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Classifying Spaces for Monoidal Categories
Through Geometric Nerves

M. Bullejos and A. M. Cegarra

Abstract. The usual constructions of classifying spaces for monoidal categories produce CW-com-
plexes with many cells that, moreover, do not have any proper geometric meaning. However, geometric
nerves of monoidal categories are very handy simplicial sets whose simplices have a pleasing geometric
description: they are diagrams with the shape of the 2-skeleton of oriented standard simplices. The
purpose of this paper is to prove that geometric realizations of geometric nerves are classifying spaces
for monoidal categories.

1 Introduction

The theory of classifying spaces of categorical structures has become an essential part
of the machinery of algebraic topology and algebraic K-theory, and one of the main
reasons for this is that the classifying space constructions transport categorical coher-
ence to homotopical coherence.

The classifying space |C| of a small category € is the geometric realization of
the simplicial set nerve of €, and the classifying space ||S|| of a simplicial category
8§: A® — Cat is defined as Segal’s realization [16] of the simplicial space
IS8|: A® — Top; [n] — |8,|- An alternative construction of ||8|| proceeds by the
so-called Grothendieck category AP f 8 [7, 6], since from [15, Theorem 1.2] the exis-
tence of a natural homotopy equivalence ||8]| ~ [A[§] follows . Indeed, Grothen-
dieck’s construction is usually used to define the classifying space of any pseudo-
simplicial category, that is, any pseudo-functor §: A’ ~~ Cat [15, 9]. The result-
ing space ||8|| = |A®[8] is homotopy equivalent to the classifying space ||| of the
rectified simplicial category 8: A®® — Cat obtained by applying Street’s first con-
struction [18], to the pseudo-simplicial category § [13, §3].

IfM® = (M, ®,4a,e,,r)isamonoidal category [12], its classifying space | M®||
is defined as the classifying space |[WM®|| of the pseudo-simplicial category WM®
that M® defines by the familiar bar construction. That is, the category of n-simplices
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is W,M® = M", (WoM® = {e}). The face and degeneracy functor are defined on
objects by

(%2, ..., %,) i=0,
di(x1, .o %) = (1, X1 Q%iy .y x,) 0< i< my

(x17~-~;xn—1) i:n7
Si(Xl,...,xn) = (-xl>‘-‘7xi7euxi+17"'7xﬂ)> 0 g i S n,

and similarly on arrows, and the natural isomorphisms d;d; = d;d;;1, d;s; = Id and
div1s; = Id are those arising from the associativity and unit constraints of M® (see
[8, 9]). In particular, the space at level 1 of the spectrum associated to a symmet-
ric monoidal category (M®, ¢) is the space [M®||. Furthermore, let us remark that
when M® is a strict monoidal category, that is, when it is an internal monoid in Cat,
then WM® is a genuine simplicial category whose classifying space | M®|| is just the
classifying space of the topological monoid with underlying space |M]|, the classify-
ing space of the underlying category M, and composition-law induced by the tensor
functor ®.

The classifying space | M® || of a monoidal category M® gives a CW-complex, but
its cells do not enjoy any proper geometric meaning. However, there is another con-
vincing way of associating a space to M®. This way goes through what Duskin [3]
called the geometric nerve AM® of the monoidal category and it was developed (even
in the more general context of bicategories) by Street and Duskin himself (cf. [19]).
This geometric nerve AM® is a simplicial set that encodes the entire monoidal and
categorical structure of M®, and whose simplices have the following pleasing geo-
metrical description:

There is only one 0-simplex in AM®, say e. Its 1-simplices are the objects of

M that are placed on edges 0 251 It 2-simplices are arrows in M of the form
Xo12° X02 — X12 ® Xo1 that are placed on triangles

1
X0,1 X1,2
TXo.l.z
0 2
X0,2

For n > 3, an n-simplex of AM® can be thought of as the 2-skeleton of an oriented

https://doi.org/10.4153/CMB-2004-031-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2004-031-8

Classifying Spaces for Monoidal Categories 323

standard n-simplex with objects x; ; placed on the edges i — j,for0 <i < j <,

Xn—1,n
n <—— n—1

7

0,n
X2
0,2
x}

NN

n X3,n—1

/7

— 3
X23

and arrows x; j x: X x — X @ x; ; placed on the inside of the triangles

e Xijki Xik = Xjk © Xij

Xije: Xig = Xjo @ X j

Xikts Xig — Xkt @ Xik

Xjktt Xjo = Xkp & Xjk

for0 <i < j < k < ¢ < n,is commutative in the sense that the following diagram

Xije Xj k1 ®Id
Xij ——— Xjp®Xjj ———————— (X0 QX 1) DX j

Xi ko l t T a
Id®x,"j,k

Xt @ Xi g Ko ® (Xjx @ X5 5)
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commutes. The simplicial operators
: d
ApM® &= AME S5 A, M®

are defined as for the usual nerve of an ordinary category, thus the face operator d;
deletes the data in which the index i appears. This simplicial set AM® becomes
coskeletal in dimensions greater than 3.

