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Abstract

We investigate jointly modelling age-year-specific rates of various causes of death in a multinational set-
ting. We apply multi-output Gaussian processes (MOGPs), a spatial machine learning method, to smooth
and extrapolate multiple cause-of-death mortality rates across several countries and both genders. To
maintain flexibility and scalability, we investigate MOGPs with Kronecker-structured kernels and latent
factors. In particular, we develop a custom multi-level MOGP that leverages the gridded structure of
mortality tables to efficiently capture heterogeneity and dependence across different factor inputs. Results
are illustrated with datasets from the Human Cause-of-Death Database (HCD). We discuss a case study
involving cancer variations in three European nations and a US-based study that considers eight top-level
causes and includes comparison to all-cause analysis. Our models provide insights into the commonality
of cause-specific mortality trends and demonstrate the opportunities for respective data fusion.

Keywords: Cause-of-death modelling; Gaussian process models; Multiple populations; Multiple causes of death

1. Background and Motivation

In-depth modelling of the evolution of human mortality necessitates analysis of the prevalent
causes of death. This is doubly so for making mortality forecasts into the future across different
age groups, populations and genders. In this article, we develop a methodology for probabilistic
forecasting of cause-specific mortality in a multi-population (primarily interpreted as a multi-
national) context. Thus, we simultaneously fit multiple cause-specific longevity surfaces via a
spatio-temporal model that accounts for the complex dependencies across causes and countries
and across the age-year dimensions.

While there have been many works on modelling mortality across several populations (Dong
et al., 2020; Enchev et al., 2017; Guibert et al., 2019; Hyndman et al., 2013; Kleinow, 2015; Li &
Lu, 2017; Tsai & Zhang, 2019), as well as an active literature on cause-of-death mortality, there
are very few that do both simultaneously. As we detail below, there are many natural reasons
for building such a joint model, and this gap is arguably driven by the underlying “Big Data”
methodological challenge. Indeed, with dozens of mortality datasets that are indexed by coun-
tries, causes of death, genders, etc., developing a scalable approach is daunting. We demonstrate
that this issue may be overcome by adapting machine learning approaches, specifically techniques
from multi-task learning (Bonilla et al., 2008; Caruana, 1997; Letham & Bakshy, 2019; Williams
et al., 2009). To this end, we employ multi-output Gaussian processes (MOGPs) combined with
linear coregionalisation. GPs are a kernel-based data-driven regression framework that translates
mortality modeling into smoothing and extrapolating an input-output response surface based
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on noisy observations. It yields a full uncertainty quantification for mortality rates and mor-
tality improvement factors. Coregionalisation is a dimension reduction technique that enables
efficiently handling many correlated outputs.

This work is a continuation of our series of articles Ludkovski et al. (2018), Huynh et al. (2020)
and Huynh & Ludkovski (2021) that discussed the application of GPs to model all-cause mortality
in the single-population and multi-population contexts, respectively. Unlike all-cause mortality
in different geographic regions, which tends to exhibit strong correlation and long-term coher-
ence, different causes have less commonality and thus require a more flexible structure for the
respective cross-dependence. Moreover, joint analysis of 104 mortality surfaces brings compu-
tational scalability challenges of potentially hundreds of model parameters to calibrate. Thus, in
order to carry out cause-specific mortality analysis, we make methodological innovations along
two directions. First, we compare two distinct versions of the MOGP that implement dimension
reduction by fusing outputs through linear combinations of latent functions: the semiparamet-
ric latent factor model (SLFM) and the intrinsic coregionalisation model (ICM). ICM assumes a
fixed spatial kernel in age-year, while SLFM does not. This distinction corresponds to different
assumptions about the structural commonality in the modeled mortality surfaces. We conduct
sensitivity analysis to assess these two choices for the tasks of in-sample fitting and of forecasting
cause-specific mortality. Second, we implement a multi-level MOGP-ICM model that separates
latent factors across the different types (countries, causes, genders, etc.) of categorical inputs
describing the populations. The separability assumption in the joint covariance kernel yields a
product-type cross-population correlation structure, providing insights about the relationships
between the mortality improvement trends.

Our models are driven by the scalability issue which has been a critical obstacle to analyse
in bulk the large-volume mortality datasets that have become available recently. Thus, to cope
with many mortality surfaces, we leverage the twin pillars of multi-output models (Teh et al.,
2005; Letham & Bakshy, 2019; Williams et al., 2009) and the structured Kronecker covariance
that mitigates the typical cubic computational complexity of GPs (Flaxman et al., 2015; Gilboa
et al., 2015; Saatci 2011; Zhe et al., 2019).

Decomposing all-cause mortality rates leads to reduced signal-to-noise ratio since less common
causes intrinsically have limited death counts. Consequently, cause-specific analysis must contend
with much noisier data. One motivation for the MOGP approach is to explicitly enable data fusion
across populations, sharing information to improve model fitting. We demonstrate significant
de-noising of mortality experience that successfully captures cause-specific trends, including for
causes with low data credibility. We also document the benefit of joint models to reduce model
risk, that is, improved inference of model hyperparameters. As another feature, our framework
can handle non-rectangular datasets, for example, countries with different period coverages. In
one of our case studies, we exploit this to borrow the most recent data from other countries to
update predicted domestic mortality rates.

Literature Review. One of the few works approaching cause-specific mortality modelling within a
multi-population context is the recent study in Lyu et al. (2021). The authors introduced a nested
model in the spirit of Li & Lee (2005) to jointly model major causes from three European countries
by capturing the cross-cause and cross-country dependencies through common factors.

Since a given death is associated with a single cause-of-death, direct dependence among causes
is not observable. As such, many researchers choose to model and forecast each cause in isolation.
A variety of forecasting methods for individual causes are employed: univariate time series, such
as ARIMA methods in Caselli (1996), Knudsen & McNown (1993), McNown & Rogers (1992),
dynamic parametrisation in Tabeau et al. (1999), and least squares methods and variations of
the Lee—Carter model in Caselli ef al. (2019). To capture dependence between causes, a common
approach is via copulas within the framework of dependent competing risks. The main effort is to
characterise the joint distribution of survival times in terms of unobserved cause-specific mortality
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rates; see Dimitrova et al. (2013), Lo & Wilke (2010) and Li & Lu (2019). Alternatively, Alai et al.
(2018) utilised multinomial logistic regression. Outside the competing risks framework, Arnold
(-Gaille) & Sherris (2013) proposed a multivariate vector error correction time series model to
examine the existing cointegration relationships. Another approach is to link multiple causes
through a list of clinical factors and then to apply a stochastic model to forecast these factors
(Foreman et al., 2018).

