on triangles

↑x0,1,2

1
x1,2

""F
FF

FF
FF

FF
F

0

x0,1

<<yyyyyyyyyy

x0,2

// 2

For n ≥ 3, an n-simplex of ∆M⊗ can be thought of as the 2-skeleton of an oriented
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standard n-simplex with objects xi, j placed on the edges i → j, for 0 ≤ i < j ≤ n,

n n−1
xn−1,n

oo

0

x0,n

@@��������

77ooooooooooooooo

x0,1

��
x0,2

..
..

..
.

��.
..

..
..

  @
@@

@@
@@

@@
@@

@@
@@

@@
@@

@

1

x1,2 ��>
>>

>>
>>

''PPPPPPPPPPPPPPPP

GG���������������

??~~~~~~~~~~~~~~~~~~~~

2
x2,3

//

x2,n

OO II������������������������
3

x3,n−1

OOUU++++++++++++++++++++++++

and arrows xi, j,k : xi,k → x j,k ⊗ xi, j placed on the inside of the triangles

↑xi, j,k

j

x j,k

""E
EE

EE
EE

EE
E

i

xi, j

=={{{{{{{{{{

xi,k

// k ,

for 0 ≤ i < j < k ≤ n. These data are required to satisfy that each tetrahedron

ℓ

i

xi,ℓ

@@���������
xi,k //

xi, j

��<
<<

<<
<<

<<
k

xk,ℓ

^^=========

j

x j,k

@@���������

x j,ℓ

OO
xi, j,k : xi,k → x j,k ⊗ xi, j

xi, j,ℓ : xi,ℓ → x j,ℓ ⊗ xi, j

xi,k,ℓ : xi,ℓ → xk,ℓ ⊗ xi,k

x j,k,ℓ : x j,ℓ → xk,ℓ ⊗ x j,k

for 0 ≤ i < j < k < ℓ ≤ n, is commutative in the sense that the following diagram

xi, j

xi, j,ℓ

//

xi,k,ℓ

��

x j,ℓ ⊗ xi, j

x j,k,l⊗Id

// (xk,ℓ ⊗ x j,k)⊗ xi, j

xk,ℓ ⊗ xi,k

Id⊗xi, j,k

// xk,ℓ ⊗ (x j,k ⊗ xi, j)

a≀

OO
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commutes. The simplicial operators

∆n+1M
⊗ si←− ∆nM

⊗ d1−→ ∆n−1M
⊗

are defined as for the usual nerve of an ordinary category, thus the face operator di

deletes the data in which the index i appears. This simplicial set ∆M⊗ becomes

coskeletal in dimensions greater than 3.

The purpose of this article is to prove the following:

Theorem 1 For any monoidal category M
⊗

= (M,⊗, a, e, ℓ, r), there is a homotopy

equivalence

||M⊗|| ≃ |∆M
⊗|.

To our knowledge, the above theorem has only been stated in the case in which

every arrow in M is invertible and every object has a quasi-inverse with respect to the

tensor product, that is, when M⊗ is a categorical group (cf. [4]). Indeed, when M⊗

is a strict categorical group (that is, when M⊗ is an internal group object in Cat or

equivalently an internal category in the category of groups, cf. [10, Section 3]) then

it is easy to see that the geometric nerve ∆M⊗ is isomorphic to the simplicial set

obtained as the Kan classifying complex [11] of the simplicial group nerve of M.

2 Proof of Theorem 1

Throughout M⊗
= (M,⊗, a, e, ℓ, r) is any fixed small monoidal category.

The simplicial category ∆∠ is regarded here as the full subcategory of Cat, the cat-

egory of small categories, whose objects are the categories defined by the ordered sets

[n] = {0 ≤ 1 ≤ · · · ≤ n}, n ≥ 0.