The purpose of this article is to prove the following:

Theorem 1  For any monoidal category M® = (M, ®, A, e, £, 1), there is a homotopy
equivalence

IV =~ JAM®].

To our knowledge, the above theorem has only been stated in the case in which
every arrow in M is invertible and every object has a quasi-inverse with respect to the
tensor product, that is, when M® is a categorical group (cf. [4]). Indeed, when M®
is a strict categorical group (that is, when M® is an internal group object in Cat or
equivalently an internal category in the category of groups, cf. [10, Section 3]) then
it is easy to see that the geometric nerve AM® is isomorphic to the simplicial set
obtained as the Kan classifying complex [11] of the simplicial group nerve of M.

2  Proof of Theorem 1

Throughout M® = (M, ®, 4, e, £, r) is any fixed small monoidal category.

The simplicial category A is regarded here as the full subcategory of Cat, the cat-
egory of small categories, whose objects are the categories defined by the ordered sets
n]={0<1<---<n}, n>0.

Since any monoidal category M® can be considered as a bicategory [1] with only
one object [19, Example 2] and any category is a bicategory whose 2-cells are all
identities, it makes complete sense to consider the set of (strictly unitary) morphisms
of bicategories from a small category to a small monoidal category. Furthermore, it is
not difficult to see that the data for an n-simplex x of the geometric nerve AM®, as
described in the introduction, is the same as the data for a morphism of bicategories
x: [n] — M®. That is, x consists of a family

x = {xi j, Xi jx bo<i<j<k<n,

with x; j and x; jx: xix — Xjx ® x;,; objects and arrows in M, respectively, such that:
® Xii =6
L4 xi’j’j =/: xi,j — €®X,‘J‘, xi,,‘vj =T X,‘J’ — xi,]‘ X e,

¢ (qukql ® Idx:.j) Xijl = axk,).x]gk,x,_j (Idxk,) & xi.j,k) Xi k1l

forany0 <i<j<k<I<n.
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Thus, the geometric nerve of M® can be described as the simplicial set
AM® = Mor(—, M®): AP — Set,

which takes each ordered set [1] to the set Mor([n], M®) of bicategory morphisms
from [n] to M® (cf. [19, p. 573] and [3, Section 2]).

We now note that the geometric nerve AM® is the simplicial set of objects of the
simplicial category

AM?® = Mor(—, M?): A* — Cat,

whose category of n-simplices is A,M® = Mor([n], M®), the category of bicat-
egory morphisms form [n] to M® with (strictly unitary) transformations between
them. That is, an arrow f: x — x" in A, M® consists of a family f = {f; ;: x;; —
x; jYo<i<j<n of arrows in M, that satisfy the equations:

(1) fii =Ideand (fjx @ fij) Xijk = i jx fiks

forany0 <i<j<k<n

Observe that AM® is a reduced simplicial category, that is, AjM® = {e} is the
discrete category with only one object. Moreover, M = A;M®, by means of the
identification

Ey: (xo, ECN Xo1) > (x %),

In general we have:
Lemma 1 Foreveryn > 2, there is a full embedding of categories
Ep: M" — A,MP.

Proof The functor E = E,, takes the objectx = (x1,...,x,) € M" to the morphism
Ex: [n] — M® defined inductively by the equations

(Ex)j j1 = et 1 - ]
X1 ® (Bx);; 1< ],
and
(Ex); gy = 4 100 i<j=k
i7, = . .
! axkﬂ-(EX)j.kq(EX)i,j (Idxkﬂ 0 (Ex)i.j,k) 1< < k.
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Thus, for example,

1
X1 X2
EZ(Xl,XQ): Tld IdZX2 X x1 — x Q xq,
0 2,
X ®x1

Id:x2®x1 — X2 ®X1
Id: x5 @ (% @ x1) — x3 ® (2 @ x1)
Id:x3 R x) — X3 QX

a:x;® (6 x) = (x3Qx) ®x,

x3Q xﬂXle \
Ey(x1,%2,%x3) = 0 —x0®x

\)@ X2

1
and so on.
It is a straightforward consequence of Mac Lane’s coherence theorem [12] that Ex
is actually an object in A, M®. Further, the functor E on an arrow f = (fi, ..., f,):
x — x’ in M" is inductively given by
ff‘*'l 1= j’
(Ef)ijn = .
e By i<