Several studies relied on compositional data analysis to achieve coherence in the sense that
cause-specific forecasts sum to the all-cause forecast. This entails modelling the by-cause distri-
bution of deaths, directly incorporating dependence between causes; see Bergeron-Boucher et al.
(2017) and Kjaergaard et al. (2019). We refer to Wilmoth (1995), Caselli et al. (2019) and Tabeau
et al. (1999) for discussions on the usefulness and limitations in using cause-specific models to
project all-cause mortality.

The remainder of this paper is organised as follows. Section 2 introduces cause-of-death
mortality datasets from the Human Cause-of-death Database (HCD). Section 3 describes the
MOGP-ICM framework and its extensions within multinational context. Section 4 focuses on
how MOGPs can maximise predictive gains over single-population models and provide insights
about the projected trends of aggregate mortality. Section 5 compares the results from multi-
and single-level ICM. Finally, section 6 concludes with main findings and directions for further
analysis.

2. The Human Cause-of-Death Database

The HCD (HCD, 2021) provides detailed cause-specific mortality data for more than a dozen
developed countries. The HCD offers three levels for the classification of causes. The short list
(with 16 broad categories) and the intermediate list (103 categories) are the same across countries,
while the full list is country-specific. The data for each country is organised by calendar years, age
groups, gender and causes. Datasets for different countries do not line up, both due to historical
availability and different timelines for updates; see Figure A.1 in Appendix A.1.

As part of their extensive and well-documented post-processing, the HCD conducted a series of
bridge-coding studies to reduce disruptions in mortality trends due to changes in the International
Classification of Disease (ICD). The current 10th Revision of the ICD is far more detailed with the
addition of 8,000 categories compared to the 9th Revision (Anderson et al., 2001). As cause-of-
death records switched to the 10th Revision, death counts were shifted among some categories.
To minimise such jumps, the HCD reconstructed death assignments between the old and the new
ICD Revisions; this reconciliation is already part of the HCD datasets we used.

In our first case study, we analyse subcategories of cancer, available from the 103-category inter-
mediate list. Being the leading cause of death worldwide (WHO, 2021), it is useful to understand
the trends in cancer mortality for different age groups and explore the dependence between its
common variations. Moreover, cancer types generally do not feature any substantial trend dis-
continuity due to ICD revisions (Anderson et al., 2001), allowing a better assessment of model
performance in terms of in-sample smoothing and out-of-sample forecasting.

For our testbed, we select five variations of cancer: lung and bronchus (LUN), colon and rectum
(COL), pancreas (PAN), stomach (STM), and all other cancers (RMN) from three countries in the
HCD: Czech Republic (CZE), Germany (DEU) and Poland (POL). The chosen cancer causes-of-
death are common in both male and female populations, enabling us to jointly model mortality
rates across cause, country and gender factors. For example, we exclude breast cancer from the
study as the respective male counts are very limited. Age in the HCD is formatted as discrete 5-
year age groups; we treat it as a continuous covariate encoded via the respective group average (52
for age group 50-54 years, 57 for age group 55-59 years, etc). In Figure 1, we visualise the raw log-
mortality rates across different cancer types in male populations from Czech Rep., Germany and
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Figure 1. Log-mortality rates of selected cancers by country and age groups among males. Note the different y-axes in each
panel. Source: HCD.

Poland. Lung and colorectal are the leading causes of cancer deaths, while pancreatic and stomach
are less prevalent and exhibit more volatility. Figure A.2 in the Appendix visualises the respective
patterns in age; we observe a strong convexity in age, especially for LUN.

Remark 1. Outside of the former Soviet republics, the data in HCD only goes back to the late
1990s; less than 20 years of history may be limiting for analysing the trends over time. At the
same time, cause-of-death statistics are highly non-stationary due to the regular coding updates
and changing medical practices. Our approach is localising in the sense that distant historical data

have only a second-order impact on the outputted predictions, mitigating above concerns.
Our second case study uses a subset of the HCD data for United States, based on the CDC’s

National Center for Health Statistics, where we decompose all-cause mortality into its major cat-
egories. This analysis is inspired by a similar study conducted by the SOA (Boumezoued et al.,
2019) that employed a multivariate Lee-Carter model. The SOA study looked at 11 major causes,
all age groups between 0 and 95+ years in 1999-2016 with data combined from the HCD and the
Global Burden of Disease project. We restrict analysis to ages 40—-69 years and years 1999-2018
and moreover to reduce the eight most common causes for the examined age groups: heart (HEA),
stroke (STK), diabetes (DIA), cancers not induced by smoking (CAN), lung cancers induced by
smoking (CANL), respiratory (RES), drug abuse (DRU) and all other remaining causes (RMN).
The cause mapping for this case study closely follows the SOA guidance.

2.1 Stacking sub-populations

For joint modelling purposes, datasets are stacked together. Generically, we have a total of L pop-
ulations, indexed by the subscript =1,2,..., L. When needed, to indicate country, cause, and
gender factors, we re-index by I = (c, s, g). Throughout, the two main independent variables are

age and year, (x;g, x;,r), and the observed mortality rate in the I-th population is denoted by:
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. Death counts at () ,x}i,,) of type | _ 2}
) E

M= (1)

o Exposed-to-risk counts at (xI , x

where D; is the number of deaths in the Ith population for the ith observation with the correspond-
ing age and year inputs. The denominator E; refers to the corresponding exposed-to-risk counts.
Some of the E;’s will be the same when we consider different causes: for a fixed country-gender
Ec,s,g) Ec,s,g)
Our GP models work with log-mortality rates so that our data is

combination (¢, g) E does not depend on s while D does.

yy=log ;.
The overall dataset is then represented as (xi,y;), i=1,...,N,I=1,...,L.