Since any monoidal category M⊗ can be considered as a bicategory [1] with only

one object [19, Example 2] and any category is a bicategory whose 2-cells are all

identities, it makes complete sense to consider the set of (strictly unitary) morphisms

of bicategories from a small category to a small monoidal category. Furthermore, it is

not difficult to see that the data for an n-simplex x of the geometric nerve ∆M⊗, as

described in the introduction, is the same as the data for a morphism of bicategories

x : [n]→M⊗. That is, x consists of a family

x = {xi, j , xi, j,k}0≤i≤ j≤k≤n,

with xi, j and xi, j,k : xi,k → x j,k ⊗ xi, j objects and arrows in M, respectively, such that:

• xi,i = e,
• xi, j, j = ℓ : xi, j → e⊗ xi, j , xi,i, j = r : xi, j → xi, j ⊗ e,
• (x j,k,l ⊗ Idxi, j

) xi, j,l = axk,l,x j,k,xi, j
(Idxk,l

⊗ xi, j,k) xi,k,l,

for any 0 ≤ i ≤ j ≤ k ≤ l ≤ n.
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Thus, the geometric nerve of M⊗ can be described as the simplicial set

∆M
⊗

= Mor(−, M⊗) : ∆∠
op → Set,

which takes each ordered set [n] to the set Mor([n], M⊗) of bicategory morphisms

from [n] to M⊗ (cf. [19, p. 573] and [3, Section 2]).

We now note that the geometric nerve ∆M
⊗ is the simplicial set of objects of the

simplicial category

∆M
⊗

= Mor(−, M⊗) : ∆∠
op → Cat,

whose category of n-simplices is ∆nM
⊗

= Mor([n], M⊗), the category of bicat-

egory morphisms form [n] to M⊗ with (strictly unitary) transformations between

them. That is, an arrow f : x → x ′ in ∆nM
⊗ consists of a family f = { fi, j : xi, j →

x ′
i, j}0≤i≤ j≤n of arrows in M, that satisfy the equations:

(1) fi,i = Ide and ( f j,k ⊗ fi, j) xi, j,k = x ′
i, j,k fi,k,

for any 0 ≤ i ≤ j ≤ k ≤ n.

Observe that ∆M
⊗ is a reduced simplicial category, that is, ∆0M

⊗ ∼= {e} is the

discrete category with only one object. Moreover, M ∼= ∆1M
⊗, by means of the

identification

E1 : (x0,1

f0,1
−→ x ′

0,1) 7→ (x
f
−→ x ′).

In general we have:

Lemma 1 For every n ≥ 2, there is a full embedding of categories

En : M
n →֒ ∆nM

⊗.

Proof The functor E = En takes the object x = (x1, . . . , xn) ∈Mn to the morphism

Ex : [n]→M
⊗ defined inductively by the equations

(Ex)i, j+1 =

{

x j+1 i = j

x j+1 ⊗ (Ex)i, j i < j,

and

(Ex)i, j,k+1 =

{

Id(Ex)i,k+1
i ≤ j = k

axk+1,(Ex) j,k,(Ex)i, j

(

Idxk+1
⊗ (Ex)i, j,k

)

i ≤ j < k.
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Thus, for example,

E2(x1, x2) =
↑Id

1
x2

##F
FF

FF
FF

FF
F

0

x1

<<yyyyyyyyyy

x2⊗x1

// 2 ,

Id : x2 ⊗ x1 → x2 ⊗ x1,

E2(x1, x2, x3) =

3

0

x3⊗(x2⊗x1)
@@��������

x2⊗x1
//

x1 ��=
==

==
==

2 ,

x3

__????????

1

x2

??��������

x3⊗x2

OO

Id : x2 ⊗ x1 → x2 ⊗ x1

Id : x3 ⊗ (x2 ⊗ x1)→ x3 ⊗ (x2 ⊗ x1)

Id : x3 ⊗ x2 → x3 ⊗ x2

a : x3 ⊗ (x2 ⊗ x1)→ (x3 ⊗ x2)⊗ x1,

and so on.

It is a straightforward consequence of Mac Lane’s coherence theorem [12] that Ex

is actually an object in ∆nM
⊗. Further, the functor E on an arrow f = ( f1, . . . , fn) :

x→ x ′ in M
n is inductively given by

(Ef)i, j+1 =

{

f j+1 i = j,

f j+1 ⊗ (Ef)i, j i < j.