It is clear, from its construction, that E is a faithful and injective on objects functor.
That E is full follows from the equalities (1) and the fact that every arrow (Ex'); j x is
an isomorphism. u

Note that the pseudo-simplicial category WM® is a pseudo-simplicial subcate-
gory of the simplicial category AM® via the embeddings E,: M" — A ,M® in
Lemma 1, with the natural isomorphisms d,,E,, = E,_1d,, and E,s,, = s,,E,11 being
canonically induced by the associativity and unit constraints d, £ and r of M® (see
Remark below Lemma 2). Lemma 2 below will imply that the simplicial category
AM® defines, by realization, a classifying space for the monoidal category M®.

Lemma 2 Foranyn > 2, theembedding E,: M" — A ,M® is a right adjoint section
to the Segal map projection

P, = Hdo...dk_zdk+1...dn: AM® — M

Proof Note that for any arrow f: x — yin A ,M®,

f f, foein
Pn(X-)Y):(Xo,lL}’O,l,u s Xn— ln_l>)/n 1n)-
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Then, P,E, = Idy. Moreover, there is a natural transformation

(2) Ent IdA"M‘@ — EnPn
that takes a morphism x: [n] — M® to the transformation €,x: x — E,P,(x),
inductively defined by:
Id,. ., i=j,
(EnX)ijn1 = » i ]
(Idy . ® (enX)ij) Xijjun i< j.

Since P,(e,x) = Idp,x), for any x € A,M®, and &,E,(x) = Idg, ), for any x € M",
it follows that E, is a right adjoint to P,, being the identity and ¢, the unit and the
counit of the adjunction respectively. ]

Remark The entire data for the pseudo-functor WM®: A’ ~~ Cat can be de-

scribed with the help of the functor AM®: A’ — Cat and the adjoint functors E,
and P, in Lemmas 1 and 2. In fact, for any arrow «: [m] — [n] in A, the square

Mﬂ

Mm

E, P

*

A M v A,M®

commutes, that is, a* = P,a*E, : M" — M", and for any pair of composable
arrows [k]i[m] 2 [n] in A, the natural isomorphism (a3)* 2 *a*: M" — MK
is precisely realized by the natural transformation (2), &,,: Idaye — EjnPp, as

Pkﬂ*ama*En: Pk(aﬁ)*En - (Pkﬂ*Em)(Pma*En)

(note that, for every x € A, M®, the arrow £,,x: X — E,,P,,(x) is an isomorphism
in A, M® whenever every arrow x; ik Xix — Xjx ® x; jis an isomorphism).

Furthermore, given any arrow «: [n] — [m] in A, the natural isomorphisms
«*E, = Eja* that form part of the data for the pseudo-simplicial embedding
E: WM® — AM® are precisely

ema*E,: a*E, = E,P,a*E, = E,,a*;
in particular, €,d;E,11: diE,y1 — E,d; and €,415,E,: S;E,;, — Epq15;, 0 <i < n, are

the primary ones.
As a consequence of Lemma 2 above, we can prove the following:

Proposition 3 The pseudo-simplicial embedding E: WM® — AM® induces a ho-

motopy equivalence

IV = AME].
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Proof As we proved, every functor E,: M" — A, M® has a left adjoint and there-
fore [14, Corollary 1] the induced map on classifying spaces |E,|: |[M"| — |A,M®|
is a homotopy equivalence. Then, the proposition follows from [15, Corollary 3.3.1].

|

It is remarkable that the simplicial space [AM®|: [n] — |A,M®| satisfies the
hypothesis of Proposition 1.5 in [17], that is:

o the space |A,M®| is contractible (since AyM® = {e} is the trivial category),
o the maps |P,|: [A,M®] — |[AM®|" = |M|" are homotopy equivalences (as a
consequence of Lemma 2).

Therefore, the already known result below follows:

Corollary 4  The induced map |M| — Q|AM®| ~ Q|| M®|| is a homotopy equiv-
alence if and only if the monoid of connected components of the monoidal category is
a group. Hence, the classifying space of the underlying category |M| is, up to group
completion, a loop space.