3. Methodology
3.1 Gaussian process regression for mortality tables

Consider the non-parametric additive regression model for the L populations to be jointly
analysed:

Y =filx') + €, i=1,...,N, (2)

where x' represents an individual entry in the mortality table (indexed by age and year), yf is the
observed output in the Ith population, and fi(-), /=1, . . ., L is the underlying latent log-mortality
surface, obscured with the observation noise €.

We first summarise the spatial structure that concerns the dependence of mortality rates as
a function of age and year. Momentarily focusing on a single-output Gaussian process (SOGP)
regression, we put a GP prior on the latent function f; ~ GP(m, C), meaning that any finite vector
fix) = (fi(xh), . . ., fi(x™) at n inputs follows the multivariate Gaussian distribution:

fl(xl)’ cee >fl(xn) NN(ml(X)’ CZ(X,X)),

where my(x) =E[fi(x)] is the mean vector of size n and Cj(x, x') =E[(fi(x) — m;(x))(fi(x") —
my(x'))] is the n-by-n covariance matrix. All properties of a GP are thus completely described by its
mean and covariance functions. The imposition of this Gaussian structure is purely for machine
learning purposes in order to leverage the extensive theory of reproducing kernel Hilbert spaces
and focus the modelling efforts on the covariance kernel as a way to describe the dependence
across different mortality rates.

The functions my(-) and Ci(-, -) characterise our prior beliefs about the response surface f. The
covariance kernel of the GP defines a similarity between pairs of data points. It characterises the
smoothing process by determining the influence of observations on the distribution of the output.
Data points that are close are expected to behave more similarly than data points that are farther
away. In terms of spatial dependence on age and year, we concentrate on a common family of
covariance functions known as the Matérn class, equipped with automatic relevance determina-
tion. Specifically, the Matérn-5/2 kernel defines the covariance between two mortality table entries
x, X as follows:

V5 5 2 V5
Clox)= [] <1+%|xk—x}<|+§£l|xk—xf<|)eXP(—%ka—xi’d)- 3)

ke{agyr}

This kernel is parametrised by the age lengthscale 6,5 and the year lengthscale 6,, ;. Our choice
of (3) is driven by the popularity of Matérn-5/2 in the GP literature, which produces twice-
differentiable predictive surfaces (important for stably evaluating mortality improvement factors)
but is more flexible than an infinitely differentiable kernel. See Huynh & Ludkovski (2021) for
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further discussion of kernel choice. In short, this is a separate, non-trivial task that has some, but
not drastic, effects on the results.

The mean function m(x) describes the relevant trends in log-mortality rates. Typically in GP
models, the mean is a constant; however, this is not an appropriate choice given the strong
age dependence of mortality. To capture the long-term longevity features, we thus fit a para-
metric trend: m;(x) = By + Zle B;hj(x), where h;’s are given basis functions and the g;;’s are
unknown coefficients. Motivated by Figure A.2 in Appendix A.2 which shows that cause-specific
log-mortality tends to exhibit a concave, rather than a linear pattern in age, we consider a quadratic
trend in age and linear trend in the year dimension:

mi(x') = Bo + By %ag + By (Xag)” + By X, (4)

We are interested in the posterior distribution for f, = fj(x,) at specified inputs x, given the
datasety, = (yll, ceo yf\] ), p(£:]y7), in other words the likelihood of the true response surface being
f. given what we have observed. Using Cov(y;, y;) = Cov(fi(x), fi()) + 0125(xi, %) where 8(x', ¥/)

is the Kronecker delta, we have the Gaussian observation likelihood y; ~ N (my(x), Ci(x,x) + X))
where the error terms are assumed to be independent and Gaussian-distributed, (ell, o ,elN )~

N, ;= diag(alz)). Incorporating the evidence from observations, as reflected in the likelihood
function and the prior, we obtain the Gaussian posterior:

p(f. |Yl) ~ N (my (x4, 1), Co1 (x4, X4)).
The Universal Kriging equations (5)-(7) (Rasmussen & Williams, 2005, Ch 2.7) below pro-
vide not only the posterior mean m.(-,]) and posterior variance si(o, I) but also the estimated
coefficients ;= (B1,. . ., ,Bp,l)T. Let h(x) = (hl(x), RN hp(x)), H= (h(xl), e h(xN)) and D =
(C+ X)~'H where C is the covariance matrix Cj(x’, »/ )z=l' The posterior mean of 8, along with

the predicted posterior mean m,(xy, [) and respective variance si (%4, [) = Cy 1(x4, x) for any input
Xy are as follows:

B;=HD)THI(C+ %) y; (5)

(x4, ) =h(x.) B + c(x.) " (C+ X) " (y — HB); 6)

20 D) = (h(x)T — () "TD)THTD) " (h(x,) " — c(x,)TD) 7)

where c(x,) = (Ci(x', x4), . . ., Ci(xN, x4)) is the vector of covariances between inputs in the train-

ing set and desired test input x,. Note that the predictive distribution of observation y; at x, is
similarly obtained as y; ~ N (m.(xy, ), si (%, D) + olz .

Below we use m. (x4, ) as the model prediction for the respective (log)-mortality rate of the
Ith population in cell x,, and s, (xx, [) as the corresponding posterior uncertainty which is used to
obtain predictive quantiles around the former prediction.

Remark 2. The choice of a Gaussian observation likelihood in (2) is motivated by the convenience
of the resulting conjugate equations that yield a Gaussian posterior. This can be generalised to a
non-Gaussian (e.g. Poisson) likelihood whereby one needs to apply Laplace approximation to
obtain m(xy, [) and si (x4, ). One can also extend to non-constant observation noise Var(eli) to
reflect varying credibility of raw observations across ages. These extensions are beyond the scope
of this article.

