Classifying Spaces for Monoidal Categories Through Geometric Nerves

M. Bullejos and A. M. Cegarra

Abstract. The usual constructions of classifying spaces for monoidal categories produce CW-complexes with many cells that, moreover, do not have any proper geometric meaning. However, geometric nerves of monoidal categories are very handy simplicial sets whose simplices have a pleasing geometric description: they are diagrams with the shape of the 2-skeleton of oriented standard simplices. The purpose of this paper is to prove that geometric realizations of geometric nerves are classifying spaces for monoidal categories.

1 Introduction

The theory of classifying spaces of categorical structures has become an essential part of the machinery of algebraic topology and algebraic K-theory, and one of the main reasons for this is that the classifying space constructions transport categorical coherence to homotopical coherence.

The classifying space $|\mathcal{C}|$ of a small category \mathcal{C} is the geometric realization of the simplicial set nerve of \mathcal{C} , and the classifying space $\|\mathcal{S}\|$ of a simplicial category $\mathcal{S}\colon \Delta^{\operatorname{op}} \to \mathbf{Cat}$ is defined as Segal's realization [16] of the simplicial space $|\mathcal{S}|\colon \Delta^{\operatorname{op}} \to \mathbf{Top}; [n] \mapsto |\mathcal{S}_n|$. An alternative construction of $\|\mathcal{S}\|$ proceeds by the so-called Grothendieck category $\Delta^{\operatorname{op}} \mathcal{S} [7,6]$, since from [15, Theorem 1.2] the existence of a natural homotopy equivalence $\|\mathcal{S}\| \simeq |\Delta^{\operatorname{op}} \mathcal{S}|$ follows . Indeed, Grothendieck's construction is usually used to define the classifying space of any pseudosimplicial category, that is, any pseudo-functor $\mathcal{S}\colon \Delta^{\operatorname{op}} \leadsto \mathbf{Cat} [15,9]$. The resulting space $\|\mathcal{S}\| = |\Delta^{\operatorname{op}} \mathcal{S}|$ is homotopy equivalent to the classifying space $\|\tilde{\mathcal{S}}\|$ of the rectified simplicial category $\tilde{\mathcal{S}}\colon \Delta^{\operatorname{op}} \to \mathbf{Cat}$ obtained by applying Street's first construction [18], to the pseudo-simplicial category $\mathcal{S} [13, \S 3]$.

If $\mathcal{M}^{\otimes} = (\mathcal{M}, \otimes, \boldsymbol{a}, e, \ell, r)$ is a monoidal category [12], its *classifying space* $\|\mathcal{M}^{\otimes}\|$ is defined as the classifying space $\|\overline{W}\mathcal{M}^{\otimes}\|$ of the pseudo-simplicial category $\overline{W}\mathcal{M}^{\otimes}$ that \mathcal{M}^{\otimes} defines by the familiar bar construction. That is, the category of n-simplices

Received by the editors June 10, 2002; revised November 12, 2003.

Supported by Spanish DGI, project: BFM2001-2886.

AMS subject classification: 18D10, 18G30, 55P15, 55P35, 55U40.

Keywords: monoidal category, pseudo-simplicial category, simplicial set, classifying space, homotopy type.

[©] Canadian Mathematical Society 2004.

is $\overline{W}_n \mathcal{M}^{\otimes} = \mathcal{M}^n$, $(\overline{W}_0 \mathcal{M}^{\otimes} = \{e\})$. The face and degeneracy functor are defined on objects by

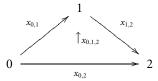
$$d_i(x_1,\ldots,x_n) = \begin{cases} (x_2,\ldots,x_n) & i = 0, \\ (x_1,\ldots,x_{i+1} \otimes x_i,\ldots,x_n) & 0 < i < n, \\ (x_1,\ldots,x_{n-1}) & i = n, \end{cases}$$

$$s_i(x_1,\ldots,x_n)=(x_1,\ldots,x_i,e,x_{i+1},\ldots,x_n),\ 0\leq i\leq n,$$

and similarly on arrows, and the natural isomorphisms $d_id_i \cong d_id_{i+1}$, $d_is_i \cong Id$ and $d_{i+1}s_i \cong Id$ are those arising from the associativity and unit constraints of \mathcal{M}^{\otimes} (see [8, 9]). In particular, the space at level 1 of the spectrum associated to a symmetric monoidal category $(\mathcal{M}^{\otimes}, c)$ is the space $\|\mathcal{M}^{\otimes}\|$. Furthermore, let us remark that when \mathcal{M}^{\otimes} is a strict monoidal category, that is, when it is an internal monoid in \mathbf{Cat} , then $\overline{\mathcal{W}}\mathcal{M}^{\otimes}$ is a genuine simplicial category whose classifying space $\|\mathcal{M}^{\otimes}\|$ is just the classifying space of the topological monoid with underlying space $|\mathcal{M}|$, the classifying space of the underlying category \mathcal{M} , and composition-law induced by the tensor functor \otimes .