It is clear, from its construction, that E is a faithful and injective on objects functor.

That E is full follows from the equalities (1) and the fact that every arrow (Ex ′)i, j,k is

an isomorphism.

Note that the pseudo-simplicial category WM⊗ is a pseudo-simplicial subcate-

gory of the simplicial category ∆M⊗ via the embeddings En : Mn →֒ ∆nM
⊗ in

Lemma 1, with the natural isomorphisms dmEn
∼= En−1dm and Ensm

∼= smEn+1 being

canonically induced by the associativity and unit constraints a, ℓ and r of M
⊗ (see

Remark below Lemma 2). Lemma 2 below will imply that the simplicial category

∆M⊗ defines, by realization, a classifying space for the monoidal category M⊗.

Lemma 2 For any n ≥ 2, the embedding En : Mn →֒ ∆nM
⊗ is a right adjoint section

to the Segal map projection

Pn =

n
∏

k=1

d0 . . . dk−2dk+1 . . . dn : ∆nM
⊗ →M

n.

Proof Note that for any arrow f : x→ y in ∆nM
⊗,

Pn(x
f
−→ y) = (x0,1

f0,1
−−→ y0,1, . . . , xn−1,n

fn−1,n
−−−→ yn−1,n).
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Then, PnEn = IdMn . Moreover, there is a natural transformation

(2) εn : Id∆nM
⊗ → EnPn

that takes a morphism x : [n] → M⊗ to the transformation εnx : x → EnPn(x),

inductively defined by:

(εnx)i, j+1 =

{

Idx j, j+1
i = j,

(

Idx j, j+1
⊗ (εnx)i, j

)

xi, j, j+1 i < j.

Since Pn(εnx) = IdPn(x), for any x ∈ ∆nM
⊗, and εnEn(x) = IdEn(x), for any x ∈ Mn,

it follows that En is a right adjoint to Pn, being the identity and εn the unit and the

counit of the adjunction respectively.

Remark The entire data for the pseudo-functor W M⊗ : ∆∠
op ///o/o Cat can be de-

scribed with the help of the functor ∆M⊗ : ∆∠
op → Cat and the adjoint functors En

and Pn in Lemmas 1 and 2. In fact, for any arrow α : [m]→ [n] in ∆∠ , the square

M
n

α∗

//

En

��

M
m

∆nM
⊗

α∗

// ∆mM
⊗

Pm

OO

commutes, that is, α∗
= Pmα∗En : Mn → Mm, and for any pair of composable

arrows [k]
β
−→[m]

α
−→ [n] in ∆∠ , the natural isomorphism (αβ)∗ ∼= β∗α∗ : Mn →Mk

is precisely realized by the natural transformation (2), εm : Id∆M⊗ → EmPm, as

Pkβ
∗εmα∗En : Pk(αβ)∗En

∼
−→ (Pkβ

∗Em)(Pmα∗En)

(note that, for every x ∈ ∆mM⊗, the arrow εmx : x → EmPm(x) is an isomorphism

in ∆mM⊗ whenever every arrow xi, j,k : xi,k → x j,k ⊗ xi, j is an isomorphism).

Furthermore, given any arrow α : [n] → [m] in ∆∠ , the natural isomorphisms

α∗En
∼= Emα∗ that form part of the data for the pseudo-simplicial embedding

E : W M⊗ →֒ ∆M⊗ are precisely

εmα∗En : α∗En
∼
−→ EmPmα∗En = Emα∗;

in particular, εndiEn+1 : diEn+1
∼
−→ Endi and εn+1siEn : siEn

∼
−→ En+1si, 0 ≤ i ≤ n, are

the primary ones.