3.2 Semi-parametric latent factor model

The vector-valued latent response variable over the age-year input space is defined as
f(x) = (fi(x),...,fL(x)), where the functions {f;(x) lL=1 are the log-mortality surfaces for the
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corresponding /th population. Similar to single-population GP above, we place a GP prior over
the latent function f such that:

f~GP(m, C),

where m is the mean vector function whose elements {m,(x)}{“:1 are the mean functions of
each output and C is the fused (meaning combining both spatial and cross-population terms)
covariance matrix. This implies that we separate the “spatial” dependence, encoded in x from
the inter-task dependence encoded in [. While x has a natural Euclidean metric that is used
in (3), the population indices I are generally of factor type. Hence, to describe the dependence

across L outputs, we need L(L — 1)/2 hyperparameters C(f ) 1 <1,k <L which becomes ineffi-
cient and unstable beyond 3-4 populations. Thus, with an eye towards reducing the number of
hyperparameters, additional structure is needed for C\).

In the SLFM dating back to Teh et al. (2005), each output fj(x) is assumed to be a linear
combination of Q latent functions:

Q
fi) =) aquq(x), (8)
=1

where u4(x)’s are independent realisations from GP priors with distinct covariances C,g”) (x, %)
and a; 4 € R’s are the factor loadings (=1, ..., Q), considered part of the kernel hyperparam-
eter space ®. Thus, the semiparametric name of the model comes from the combination of a
nonparametric component (several GPs) and a parametric linear mixing of the functions u4(x).
The role of Q < L is to achieve dimension reduction for the correlation structure across the f;’s.
Leta; = (aig, .. - ,aL,q)T be the vector representing the collection of coefficients associated with
the gth latent function across the L outputs. Then, the covariance of the vector-valued function

f(x) = Z g=1 a u4(x) is as follows:

Q
Cov(f(x), f(x')) = Z aqag) ® Cgu) (x,x")
q=1

Q Q
= (4440 ® CP(x,x) =Y By® C(x,x') )
q=1 q=1
where ® symbolises the Kronecker product, Ay =a; = (a4, . . ., aL,q)T and each B has rank one.

3.3 Intrinsic coregionalisation model

Similar to SLFM, ICM assumes each output function fj(x) is generated from a common pool of Q
latent functions, cf. (8). However, the latent u,(x) all share the same GP prior with the covariance

kernel C®(x, x'). Then, the covariance for f(x) is

Q
Cov(f(x), f(x')) = ( > aqaqT) ® Cov(ug(x), ug(x')) = B® C¥(x, x), (10)
q=1

where B=AAT € RL*L has rank Q. In other words, the cross-output correlation is of rank Q <L,
while the spatial covariance of each output is the same. The Ith element in the diagonal of the

cross-covariance matrix B (or 21(12:1 By in SLFM) represents the process variance of f;(-). Since
B= Z "1 aqa the individual entries are By = Zqul a14ak,q and the diagonals are Bj; = 7712 =

Z‘?:l 1= I < L. We can similarly infer the correlation matrix R = (ry, ;,) between population

https://doi.org/10.1017/51748499523000118 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499523000118

58 Nhan Huynh and Mike Ludkovski

Landl, (1 <}, <L);for ICM, it is

b COMRWRG) By Yot hqfig "
P Var(f, (%)) x Var(f,(x))  /Bii B, \/(Z;):l ai,q)(ZL?:l alzz)q)

In both SLFM and ICM, the fused covariance kernel belongs to the class of separable kernels
(Alvarez et al. 2012) and decouples using the Kronecker product into: (1) the coregionalisation
matrices B, that measure the interaction between different outputs and (2) the spatial covariance

over age—year dimensions C,g”)(x, x'), cf. Equations (9) & (10). In ICM, all L populations share the

same spatial covariance kernel C*(x, x'). Such assumption of a common spatial covariance over
age-year inputs links to the concept of commonality in the mortality structure (but not levels)
across populations. Compared to ICM, SLFM offers more flexibility at the cost of adding more
hyperparameters: the total number of kernel hyperparameters in the fused covariance matrix C of
SLFM is QL + 2Q vis-a-vis QL + 2 hyperparameters in the ICM.

Selecting rank Q. As Q is not one of the hyperparameters to be optimised, ad hoc ways are needed
to pick it. We use the Bayesian information criterion (BIC) to select rank Q that produces the most
parsimonious model; see Williams et al. (2009) and Huynh & Ludkovski (2021). As discussed in
Bonilla et al. (2008), taking Q < L in ICM corresponds to finding a rank-Q approximation (based
on an incomplete Cholesky decomposition) to the full-rank C/). A similar interpretation holds
for SLFM and the respective B;’s. While attractive for dimension reduction and computational
speed up, low Q may not be adequate to describe the overall dependence structure and hence
clashes with the original goal of capturing the variability present in the fused mortality dataset. In
particular, we observe that BIC tends to select Q € {2, 3} which may be too small for L > 5. Based
on our case studies, we recommend Q € {3, 4, 5} for maximising predictive performance.

3.4 Multi-level ICM for scalable GPs
In the situation when we have multi-dimensional factor inputs (e.g. cause and gender together),
one approach is to combine all factor inputs into a single covariate with L distinct outputs prior to
applying ICM or SLEM. When L grows large, ICM becomes less feasible due to its time complexity
O(N’LQ?) (Bonilla et al., 2008). In this section, we develop the structured Kronecker product
kernel (multi-level ICM in Liu et al., 2020; Zhe et al., 2019) to mitigate this scalability issue in
GP. The structured covariance kernel exploits the fact that mortality tables are gridded along each
factor dimension.

We express the total number of outputs L as the product across P types of categorical
inputs, L = ]_[5:1 Ly, where L, is the number of levels within the pth categorical input. We then

decompose the cross-population covariance B as the Kronecker product:
P
B=() B, (12)
p=1

where EP’ 1 < p < P refers to the cross-covariance matrix between sub-populations within the
pth categorical input, taken to have rank Q, < L,. Directly marginalising the cross-covariance
matrices yields a convenient interpretation of the correlation between sub-populations within a
factor input and moreover allows for separate estimation of each cross-covariance sub-matrix Bp,
1<p<P

The multi-level ICM set-up implies that each output fi(x) is the weighted combination of Q; x
... X Qp independent latent functions, all with the spatial covariance kernel CW (x, x'):
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Q1 x...xQp
i)=Y ajux). (13)
j=1
The improvement in scalability of the multi-level ICM can be analysed via the ranks
Qp of the cross-covariance sub-matrices. Thanks to the Kronecker product’s property,

rank(B) = ]_[p 1 rank(Bp ]_[1};:1 Qp and using Cholesky decomposition, Equation (12) can be
rewritten as:

_i =®1§ :(é (éAp><§AP>T, (14)

where Ap = (a‘zl), . ,aQ ), 1 <p <P, and each vector ak = (a‘fk, .. .,alzp’k)T, (1<k=<Qp) rep-

resents the collection of scalar coefficients associated with the kth latent function across L,
sub-populations in the pth categorical input. Thus, the number of hyperparameters required to
estimate the cross-covariance B is Z§=1 QpLp, which can be much lower than for single-level ICM

when L is large. Note that when rank(B) < rank(B), the multi-level ICM utilises more latent func-
tions to generate the model outputs, compensating for the imposed structure in Bin (14). In terms
of overall complexity, multi-level ICM requires O(N Zp Lpr ) time compared to O(N°LQ?)
for single-level ICM.