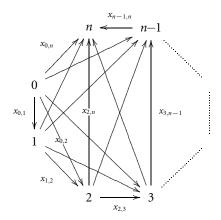
The classifying space $\|\mathcal{M}^{\otimes}\|$ of a monoidal category \mathcal{M}^{\otimes} gives a CW-complex, but its cells do not enjoy any proper geometric meaning. However, there is another convincing way of associating a space to \mathcal{M}^{\otimes} . This way goes through what Duskin [3] called the *geometric nerve* $\Delta\mathcal{M}^{\otimes}$ of the monoidal category and it was developed (even in the more general context of bicategories) by Street and Duskin himself (*cf.* [19]). This geometric nerve $\Delta\mathcal{M}^{\otimes}$ is a simplicial set that encodes the entire monoidal and categorical structure of \mathcal{M}^{\otimes} , and whose simplices have the following pleasing geometrical description:

There is only one 0-simplex in $\Delta \mathcal{M}^{\otimes}$, say e. Its 1-simplices are the objects of \mathcal{M} that are placed on edges $0 \xrightarrow{x_{0,1}} 1$. Its 2-simplices are arrows in \mathcal{M} of the form $x_{0,1,2} \colon x_{0,2} \to x_{1,2} \otimes x_{0,1}$ that are placed on triangles

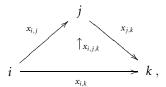


For $n \geq 3$, an *n*-simplex of ΔM^{\otimes} can be thought of as the 2-skeleton of an oriented

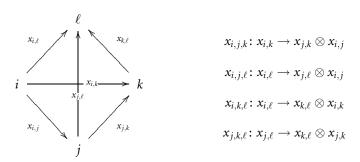
standard *n*-simplex with objects $x_{i,j}$ placed on the edges $i \to j$, for $0 \le i < j \le n$,



and arrows $x_{i,j,k}$: $x_{i,k} \to x_{j,k} \otimes x_{i,j}$ placed on the inside of the triangles



for $0 \le i < j < k \le n$. These data are required to satisfy that each tetrahedron



for $0 \le i < j < k < \ell \le n$, is commutative in the sense that the following diagram

commutes. The simplicial operators

$$\Delta_{n+1}\mathcal{M}^{\otimes} \stackrel{s_i}{\longleftarrow} \Delta_n \mathcal{M}^{\otimes} \stackrel{d_1}{\longrightarrow} \Delta_{n-1}\mathcal{M}^{\otimes}$$

are defined as for the usual nerve of an ordinary category, thus the face operator d_i deletes the data in which the index i appears. This simplicial set ΔM^{\otimes} becomes coskeletal in dimensions greater than 3.

The purpose of this article is to prove the following:

Theorem 1 For any monoidal category $\mathfrak{M}^{\otimes} = (\mathfrak{M}, \otimes, \boldsymbol{a}, e, \ell, r)$, there is a homotopy equivalence

$$\|\mathcal{M}^{\otimes}\| \simeq |\Delta \mathcal{M}^{\otimes}|.$$

To our knowledge, the above theorem has only been stated in the case in which every arrow in \mathcal{M} is invertible and every object has a quasi-inverse with respect to the tensor product, that is, when \mathcal{M}^{\otimes} is a categorical group (cf. [4]). Indeed, when \mathcal{M}^{\otimes} is a strict categorical group (that is, when \mathcal{M}^{\otimes} is an internal group object in **Cat** or equivalently an internal category in the category of groups, cf. [10, Section 3]) then it is easy to see that the geometric nerve $\Delta \mathcal{M}^{\otimes}$ is isomorphic to the simplicial set obtained as the Kan classifying complex [11] of the simplicial group nerve of \mathcal{M} .

Proof of Theorem 1 2

Throughout $\mathcal{M}^{\otimes} = (\mathcal{M}, \otimes, \boldsymbol{a}, e, \ell, r)$ is any fixed small monoidal category.