As a consequence of Lemma 2 above, we can prove the following:

Proposition 3 The pseudo-simplicial embedding E : W M⊗ →֒ ∆M⊗ induces a ho-

motopy equivalence

||M⊗|| ≃ ||∆M
⊗||.
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Proof As we proved, every functor En : Mn →֒ ∆nM
⊗ has a left adjoint and there-

fore [14, Corollary 1] the induced map on classifying spaces |En| : |M
n| → |∆nM

⊗|
is a homotopy equivalence. Then, the proposition follows from [15, Corollary 3.3.1].

It is remarkable that the simplicial space |∆M
⊗| : [n] 7→ |∆nM

⊗| satisfies the

hypothesis of Proposition 1.5 in [17], that is:

• the space |∆0M
⊗| is contractible (since ∆0M

⊗
= {e} is the trivial category),

• the maps |Pn| : |∆nM
⊗| → |∆1M

⊗|n = |M|n are homotopy equivalences (as a

consequence of Lemma 2).

Therefore, the already known result below follows:

Corollary 4 The induced map |M| → Ω||∆M⊗|| ≃ Ω||M⊗|| is a homotopy equiv-

alence if and only if the monoid of connected components of the monoidal category is

a group. Hence, the classifying space of the underlying category |M| is, up to group

completion, a loop space.

Let us write NC for the simplicial set nerve of any small category C. Then, there is

a natural homeomorphism (see [14, Lemma, p. 86] for example)

||∆M
⊗|| ∼= |diag N∆M

⊗|,

where N∆M
⊗ : ∆∠

op × ∆∠
op → Set is the bisimplicial set defined by ([p], [q]) 7→

Np∆qM
⊗. More explicitly, an element χ ∈ Np∆qM

⊗ can be described as a string

(3) χ = (x0 f1

−→ x1 → · · · → xp−1 fp

−→ xp)

of p composable arrows in the category ∆qM
⊗. The vertical face and degeneracy

operators

Np∆q+1M
⊗ sv

m←− Np∆qM
⊗ dv

m−→ Np∆q−1M
⊗, 0 ≤ m ≤ q

are induced by those of ∆M⊗, that is

dv
m(χ) = (dmx0 dm f 1

−→ dmx1 → · · · → dmxp−1 dm f p

−→ dmxp)

and

sv
m(χ) = (smx0 sm f 1

−→ smx1 → · · · → smxp−1 sm f p

−→ smxp).

The horizontal face and degeneracy operators

Np+1∆qM
sh
m←− Np∆qM

dh
m−→ Np−1∆qM, 0 ≤ m ≤ q
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are those of the nerve N∆qM, that is,

dh
m(χ) =















(x1 f2

−→ x2 · · · xp−1 fp

−→ xp) m = 0,

(x0 f1

−→ x1 · · · xm−1 fm+1fm

−→ xm+1 · · · xp−1 fp

−→ xp) 0 < m < p,

(x0 f1

−→ x1 · · · xp−2 fp−1

−→ xp−1) m = p,

sh
m(χ) = (x0 → · · · xm−1 fm

−→ xm Id
−→ xm fm+1

−→ xm+1 · · · → xp), 0 ≤ m ≤ p.

The following lemma is the key to proving our theorem in this paper.

Lemma 5 For any p ≥ 1, the simplicial set Np−1∆M
⊗ is a simplicial deformation

retract of Np∆M⊗, via the simplicial injection

sh
0 : Np−1∆M

⊗ →֒ Np∆M
⊗.

Proof Since dh
0sh

0 = Id, to prove this lemma it suffices to exhibit a simplicial homo-

topy H p : Id→ sh
0dh

0 . We first consider the case p = 1.