Remark 3. In the typical situation, L,’s are small and so it is feasible to consider full-rank
multi-level ICM, that is, Qp = L,. Otherwise, (14) allows to exploit simultaneously the Kronecker
product structure, as well as the low-rank approximation. See Table 2 for results on the impact of
Qp values in multi-level ICM.

3.5 MOGP hyperparameters

To implement a GP model requires specifying its hyperparameters. Note that actual inference
reduces to linear algebraic formulas in (6)-(7), and the modeling task is to learn the spatial
covariance, namely the mean and kernel functions.

Mean function: We make the prior m(x) to be population-specific in order to maximise model
flexibility in describing the mortality trend of each population. Thus, we have 3L + 1 coefficients

B =(Bo, B Byis Bly:1=1,..., L), cf. (4).

Observation Likelihood: We assume a constant observation noise within each population ;=
StDev(ef). This accounts for heterogeneous characteristics when observations from multiple pop-
ulations are combined; in particular, oy is smaller for larger populations and for more prevalent
causes (Huynh et al., 2020). The o7’s are estimated via maximum likelihood along with all other
hyperparameters. More advanced GP models that either employ Poisson likelihood or infer input-
dependent non-parametric oj(x’) are possible but require additional coding and are beyond the
scope of this work.

Estimating Hyperparameters: For (multi-level) ICM, the set of hyperparameters is © =
(Hag,éyr, (a1q), (crlz), ﬂ); for SLFM, it is ® = ((Qag,q), (Oyrq)> (a1q), (012),ﬂ). We use the R pack-
age kergp (Deville et al., 2019) to carry out the respective maximum likelihood estimation via
Kronecker decompositions. Alternatively, to account for model risk and offer more robust results,
one could employ a fully Bayesian hyperparameter inference. This could be done with the Stan
software (Carpenter et al., 2017) but is beyond the scope of this work.
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3.6 Performance metrics

Given a test set of observed y,(xy, [)’s, we evaluate the effectiveness of different models using two
metrics. First, we employ the mean absolute percentage error (APE) to examine the discrepancy
between the observed and predicted outputs:

Vx
where y.(x, ) is the observed value at test input x, in the /th population and m,(xy, [) is the
predicted log-mortality rate. Note that APE is scale-independent, enabling us to compare model
performance across populations with different exposures.

We also use the continuous ranked probability score (CRPS) metric to assess the quality of the
probabilistic forecasts produced by a MOGP. Indeed, one of the major benefits of GP-based mor-
tality models is a full distribution for future observations y (x., [) which allows a more detailed
uncertainty quantification beyond just looking at the predictive mean m, (x,, [). CRPS assesses the

closeness of the realised outcome y, (x4, I) relative to its predictive distribution F( - ; x,) which in
the GP contest is Gaussian and leads to

CRPS(F, y5) := / [F*(Z)—ll{zm}]2 dz
R

1 * T * *
=) + 0[O0~ D+ 2000 = =] Fui= ysz(ﬂ% (16)
* A7k 1

where ¢(-), ®(-) are the standard Gaussian density and cdf. Observe how CRPS penalises both
bias (2®(y*) — 1) and excessive predictive variance.

We average both APE and CRPS across a test set of age-year—population inputs. The resulting
mean APE is interpreted as a normalised relative predictive error, and mean CRPS as the squared
difference between the forecasted and the empirical cumulative distribution functions. Models
with lower mean APE/CRPS are judged to have a better fit.

APE(yy, my) := (15)

Mortality Improvement Factors. A common way to interpret a mortality surface is via the
(annual) mortality improvement factors which measure longevity changes year over year. The

€xp (}’I (xagixyr))

raw annual percentage mortality improvement is MIl"bS (x):=1- . The smoothed
exp (Yz(xag;xywl)
improvement factor is obtained by substituting in the GP posterior means m.’s:
exp (M (Xags Xyr» |
MIFP(x):= | 1— P (1 (agi Xyr. 1) . (17)
exp (m*(xug; Xyr — 1, l))

4, Modelling Multiple Causes of Death

To understand the behaviour of age-year-specific mortality across different causes of death, we
begin by generating MOGP models for cancer variants. Using the HCD database, we fit both
ICM and SLFM and assess their performance in three European countries (thus, populations are
indexed by cause only, /=5, and we build independent models for males in each country). We
test the resulting predictive performance by computing APE and CRPS for 1-year-ahead mortal-
ity forecasts in three separate test sets, using SOGP as the baseline. All models, including SOGP
models, are trained on the same ages from 50 to 84 years (seven age groups) and three overlapping
periods: 1998-2013 for the 2014 prediction, 1999-2014 for 2015 prediction and lastly 2000-2015
for 2016 prediction. We report APE and CRPS for all-cancer log-mortality rates, since some of
the cancer variations such as stomach and pancreatic have relatively few (and therefore more
noisy) recorded deaths. The differences in APE and CRPS between MOGP and SOGP models are
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Table 1. Comparison between MOGP ICM/SLFM with different ranks Q, reported as the relative improvement in APE
and CRPS of MOGP vis-a-vis SOGP. The reported values are medians of 1-year-out aggregated all-cancer forecasts for age
groups 50-84 years based on three training periods: 1998-2013 (predict 2014), 1999-2014 (predict 2015) and 2000-2015
(predict 2016). Both ICM and SLFM are fitted on five cancer types, male populations in each selected country.