The simplicial category \triangle is regarded here as the full subcategory of **Cat**, the category of small categories, whose objects are the categories defined by the ordered sets $[n] = \{0 \le 1 \le \dots \le n\}, \ n \ge 0.$

Since any monoidal category M^{\otimes} can be considered as a bicategory [1] with only one object [19, Example 2] and any category is a bicategory whose 2-cells are all identities, it makes complete sense to consider the set of (strictly unitary) morphisms of bicategories from a small category to a small monoidal category. Furthermore, it is not difficult to see that the data for an *n*-simplex **x** of the geometric nerve $\Delta \mathcal{M}^{\otimes}$, as described in the introduction, is the same as the data for a morphism of bicategories $\mathbf{x} \colon [n] \to \mathbb{M}^{\otimes}$. That is, \mathbf{x} consists of a family

$$\mathbf{x} = \{x_{i,i}, x_{i,i,k}\}_{0 \le i \le j \le k \le n},$$

with $x_{i,j}$ and $x_{i,j,k}$: $x_{i,k} \to x_{i,k} \otimes x_{i,j}$ objects and arrows in \mathcal{M} , respectively, such that:

- $x_{i,j,j} = \ell : x_{i,j} \to e \otimes x_{i,j}, \quad x_{i,i,j} = r : x_{i,j} \to x_{i,j} \otimes e,$ $(x_{j,k,l} \otimes Id_{x_{i,j}}) \ x_{i,j,l} = a_{x_{k,l},x_{j,k},x_{i,j}} \ (Id_{x_{k,l}} \otimes x_{i,j,k}) \ x_{i,k,l},$

for any $0 \le i \le j \le k \le l \le n$.

Thus, the geometric nerve of M^{\otimes} can be described as the simplicial set

$$\Delta \mathfrak{M}^{\otimes} = \operatorname{Mor}(-, \mathfrak{M}^{\otimes}) : \Delta^{\operatorname{op}} \to \operatorname{Set},$$

which takes each ordered set [n] to the set $Mor([n], \mathcal{M}^{\otimes})$ of bicategory morphisms from [n] to \mathcal{M}^{\otimes} (cf. [19, p. 573] and [3, Section 2]).

We now note that the geometric nerve $\Delta \mathfrak{M}^\otimes$ is the simplicial set of objects of the simplicial category

$$\Delta \mathcal{M}^{\otimes} = \text{Mor}(-, \mathcal{M}^{\otimes}) : \Delta^{\text{op}} \to \mathbf{Cat},$$

whose category of n-simplices is $\underline{\Delta}_n \mathcal{M}^{\otimes} = \underline{\mathrm{Mor}}([n], \mathcal{M}^{\otimes})$, the category of bicategory morphisms form [n] to \mathcal{M}^{\otimes} with (strictly unitary) transformations between them. That is, an arrow $\mathbf{f} \colon \mathbf{x} \to \mathbf{x}'$ in $\underline{\Delta}_n \mathcal{M}^{\otimes}$ consists of a family $\mathbf{f} = \{f_{i,j} \colon x_{i,j} \to x'_{i,j}\}_{0 \le i \le j \le n}$ of arrows in \mathcal{M} , that satisfy the equations:

(1)
$$f_{i,i} = Id_e \text{ and } (f_{j,k} \otimes f_{i,j}) \ x_{i,j,k} = x'_{i,j,k} \ f_{i,k},$$

for any $0 \le i \le j \le k \le n$.

Observe that $\underline{\Delta}\mathcal{M}^{\otimes}$ is a reduced simplicial category, that is, $\underline{\Delta}_{0}\mathcal{M}^{\otimes}\cong\{e\}$ is the discrete category with only one object. Moreover, $\mathcal{M}\cong\underline{\Delta}_{1}\mathcal{M}^{\otimes}$, by means of the identification

$$E_1: (x_{0,1} \xrightarrow{f_{0,1}} x'_{0,1}) \mapsto (\mathbf{x} \xrightarrow{\mathbf{f}} \mathbf{x}').$$

In general we have:

Lemma 1 For every $n \ge 2$, there is a full embedding of categories

$$E_n: \mathcal{M}^n \hookrightarrow \Delta_n \mathcal{M}^{\otimes}$$
.

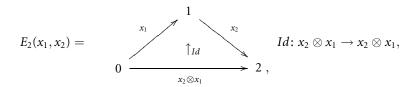
Proof The functor $E = E_n$ takes the object $\mathbf{x} = (x_1, \dots, x_n) \in \mathcal{M}^n$ to the morphism $E\mathbf{x}$: $[n] \to \mathcal{M}^{\otimes}$ defined inductively by the equations

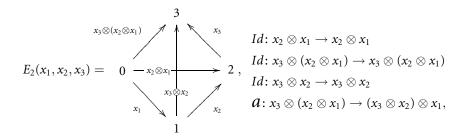
$$(E\mathbf{x})_{i,j+1} = \begin{cases} x_{j+1} & i = j \\ x_{j+1} \otimes (E\mathbf{x})_{i,j} & i < j, \end{cases}$$

and

$$(E\mathbf{x})_{i,j,k+1} = \begin{cases} Id_{(E\mathbf{x})_{i,k+1}} & i \leq j = k \\ a_{x_{k+1},(E\mathbf{x})_{j,k},(E\mathbf{x})_{i,j}} & (Id_{x_{k+1}} \otimes (E\mathbf{x})_{i,j,k}) & i \leq j < k. \end{cases}$$

Thus, for example,





and so on.