To define H1 we begin by defining a simplicial homotopy µ : dh
1 → dh

0 , between

the simplicial maps dh
1, dh

0 : N1∆M
⊗ −→ N0∆M

⊗
= ∆M

⊗, as follows: for each

0 ≤ m ≤ q, let µm : N1∆qM
⊗ → ∆q+1M

⊗ be the map that associates to each arrow

f : x→ y in ∆qM
⊗ the geometric (q + 1)-simplex µmf given by:

(µmf)i, j =











yi, j j ≤ m,

xi, j−1 i ≤ m < j,

xi−1, j−1 m < i,

and

(µmf)i, j,k =



















yi, j,k : yi,k → y j,k ⊗ yi, j k ≤ m,

(Idx j,k−1
⊗ fi, j ) xi, j,k−1 : xi,k−1 → x j,k−1 ⊗ yi, j j ≤ m < k,

xi, j−1,k−1 : xi,k−1 → x j−1,k−1 ⊗ xi, j−1 i ≤ m < j,

xi−1, j−1,k−1 : xi−1,k−1 → x j−1,k−1 ⊗ xi−1, j−1 m < i.

It is straightforward to check that the above definitions do indeed give a simplicial

homotopy µ as predicted. Further, observe that µ0 = s0dh
1 and that µmsh

0 = sm (i.e.,

for f = Idx, any identity arrow in ∆qM
⊗, µmIdx = smx) for all 0 ≤ m ≤ q.

The homotopy H1 : Id → sh
0dh

0 we are going to define will satisfy that dh
1H1

= µ

and is determined by the maps H1
m : N1∆qM → N1∆q+1M, 0 ≤ m ≤ q, which

apply an arrow f : x → y in ∆qM
⊗ to the arrow H1

mf : µf → smy in ∆q+1M
⊗ given

by:

(H1
mf)i, j =











Idyi, j
: yi, j → yi, j j ≤ m,

fi, j−1 : xi, j−1 → yi, j−1 i ≤ m < j,

fi−1, j−1 : xi−1, j−1 → yi−1, j−1 i < m.

https://doi.org/10.4153/CMB-2004-031-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2004-031-8


330 M. Bullejos and A. M. Cegarra

Observe that H1
0 = sv

0 : N1∆qM
⊗ → N1∆q+1M

⊗, whence dv
0H1

0 = Id, and that

dv
q+1H1

q f = Idy = sh
0dh

0(f), for all f : x → y in ∆qM
⊗. To check in full the remaining

homotopy simplicial identities, needed for H1 : Id → sh
0dh

0 to be a simplicial homo-

topy, is again straightforward (though tedious) and we will leave it to the reader.

Finally, for an arbitrary p ≥ 2, the homotopy H p : Id → sh
0dh

0 is defined by the

maps H
p
m : Np∆qM

⊗ → Np∆q+1M
⊗, 0 ≤ m ≤ q, which take an element χ as in (3)

to

H p
m(χ) = (µmf1 H1

mf
−−→ smx1 smf2

−−→ smx2 → · · · → smxp−1 smfp

−−→ smxp).

The simplicial identities that make of H p a simplicial homotopy are at this stage much

easier to verify.

We are now ready to complete the proof of Theorem 1:

Since ∆M⊗
= N0∆M⊗, we have a bisimplicial map φ : ∆M⊗ →֒ N∆M⊗, where

∆M
⊗ is considered as a bisimplicial set that is constant in the horizontal direction,

given by

φp,q(x) = sh
0

(p). . . sh
0(x) = (x

Id
−→ x→ · · · → x

Id
−→ x) ∈ Np∆qM

⊗,

for each x ∈ ∆qM
⊗. By an iterative application of Lemma 5 above, we see that the

simplicial maps

φp,∗ : ∆M
⊗ →֒ Np∆M

⊗

induce, for all p ≥ 0, a homotopy equivalence on realizations, |φp,∗| : |∆M⊗|
∼
−→

|Np∆M⊗|. It follows then that the simplicial map

diagφ : ∆M
⊗ → diagN∆M

⊗

also induces a homotopy equivalence on realizations (see [2, 1.2,4.3] for example).

Thus,

|∆M
⊗| ≃ |diagN∆M

⊗| ∼= ||∆M
⊗||,

which together with Proposition 3, completes the proof of Theorem 1.
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217–264.
[19] R. Street, Categorical structures. In: Handbook of Algebra, Vol. I, North-Holland, Amsterdam, 1996,

pp. 529–574.

Departamento de Álgebra
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