# Kernel Czech Rep Germany Poland
Cause (L =5) Hyperparameters APE CRPS APE CRPS APE CRPS
ICM Q=2 12 19.16 30.18 3.86 15.05 12.85 17.72
Q=3 17 17.69 19.08 6.53 15.16 13.46 18.64
SLFM Q=2 14 18.04 29.49 5.09 13.51 10.82 16.05
It — Q:3 . e

expressed as the 3-year median percentage improvement over SOGP models. Positive improve-
ment means joint models have smaller mean APE/CRPS values. To compute all-cancer CRPS, we
leverage the closed-form expression of the MOGP multivariate predictive distribution in (6)-(7)
to simulate the forecast distribution of all-cancer log-mortality for each age group in the data. To
do so, we first draw (5 x 10°) stochastic samples of the joint f, (x,) across all the cancer types. After
exponentiating and summing, we then obtain corresponding samples of (unlogged) all-cancer
mortality rates.

Table 1 shows the 3-year median improvement in MAPE and CRPS for multi-cause ICM and
SLFM over SOGP models. Overall, joint models produce more accurate mean forecasts (positive
improvement in APE) with higher credibility (positive improvement in CRPS). We observe the
opportunity to borrow information across different cancers to better estimate the kernel hyperpa-
rameters. As a result, joint models can describe important trends for individual cancers, leading
to the reduction in disparity between the predicted values and the observed all-cancer mortality
in the test sets.

4.1 Commonalities in cause-specific mortality surfaces

The main difference between ICM and SLFM is the underlying assumption about the latent factors
uq(-). ICM assumes that all factors have the same lengthscales 6, 6, and is therefore appropriate
for modelling homogenous mortality surfaces. SLEM is more general and fits distinct 04q,4, Oyr,q5
it is expected to perform better when the different surfaces exhibit heterogeneity (e.g. differ-
ent degree of correlation across age). We examine this commonality assumption in Figure 2 by
displaying side by side the mortality improvement factors of the various cancers derived from
multi-cause ICM and SLFM. The BIC selection criterion yields Q =2 for both ICM and SLFM.
In this case study, the results from SLFM are almost identical to ICM predictions. Therefore, the
assumption of sharing the spatial kernel over age—year inputs across the considered cancer types is
plausible. This conclusion is reinforced by Table A.1 in Appendix A which shows that the inferred
lengthscales 0,4, Oyr,q for SLEM are very similar for g = 1, 2 across all three countries. In other
words, both of the latent factors learned by SLFM have similar age-year spatial dependence, and
so there is little loss of fidelity in a priori forcing them to be equal, as is done in ICM. Indeed, the
lengthscales in SLEM are close to the ICM ones.

We can also inspect Figure 2 for insights about the relative mortality improvement trends
of different cancers. Stomach cancer has the largest improvement rates for most age groups in
all three countries. Decline in stomach cancer incidence tends to be associated with economic
improvements resulting in healthier diet, better food preservation, clean water supply, etc. We
also observe the increasing improvement trend of lung cancer among age groups below 60 years
in Czech Rep. and Poland, reflecting lower smoking rates in birth cohorts after WWIIL. Czech
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Figure 2. The predicted YoY improvement rates derived from multi-cause GP models by country and age groups among
male observations. In each country, MOGP-ICM (Q = 2) and SLFM (Q = 2) are fitted on ages 50-84 years (seven groups), years
1998-2016 over five cancer variations: stomach, colorectal, pancreatic, lung and remaining types.

males experienced large increase in the improvement rates in most cancers. In Germany, the
improvement rates have been rising among age groups below 60 years but slowing down among
older age groups. In Polish males, except stomach cancer, the improvement trends increased until
early 2010s and then significantly declined, displaying the impact of an ageing population and
an increase in lifestyle exposure to risk factors for cancers (Wojtys et al., 2014). The incidence of
stomach cancer has been flat over time, consistent with the finding in Arash et al. (2020).

Figure 3. visualises the inferred cross-cause correlation matrices (ry, ;,:1 < I;, [, <5). Both ICM
and SLFM document a global positive association among mortality rates from these cancers
in each country. It is consistent with strong resemblance in the mortality improvement trends
between cancers in Figure 2. Since cancers within a given population share common risk fac-
tors, innovations in early detection and advancements in treatment for one cancer are likely to
have positive effects on other cancer variations. Negative correlation r;, ;, <0 reflects opposite
trends, for example, stomach and pancreas cancers in Poland; this may be due to a competing
risks context.

For a different take on cause-of-death commonality, we applied the multi-cause GP ICM model
to jointly model L = 8 top causes in the HCD US dataset, separately for each gender. Using BIC
as the criterion, models with rank Q =6 (for eight populations) yield the largest BICs for both
males and females. This indicates a higher degree of heterogeneity in these larger cause group-
ings, compared to Q = 2 across five cancer causes in the previous study. Thus, the models employ
more latent functions u4(-) to adequately capture the total variability in the joint datasets. The
inferred cross-cause correlation matrices are displayed in Figure B.2 in Appendix B. Overall, our
results are in agreement with the SOA study (Boumezoued et al., 2019), for example, confirm-
ing that there are moderate positive associations between most causes. The strongest correlations
are found between heart disease and stroke, and between heart and drug overdose. As might be
expected, there is little correlation between remaining causes (RMN) and most other categories.
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Figure 3. Correlation matrices R derived from multi-cause GP models; rank Q = 2 is chosen for both ICM and SLFM. In each
country, the MOGP model is fitted on males aged 50-84 years (seven groups) during years 1998-2016, over five cancer
variations: stomach, colorectal, pancreatic, lung and remaining types.

Some of the correlations vary between genders, possibly due to strong observation noise in less
common causes.

A complementary way to examine commonalities across causes is to inspect the inferred fac-
tor loadings a;,. Populations that have similar loadings will be highly correlated. Figure A.3 in
Appendix A displays the factor loadings in a country—cause SLFM with both Q=2 and Q=3
latent factors u,;. We observe that primary clustering is by causes rather than by countries. Some
outliers, such as STM in Czech R., can also be seen and suggest idiosyncratic behaviour of the
respective mortality surface. Less separation (and limited interpretation of a;;) is observed when
using only Q = 2 latent factors, which indirectly suggests that Q = 3 is preferable.