It is a straightforward consequence of Mac Lane's coherence theorem [12] that $E\mathbf{x}$ is actually an object in $\underline{\Delta}_n \mathcal{M}^{\otimes}$. Further, the functor E on an arrow $\mathbf{f} = (f_1, \dots, f_n)$: $\mathbf{x} \to \mathbf{x}'$ in \mathcal{M}^n is inductively given by

$$(E\mathbf{f})_{i,j+1} = \begin{cases} f_{j+1} & i = j, \\ f_{j+1} \otimes (E\mathbf{f})_{i,j} & i < j. \end{cases}$$

It is clear, from its construction, that E is a faithful and injective on objects functor. That E is full follows from the equalities (1) and the fact that every arrow $(E\mathbf{x'})_{i,j,k}$ is an isomorphism.

Note that the pseudo-simplicial category $\overline{W}\mathfrak{M}^{\otimes}$ is a pseudo-simplicial subcategory of the simplicial category $\underline{\Delta}\mathfrak{M}^{\otimes}$ via the embeddings $E_n \colon \mathfrak{M}^n \hookrightarrow \underline{\Delta}_n \mathfrak{M}^{\otimes}$ in Lemma 1, with the natural isomorphisms $d_m E_n \cong E_{n-1} d_m$ and $E_n s_m \cong s_m E_{n+1}$ being canonically induced by the associativity and unit constraints a, ℓ and r of \mathfrak{M}^{\otimes} (see Remark below Lemma 2). Lemma 2 below will imply that the simplicial category $\underline{\Delta}\mathfrak{M}^{\otimes}$ defines, by realization, a classifying space for the monoidal category \mathfrak{M}^{\otimes} .

Lemma 2 For any $n \geq 2$, the embedding $E_n : \mathcal{M}^n \hookrightarrow \underline{\Delta}_n \mathcal{M}^{\otimes}$ is a right adjoint section to the Segal map projection

$$P_n = \prod_{k=1}^n d_0 \dots d_{k-2} d_{k+1} \dots d_n \colon \underline{\Delta}_n \mathfrak{M}^{\otimes} \to \mathfrak{M}^n.$$

Proof Note that for any arrow $\mathbf{f} : \mathbf{x} \to \mathbf{y}$ in $\underline{\Delta}_n \mathfrak{M}^{\otimes}$,

$$P_n(\mathbf{x} \xrightarrow{\mathbf{f}} \mathbf{y}) = (x_{0,1} \xrightarrow{f_{0,1}} y_{0,1}, \dots, x_{n-1,n} \xrightarrow{f_{n-1,n}} y_{n-1,n}).$$

Then, $P_n E_n = Id_{\mathcal{M}^n}$. Moreover, there is a natural transformation

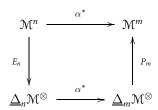
$$\varepsilon_n \colon Id_{\Delta_n \mathcal{M}^{\otimes}} \to E_n P_n$$

that takes a morphism \mathbf{x} : $[n] \to \mathcal{M}^{\otimes}$ to the transformation $\varepsilon_n \mathbf{x}$: $\mathbf{x} \to E_n P_n(\mathbf{x})$, inductively defined by:

$$(\varepsilon_n \mathbf{x})_{i,j+1} = \begin{cases} Id_{x_{j,j+1}} & i = j, \\ (Id_{x_{j,j+1}} \otimes (\varepsilon_n \mathbf{x})_{i,j}) & x_{i,j,j+1} & i < j. \end{cases}$$

Since $P_n(\varepsilon_n \mathbf{x}) = Id_{P_n(\mathbf{x})}$, for any $\mathbf{x} \in \underline{\Delta}_n \mathcal{M}^{\otimes}$, and $\varepsilon_n E_n(\mathbf{x}) = Id_{E_n(\mathbf{x})}$, for any $\mathbf{x} \in \mathcal{M}^n$, it follows that E_n is a right adjoint to P_n , being the identity and ε_n the unit and the counit of the adjunction respectively.

Remark The entire data for the pseudo-functor $\overline{W}\mathcal{M}^{\otimes}$: $\Delta^{\mathrm{op}} \sim \mathbf{Cat}$ can be described with the help of the functor $\underline{\Delta}\mathcal{M}^{\otimes}$: $\Delta^{\mathrm{op}} \to \mathbf{Cat}$ and the adjoint functors E_n and P_n in Lemmas 1 and 2. In fact, for any arrow α : $[m] \to [n]$ in Δ , the square



commutes, that is, $\alpha^* = P_m \alpha^* E_n : \mathcal{M}^n \to \mathcal{M}^m$, and for any pair of composable arrows $[k] \xrightarrow{\beta} [m] \xrightarrow{\alpha} [n]$ in Δ , the natural isomorphism $(\alpha \beta)^* \cong \beta^* \alpha^* : \mathcal{M}^n \to \mathcal{M}^k$ is precisely realized by the natural transformation (2), $\varepsilon_m : Id_{\Delta \mathcal{M}^{\otimes}} \to E_m P_m$, as

$$P_k \beta^* \varepsilon_m \alpha^* E_n : P_k(\alpha \beta)^* E_n \xrightarrow{\sim} (P_k \beta^* E_m) (P_m \alpha^* E_n)$$