Let us write NC for the simplicial set nerve of any small category €. Then, there is
a natural homeomorphism (see [14, Lemma, p. 86] for example)

IAM® | = |diag NAM®|,

where NAM®: A%® x A%® — Set is the bisimplicial set defined by ([p], [q]) +
N, A, M®. More explicitly, an element x € N, A, M® can be described as a string

3) = Sx o et By

of p composable arrows in the category A, M®. The vertical face and degeneracy
operators

. -
NpA MP < N AME 5 NpA, MP, 0<m<gq

are induced by those of AM®, that is

1 P
00 = (dyx® 5 dyx = = dyx? ™ 2D 4,50

and

1 P
s7(x) = (sp,x° LN SpX! = - — sxP ! LN suxP).

The horizontal face and degeneracy operators

h &
Np+1éqM <5L NpéqM — prléqM, 0<m<gq
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are those of the nerve NA M, that is,

. f

fZ
(X1—>X2"'Xp —)Xp) m:(),
h f! IR Gl _ fP
dy(X) =9 (x* — x! - x" 1 — x™1..xPl —xP) 0<m<p,
f! DY
(XO—)XI"'XP 2_)Xp 1) m:p,
_ fm Id fn+l
S =" - xS Sy xS xP) 0< m< p.

The following lemma is the key to proving our theorem in this paper.

Lemma5 Forany p > 1, the simplicial set N,_ AM® is a simplicial deformation
retract of N, AM®, via the simplicial injection

shi N, L AM® — N,AM®.

Proof Since dl's} = Id, to prove this lemma it suffices to exhibit a simplicial homo-
topy H : Id — sldll. We first consider the case p = 1.

To define H' we begin by defining a simplicial homotopy p: df — dfl, between
the simplicial maps d”, dl': NJAM® — NoAM® = AM®, as follows: for each
0<m<glet pi,: N; AqM‘@ — Az M® be the map that associates to each arrow
f: x —yin AqMQQ the geometric (g + 1)-simplex p,,f given by:

Vi) j<m,
(pmb)ij =  %ij—1 i<m<j,

Xi—1j-1 m<i,

and

Yisik: Yik = Vik ® Vi j k<m,
Gl 1k = (Idy;,_, ® fij) Xijk—1: Xik—1 = Xjk—1 @ yij j<m<k,
ml)i,jk — . .
Xij—1k—1°% Xik—1 — Xj—1k—1 @ Xi j—1 1<m<j,

Xio1j1h—1° Xi1k—1 = Xj_1k—1 @ Xj—1j—1 m<i.

It is straightforward to check that the above definitions do indeed give a simplicial
homotopy p as predicted. Further, observe that 1y = sod]f and that ,umsé’ =5, (ie,
for f = Idy, any identity arrow in A, M®, 1, Idy = s,,x) forall 0 < m < q.

The homotopy H': Id — sidl! we are going to define will satisfy that d/H' =
and is determined by the maps H.: NIAM — NiA M, 0 < m < g, which
apply an arrow f: x — yin A M® to the arrow H)f: uf — s,y in A, M® given
by:

Idy, ;: yij = yij j<m,
(Hpf)ij = fij1: %ijo1 = yijo i<m<j,

firj—1i Xicyjo1 = Yicrjo1 P <m.
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Observe that Hy = sp: NJAM® — NjA
dV

q+1

1 M®, whence dyH; = Id, and that
Hyf = Idy = sqdi(f), forall f: x —yin A, M®. To check in full the remaining
homotopy simplicial identities, needed for H': Id — s}d} to be a simplicial homo-
topy, is again straightforward (though tedious) and we will leave it to the reader.

Finally, for an arbitrary p > 2, the homotopy H?: Id — sldl! is defined by the
maps H},: Npéqjv[@ — NpAqHM@, 0 < m < q, which take an element  as in (3)
to

1 g 5. 1 s
HEOO) = (f' 25 sx! 25 508 — o o g 2 g ),

The simplicial identities that make of H? a simplicial homotopy are at this stage much
easier to verify. ]

We are now ready to complete the proof of Theorem 1:

Since AM® = NyAM®, we have a bisimplicial map ¢: AM® — NAM®, where
AM® is considered as a bisimplicial set that is constant in the horizontal direction,
given by

Gpq(x) = st ) sh(x) = (x Moy ox X) € NpéqM(@,

for each x € A, M®. By an iterative application of Lemma 5 above, we see that the
simplicial maps
Gprt AM® — N,AM®

induce, for all p > 0, a homotopy equivalence on realizations, |¢, .|: [AM®| =
IN, AM®|. It follows then that the simplicial map

diago: AM® — diagNéJ\/E®

also induces a homotopy equivalence on realizations (see [2, 1.2,4.3] for example).
Thus,
AM®| = |diagNAM®| = [ AMZ]

which together with Proposition 3, completes the proof of Theorem 1.
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