4.2 Aggregating by-cause models

An important motivation for our work was to use by-cause analysis to make more precise con-
clusions about all-cause mortality. For example, the mortality trends of individual cancers give
insights into the respective all-cancer mortality trends. Figure 4 shows the results from a multi-
level country—-cause GP ICM. It visualises the aggregated predictive distribution of all-cancer
log-mortality observations, y;(x.), for male populations by country and age group, using shading
to denote predictive quantiles. Note that since the model did not use all-cancer mortality during
training, the fact that the predictive in-sample bands closely match the historical movement of
all-cancer mortality data is a validation of a successful by-cause analysis.

The effort in fighting cancer has transpired in all three countries, but the improvement is
not uniform. Despite Czech Republic and Poland being socio-economically similar, Czech Rep.
has a faster improvement pace than Poland. Although Germany continues to have the lowest
log-mortality rates across all age groups, the Czech Rep. has drastically closed this gap in the
last decade; see especially the left panel of Figure 4 (age group 55-59 years). The main driver
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Figure 4. Predictive distribution of all-cancer log-mortality rates for different age groups in three countries via multi-level
country-cause ICM. The joint model is fitted on males, age groups between 50 and 84 years, years 1998-2016 across three
countries (Qctry = 3) and five cancers (Qcqus = 5). Shading indicates the 60%, 80%, 95% and 99% predictive quantile bands.

is the rapid improvements in all common cancers in Czech Rep., for example, the mortality
improvement factor for LUN being recently more than double compared to Germany, cf. Figure 2.

4.3 Trends in US top-level causes

Figure 5 presents the in-sample posterior distribution of log-mortality rates fi(x,) during 1999-
2018 along with the projected trends up to 2025 for two age groups, in both male and female
US populations. The left panels display the predictive trends for the top six causes in each age
group. We observe improvements in most causes and age groups; the largest improvement being
in CANL. In contrast, drug abuse deaths are rising rapidly among young age groups (e.g. age
40-44 years); see the two upper-left panels of Figure 5. In the older age groups, mortality from
heart disease experienced large declines in early 2000s but essentially flattened out after 2015.
Boumezoued et al. (2019) emphasised the need for break-point detection to improve forecasts of
such causes whose trends change over time. In the MOGP framework, the forecasts are driven by
the most recent data and get automatically gradually adjusted if trends shift. So, for example, we
do not need to do anything further to achieve the slow pace of future HEA improvement as shown
in Figure 5.

The middle and right columns in Figure 5 compare the aggregate all-cause projections for the
US population. We witness the pessimism of the aggregate projected trends based on the by-
cause models compared to an all-cause SOGP (right column), especially in the younger ages. This
discrepancy, driven by the growing importance of causes with increasing trends, such as drug
overdose, highlights the additional insights from by-cause modelling. The pessimism of by-cause
analysis was first mentioned in Wilmoth (1995) and re-iterated in Boumezoued et al. (2019). For
older age groups, the underlying dynamics among common causes are more stable and all-cause
and by-cause forecasts are broadly similar.

Note that compared to Figure 4, the GP posterior uncertainty bands widen dramatically as we
go from in-sample (up to year 2018) to extrapolating for years 2019-2025. This reflects the data-
driven nature of GP forecasts which intrinsically leads to low uncertainty for in-sample smoothing
and widening uncertainty as predictions are made further into the future. This phenomenon gets
amplified as we add up the by-cause forecasts to obtain all-cause predictions and witness the wider
band in the middle panels of Figure 5 relative to the right panel based on a SOGP.

As discussed in Huynh & Ludkovski (2021), MOGPs are well suited to generate expert-based
projections. This is a useful feature to have given that by default, projections are driven by the
historical trends that might not continue in the future. For instance, the increasing trend of drug
abuse is largely fuelled by the opioid epidemic. Assuming this crisis is addressed in the future, and
the projected DRU mortality should be adjusted downwards. In MOGP, this can be achieved by
modifying the year trend in m(-). Figure B.1 in the Appendix displays an illustration where the
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Figure 5. Posterior distribution of true log-mortality rates for US males and females for the 40-44 and 65-69 years of age
groups. In each row, left panel shows the posterior quantiles for top six individual causes (via multi-cause GP), middle panel
shows aggregate log-mortality trends via by-cause model (multi-cause GP) and right panel shows aggregate log-mortality
trends via all-cause model (single-output GP). All models are fitted on ages 40-69 years and years 1999-2018. The vertical
lines indicate the boundary between in-sample (1999-2018) and out-of-sample forecast (2019-2025). Shading indicates the
60%, 80%, 95% and 99% predictive quantile bands. We further overlay the 50% quantile (predictive median) of by-cause and
all-cause models for the out-of-sample period for convenient comparison.

trend of drug abuse is reduced by one-third (through lowering the year effect 8" by one-third)
of the original pace for both the male and female populations. The resulting adjusted forecast for
aggregate mortality gets closer to that from the all-cause model, reducing the level of pessimism
we have observed earlier among the US young population. Another potential adjustment could
be for smoking-induced cancer, where the MOGP models extrapolate the historical trend of rapid
longevity gains. However, the SOA report (Boumezoued et al., 2019) suggests that this pace might
not take place in the intermediate term, lowering aggregate mortality gains.
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Thirty total populations.

5. Cause-of-Death Joint Modelling in a Multinational Context

We proceed to consider simultaneously 30 populations in the cancer variations case study,
arranged by the three factor inputs of cause (Lcaus = 5), country (Lesry = 3) and gender (Lggr = 2).