(note that, for every $\mathbf{x} \in \underline{\Delta}_m \mathcal{M}^{\otimes}$, the arrow $\varepsilon_m \mathbf{x} \colon \mathbf{x} \to E_m P_m(\mathbf{x})$ is an isomorphism in $\underline{\Delta}_m \mathcal{M}^{\otimes}$ whenever every arrow $x_{i,j,k} \colon x_{i,k} \to x_{j,k} \otimes x_{i,j}$ is an isomorphism).

Furthermore, given any arrow $\alpha \colon [n] \to [m]$ in Δ , the natural isomorphisms $\alpha^* E_n \cong E_m \alpha^*$ that form part of the data for the pseudo-simplicial embedding $E \colon \overline{W} \mathcal{M}^{\otimes} \hookrightarrow \underline{\Delta} \mathcal{M}^{\otimes}$ are precisely

$$\varepsilon_m \alpha^* E_n \colon \alpha^* E_n \xrightarrow{\sim} E_m P_m \alpha^* E_n = E_m \alpha^*;$$

in particular, $\varepsilon_n d_i E_{n+1} : d_i E_{n+1} \xrightarrow{\sim} E_n d_i$ and $\varepsilon_{n+1} s_i E_n : s_i E_n \xrightarrow{\sim} E_{n+1} s_i$, $0 \le i \le n$, are the primary ones.

As a consequence of Lemma 2 above, we can prove the following:

Proposition 3 The pseudo-simplicial embedding $E \colon \overline{W} \mathfrak{M}^{\otimes} \hookrightarrow \underline{\Delta} \mathfrak{M}^{\otimes}$ induces a homotopy equivalence

$$\|\mathcal{M}^{\otimes}\| \simeq \|\Delta\mathcal{M}^{\otimes}\|.$$

Proof As we proved, every functor $E_n: \mathcal{M}^n \hookrightarrow \underline{\Delta}_n \mathcal{M}^{\otimes}$ has a left adjoint and therefore [14, Corollary 1] the induced map on classifying spaces $|E_n|: |\mathcal{M}^n| \to |\underline{\Delta}_n \mathcal{M}^{\otimes}|$ is a homotopy equivalence. Then, the proposition follows from [15, Corollary 3.3.1].

It is remarkable that the simplicial space $|\underline{\Delta}\mathcal{M}^{\otimes}|$: $[n] \mapsto |\underline{\Delta}_n \mathcal{M}^{\otimes}|$ satisfies the hypothesis of Proposition 1.5 in [17], that is:

- the space $|\underline{\Delta}_0 \mathcal{M}^{\otimes}|$ is contractible (since $\underline{\Delta}_0 \mathcal{M}^{\otimes} = \{e\}$ is the trivial category),
- the maps $|P_n|: |\underline{\Delta}_n \mathcal{M}^{\otimes}| \to |\underline{\Delta}_1 \mathcal{M}^{\otimes}|^n = |\mathcal{M}|^n$ are homotopy equivalences (as a consequence of Lemma 2).

Therefore, the already known result below follows:

Corollary 4 The induced map $|\mathfrak{M}| \to \Omega \|\underline{\Delta} \mathfrak{M}^{\otimes}\| \simeq \Omega \|\mathfrak{M}^{\otimes}\|$ is a homotopy equivalence if and only if the monoid of connected components of the monoidal category is a group. Hence, the classifying space of the underlying category $|\mathfrak{M}|$ is, up to group completion, a loop space.

Let us write NC for the simplicial set nerve of any small category C. Then, there is a natural homeomorphism (see [14, Lemma, p. 86] for example)

$$\|\underline{\Delta}\mathcal{M}^{\otimes}\| \cong |\operatorname{diag} N\underline{\Delta}\mathcal{M}^{\otimes}|,$$

where $N\underline{\Delta}\mathcal{M}^{\otimes} \colon \Delta^{\mathrm{op}} \times \Delta^{\mathrm{op}} \to \mathbf{Set}$ is the bisimplicial set defined by $([p], [q]) \mapsto N_p\underline{\Delta}_q\mathcal{M}^{\otimes}$. More explicitly, an element $\chi \in N_p\underline{\Delta}_q\mathcal{M}^{\otimes}$ can be described as a string

(3)
$$\chi = (\mathbf{x}^0 \xrightarrow{\mathbf{f}^1} \mathbf{x}^1 \to \cdots \to \mathbf{x}^{p-1} \xrightarrow{\mathbf{f}^p} \mathbf{x}^p)$$

of *p* composable arrows in the category $\underline{\Delta}_q \mathcal{M}^{\otimes}$. The vertical face and degeneracy operators

$$N_p \underline{\Delta}_{q+1} \mathcal{M}^{\otimes} \stackrel{s_m^{y}}{\longleftarrow} N_p \underline{\Delta}_q \mathcal{M}^{\otimes} \stackrel{d_m^{y}}{\longrightarrow} N_p \underline{\Delta}_{q-1} \mathcal{M}^{\otimes}, \quad 0 \leq m \leq q$$

are induced by those of $\underline{\Delta} \mathcal{M}^{\otimes}$, that is

$$d_m^{\nu}(\chi) = (d_m \mathbf{x}^0 \xrightarrow{d_m f^1} d_m \mathbf{x}^1 \to \cdots \to d_m \mathbf{x}^{p-1} \xrightarrow{d_m f^p} d_m \mathbf{x}^p)$$

and

$$s_m^{\nu}(\chi) = (s_m \mathbf{x}^0 \xrightarrow{s_m f^1} s_m \mathbf{x}^1 \to \cdots \to s_m \mathbf{x}^{p-1} \xrightarrow{s_m f^p} s_m \mathbf{x}^p).$$

The horizontal face and degeneracy operators

$$N_{p+1}\underline{\Delta}_{q}\mathcal{M} \stackrel{s_{m}^{h}}{\longleftarrow} N_{p}\underline{\Delta}_{q}\mathcal{M} \stackrel{d_{m}^{h}}{\longrightarrow} N_{p-1}\underline{\Delta}_{q}\mathcal{M}, \quad 0 \leq m \leq q$$

are those of the nerve $N\underline{\Delta}_q \mathcal{M}$, that is,

$$d_m^h(\chi) = \begin{cases} (\mathbf{x}^1 \xrightarrow{\mathbf{f}^2} \mathbf{x}^2 \cdots \mathbf{x}^{p-1} \xrightarrow{\mathbf{f}^p} \mathbf{x}^p) & m = 0, \\ (\mathbf{x}^0 \xrightarrow{\mathbf{f}^1} \mathbf{x}^1 \cdots \mathbf{x}^{m-1} \xrightarrow{\mathbf{f}^{m+1}\mathbf{f}^m} \mathbf{x}^{m+1} \cdots \mathbf{x}^{p-1} \xrightarrow{\mathbf{f}^p} \mathbf{x}^p) & 0 < m < p, \\ (\mathbf{x}^0 \xrightarrow{\mathbf{f}^1} \mathbf{x}^1 \cdots \mathbf{x}^{p-2} \xrightarrow{\mathbf{f}^{p-1}} \mathbf{x}^{p-1}) & m = p, \end{cases}$$

$$s_m^h(\chi) = (\mathbf{x}^0 \to \cdots \mathbf{x}^{m-1} \xrightarrow{\mathbf{f}^m} \mathbf{x}^m \xrightarrow{Id} \mathbf{x}^m \xrightarrow{\mathbf{f}^{m+1}} \mathbf{x}^{m+1} \cdots \to \mathbf{x}^p), \ 0 < m < p.$$

The following lemma is the key to proving our theorem in this paper.

Lemma 5 For any $p \geq 1$, the simplicial set $N_{p-1}\underline{\Delta}\mathfrak{M}^{\otimes}$ is a simplicial deformation retract of $N_p\underline{\Delta}\mathfrak{M}^{\otimes}$, via the simplicial injection

$$s_0^h \colon \mathrm{N}_{p-1} \Delta \mathcal{M}^{\otimes} \hookrightarrow \mathrm{N}_p \Delta \mathcal{M}^{\otimes}.$$

Proof Since $d_0^h s_0^h = Id$, to prove this lemma it suffices to exhibit a simplicial homotopy $H^p: Id \to s_0^h d_0^h$. We first consider the case p = 1.

To define H^1 we begin by defining a simplicial homotopy μ : $d_1^h \to d_0^h$, between the simplicial maps d_1^h, d_0^h : $N_1 \underline{\Delta} \mathcal{M}^{\otimes} \longrightarrow N_0 \underline{\Delta} \mathcal{M}^{\otimes} = \Delta \mathcal{M}^{\otimes}$, as follows: for each $0 \leq m \leq q$, let μ_m : $N_1 \underline{\Delta}_q \mathcal{M}^{\otimes} \to \Delta_{q+1} \mathcal{M}^{\otimes}$ be the map that associates to each arrow \mathbf{f} : $\mathbf{x} \to \mathbf{y}$ in $\underline{\Delta}_q \mathcal{M}^{\otimes}$ the geometric (q+1)-simplex $\mu_m \mathbf{f}$ given by:

$$(\mu_m \mathbf{f})_{i,j} = \begin{cases} y_{i,j} & j \le m, \\ x_{i,j-1} & i \le m < j, \\ x_{i-1,j-1} & m < i, \end{cases}$$

and

$$(\mu_{m}\mathbf{f})_{i,j,k} = \begin{cases} y_{i,j,k} \colon y_{i,k} \to y_{j,k} \otimes y_{i,j} & k \leq m, \\ (Id_{x_{j,k-1}} \otimes f_{i,j}) \ x_{i,j,k-1} \colon x_{i,k-1} \to x_{j,k-1} \otimes y_{i,j} & j \leq m < k, \\ x_{i,j-1,k-1} \colon x_{i,k-1} \to x_{j-1,k-1} \otimes x_{i,j-1} & i \leq m < j, \\ x_{i-1,j-1,k-1} \colon x_{i-1,k-1} \to x_{j-1,k-1} \otimes x_{i-1,j-1} & m < i. \end{cases}$$

It is straightforward to check that the above definitions do indeed give a simplicial homotopy μ as predicted. Further, observe that $\mu_0 = s_0 d_1^h$ and that $\mu_m s_0^h = s_m$ (i.e., for $\mathbf{f} = Id_{\mathbf{x}}$, any identity arrow in $\underline{\Delta}_q \mathcal{M}^{\otimes}$, $\mu_m Id_{\mathbf{x}} = s_m \mathbf{x}$) for all $0 \leq m \leq q$.

The homotopy $H^1: Id \to s_0^h d_0^h$ we are going to define will satisfy that $d_1^h H^1 = \mu$ and is determined by the maps $H_m^1: \mathbb{N}_1 \underline{\Delta}_q \mathcal{M} \to \mathbb{N}_1 \underline{\Delta}_{q+1} \mathcal{M}, \ 0 \leq m \leq q$, which apply an arrow $\mathbf{f}: \mathbf{x} \to \mathbf{y}$ in $\underline{\Delta}_q \mathcal{M}^{\otimes}$ to the arrow $H_m^1 \mathbf{f}: \mu \mathbf{f} \to s_m \mathbf{y}$ in $\underline{\Delta}_{q+1} \mathcal{M}^{\otimes}$ given by:

$$(H_{m}^{1}\mathbf{f})_{i,j} = \begin{cases} Id_{y_{i,j}} \colon y_{i,j} \to y_{i,j} & j \leq m, \\ f_{i,j-1} \colon x_{i,j-1} \to y_{i,j-1} & i \leq m < j, \\ f_{i-1,j-1} \colon x_{i-1,j-1} \to y_{i-1,j-1} & i < m. \end{cases}$$

Observe that $H_0^1 = s_0^v \colon \mathrm{N}_1 \underline{\Delta}_q \mathfrak{M}^{\otimes} \to \mathrm{N}_1 \underline{\Delta}_{q+1} \mathfrak{M}^{\otimes}$, whence $d_0^v H_0^1 = Id$, and that $d_{q+1}^v H_q^1 \mathbf{f} = Id_{\mathbf{y}} = s_0^h d_0^h(\mathbf{f})$, for all $f \colon \mathbf{x} \to \mathbf{y}$ in $\underline{\Delta}_q \mathfrak{M}^{\otimes}$. To check in full the remaining homotopy simplicial identities, needed for $H^1 \colon Id \to s_0^h d_0^h$ to be a simplicial homotopy, is again straightforward (though tedious) and we will leave it to the reader.

Finally, for an arbitrary $p \geq 2$, the homotopy $H^p: Id \to s_0^h d_0^h$ is defined by the maps $H_m^p: N_p \underline{\Delta}_q \mathbb{M}^{\otimes} \to N_p \underline{\Delta}_{q+1} \mathbb{M}^{\otimes}, \ 0 \leq m \leq q$, which take an element χ as in (3) to

$$H_m^p(\chi) = (\mu_m \mathbf{f}^1 \xrightarrow{H_m^1 \mathbf{f}} s_m \mathbf{x}^1 \xrightarrow{s_m \mathbf{f}^2} s_m \mathbf{x}^2 \to \cdots \to s_m \mathbf{x}^{p-1} \xrightarrow{s_m \mathbf{f}^p} s_m \mathbf{x}^p).$$

The simplicial identities that make of H^p a simplicial homotopy are at this stage much easier to verify.

We are now ready to complete the proof of Theorem 1:

Since $\Delta \mathcal{M}^{\otimes} = N_0 \underline{\Delta} \mathcal{M}^{\otimes}$, we have a bisimplicial map $\phi \colon \Delta \mathcal{M}^{\otimes} \hookrightarrow N \underline{\Delta} \mathcal{M}^{\otimes}$, where $\Delta \mathcal{M}^{\otimes}$ is considered as a bisimplicial set that is constant in the horizontal direction, given by

$$\phi_{p,q}(\mathbf{x}) = s_0^h \stackrel{(p)}{\dots} s_0^h(\mathbf{x}) = (\mathbf{x} \xrightarrow{Id} \mathbf{x} \to \cdots \to \mathbf{x} \xrightarrow{Id} \mathbf{x}) \in N_p \underline{\Delta}_q \mathcal{M}^{\otimes},$$

for each $\mathbf{x} \in \Delta_q \mathbb{M}^{\otimes}$. By an iterative application of Lemma 5 above, we see that the simplicial maps

$$\phi_{p,*} : \Delta \mathfrak{M}^{\otimes} \hookrightarrow N_p \underline{\Delta} \mathfrak{M}^{\otimes}$$

induce, for all $p \geq 0$, a homotopy equivalence on realizations, $|\phi_{p,*}| \colon |\Delta \mathcal{M}^{\otimes}| \xrightarrow{\sim} |\mathcal{N}_{p}\Delta \mathcal{M}^{\otimes}|$. It follows then that the simplicial map

$$\operatorname{diag} \phi \colon \Delta \mathcal{M}^{\otimes} \to \operatorname{diag} N \Delta \mathcal{M}^{\otimes}$$

also induces a homotopy equivalence on realizations (see [2, 1.2,4.3] for example). Thus,

$$|\Delta \mathcal{M}^{\otimes}| \simeq |\text{diagN}\underline{\Delta}\mathcal{M}^{\otimes}| \cong ||\underline{\Delta}\mathcal{M}^{\otimes}||,$$

which together with Proposition 3, completes the proof of Theorem 1.

References

- [1] J. Bénabou, *Introduction to bicategories*. Reports of the Midwest Category Seminar, Springer, Berlin, 1967.
- [2] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations. Lecture Notes in Mathematics, 304, Springer, Berlin, 1972.
- [3] J. Duskin, Simplicial matrices and nerves of weak n-categories, I: Nerves of bicategories. Theory Appl. Categ. 9(2002), 198–308.
- [4] P. Carrasco and A. M. Cegarra, Braided Tensor structures on homotopy groupoids and nerves of (braided) categorical groups. Comm. Algebra 24(1996), 3995–4058.
- [5] J. Giraud, Cohomologie non abélienne. Grundlehren Math. Wiss. 179(1971).
- [6] J. W. Gray, Fibred and Cofibred Categories. Proc. Conf. Categorical Algebra, Springer, New York, 1966 pp. 21–83.
- [7] A. Grothendieck, Catégories fibrées et descente, S.G.A. I, Exposé VI. Lecture Notes in Mathematics, 224, Springer-Verlag, 1971).

- [8] V. A. Hinich and V. V. Schechtman, Geometry of a category of complexes and algebraic K-theory. Duke Math. J. 52(1985), 339–430.
- [9] J. F. Jardine, Supercoherence. J. Pure Appl. Algebra 75(1991), 103–194.
- [10] A. Joyal and R. Street, Braided tensor categories. Adv. Math. 102(1993), 20-78.
- [11] D. M. Kan, On homotopy theory and c.s.s. groups. Ann. Math. **68**(1958), 38–53.
- [12] S. Mac Lane, Categories for the working mathematician. Graduate Texts in Mathematics, 5, 2nd Edition, Springer, Berlin, 1998.
- [13] J. P. May, Pairing of categories and spectra. J. Pure Appl. Algebra 19(1980), 299–346.
- [14] D. Quillen, *Higher algebraic K-theory: I.* In: Algebraic K-theory I, Lecture Notes in Mathematics, 341, Springer, Berlin, 1973, pp. 85–147.
- [15] R. W. Thomason, *Homotopy colimits in the category of small categories*. Math. Proc. Camb. Phil. Soc. **85**(1979), 91–109.
- [16] G. B. Segal, Classifying spaces and spectral sequences. Inst. Hautes Études Sci. Publ. Math. 34(1968), 105–112.
- [17] G. B. Segal, Categories and cohomology theories. Topology 13(1974), 293–312.
- [18] R. Street, Two constructions on lax functors. Cahiers Topologie Géometrie Différentielle 13(1972), 217–264.
- [19] R. Street, Categorical structures. In: Handbook of Algebra, Vol. I, North-Holland, Amsterdam, 1996, pp. 529–574.

Departamento de Álgebra Facultad de Ciencias Universidad de Granada 18071 Granada, Spain bullejos@ugr.es cegarra@ugr.es