5.1 Multi-level versus single-level correlation structure

Figure 6 displays the inferred correlation structure ry, j, : 1 <1Ii, , < 30 across the above 30 pop-
ulations. On the left, we fit a multi-level ICM (Qctry = 3, Qcaus =5, Qgnar = 2) and on the right
a single-level ICM (Q =2). Both models are fitted on age groups 50-84 years, years 1998-
2016 for three countries, five cancers and two genders. Observe that the multi-level model has
ZP QpLly +2=3x3+5x5+2x2+2=238 hyperparameters compared to QL +2 =62 in
the single-level model. The right panel does not display any recognisable structure in the inferred
correlations because the model is not aware of the different factor dimensions; after dimension
reduction, the marginal associations between sub-populations within the original factor inputs are
no longer accessible. In contrast, the multi-level model enforces a block structure in the correlation
matrix R; see Figure 6(a). Recall that the correlation sub-matrices for each factor input are esti-
mated separately and the Kronecker product structure implies that we can read off the correlation
among any combination of factors. Figure 7 displays the derived sub cross-correlation matrices
from the above three-level country-cause-gender GP model. One can then multiply these factor-
based correlations to get the total correlation r(c, s, g)),(c:.52.2) = [ I pe {csg} To1p, in Figure 6(a). For
example, the correlation of cancer mortality between Czech-lung-male and Polish-pancreas-male
is rczE, POL X TLUN, PAN X TMAL MAL = 0.88 x 0.91 x 1~ 0.80. This is in fact also the correlation
between Czech-lung-female and Polish-pancreas-female (rczg, por. X TLUN, PAN X TFEM, FEM) IMOI-
tality. The limited number of deaths in some causes explains differences in the correlation matrices
between single- and multi-level ICM. For example, the correlations between Polish-stomach-
female and other cancer types are mostly negatively correlated in ICM but (mildly) positively
correlated in the multi-level ICM.

5.2 Model selection

Next, we compare the predictive performance of multi-level versus single-level MOGP-ICM.
Following the same set-up as Table 1, Table 2 shows the 3-year median improvement in APE
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Figure 7. Cross-correlation matrices derived from a three-level country-cause-gender multi-level ICM model
(Qctry = 3, Qeaus = 5, Qgnar = 2), fitted on age groups 50-84 years and years 1998-2016.

and CRPS for different joint models relative to SOGP models in a multinational context. Joint
models produce more accurate mean forecasts with higher credibility, but the predictive gains
are not uniform across countries. The largest improvements from multi-level ICM are in Czech
Republic; Czech raw data have lower credibility due to its smaller exposures; thus, there is more
opportunity for data fusion. The results further validate our approach of modelling cause-specific
mortality across populations: models that incorporate information from foreign countries (e.g.
country—cause GP) have larger predictive improvements compared to Table 1. In Poland due
to the recent structural break encountered in mid-2010s (see Figure 4), the performance of
aggregated country—cause MOGP is consistently worse than that of all-cause SOGP; this issue
is rectified for country-cause-gender MOGPs. We expect this issue to self-correct in a couple of
years if the new trend persists.

In contrast to section 4 where the performance of ICM and SLFM was almost identical, with
multiple input factors ICM usually outperforms SLEM. Given the strong commonality in mor-
tality trends across cancer types, a shared age-year covariance kernel appears preferable for
information fusion. The comparison between single- and multi-level ICM depends on the number
of populations to model. In country-cause-gender setting with L =30 populations, the multi-
level ICM (Qctry = 3, Qcaus =5, Qqnar = 2) yields better mean APE and CRPS than single-level
ICM and moreover uses fewer hyperparameters. For country-cause setting, the performance is
comparable. Note that to make an apples-to-apples comparison between single- and multi-level
ICM, one ought to equalise their number of hyperparameters, rather than the Q’s.

Table 2 also shows the impact of the latent ranks Q and Q,’s. For country-cause, Q = 4 tends
to yield the best results in single-level models, but for country-cause-gender, ICM with Q=3
performs consistently worse than Q = 2, presumably due to unstable estimates of the more than
90 underlying hyperparameters. For multi-level ICM, we generally find that full-rank Q, =1L,
works best, although low-rank set-ups Q, < L also yield good predictive performance, indicating
the opportunity to shrink even further the number of kernel hyperparameters.

Remark 4. It can be seen in Table 2 that joint models do not necessarily provide more accu-
rate forecasts. Successful data fusion requires combining similar datasets. In our example above,
Germany, though neighbouring Poland and Czech Rep., has rather different demographics and
so is arguably not a good candidate for data fusion. The chosen case study is driven by data avail-
ability in the HCD and is intended to be illustrative, rather than prescriptive. The broader task
of selecting what countries to group together and how to obtain the most accurate predictive dis-
tribution is beyond our scope. The same remark applies when comparing country-cause-gender
vis-a-vis country-cause models: it is not a priori clear whether joint modelling of both genders is
beneficial, and the presented results are mixed on that issue. Including gender doubles the number
of populations which requires more hyperparameters and might apparently degrade performance
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Table2. Comparison between MOGP models with different ranks Q in terms of APE and CRPS metrics. The reported values
are median relative improvements of MOGP versus SOGP of 1-year-out aggregated all-cancer forecasts for age groups 50-
84 years based on three training periods: 1998-2013 (predict 2014), 1999-2014 (predict 2015) and 2000-2015 (predict 2016).
Top half: MOGP models fitted on five cancer types and three countries. Bottom half: MOGP models fitted on five cancer
types, three countries and two genders.

Country+Cause (L = 15) # Kernel Czech Rep. Germany Poland

Hyperparameters APE  CRPS APE CRPS APE CRPS

ICM Q=2 32 35.54 30.74 12.02 21.06 —40.44 -—59.47
Q=4 62 31.64 36.56 14.08 3566 —13.32 9.56
SLFM Q=2 34 31.51 24.57 4.44 1587 —47.66 —45.98
Q=3 51 33.78 41.59 0.88 8.62 —37.25 —24.54
0=4 68 4479 4329 893 2049 —4563 —37.66
Multi-level ICM Oty =2 Qe =2 18 2642 2424 455 6.84 —48.46 —61.53
Oty =2 Qe =4 28 25.74 3226 5.04 1575 —35.94 —44.24
. me ;.3.’. QCW5=4 e e e
Country+Cause+Gender (L = 30) #Kernel # Czech Rep. Germany Poland
Hyperparameters APE CRPS  APE CRPS APE CRPS
ICM Q=2 62 9.99 1175 —540 -—13.40 1221 6.55
Multi-level ICM  Qctry = 2, Qcaus =4, Qgndr = 2 32 14.85 2491 —68.45 —1522 —2511 7.75
et ery :3,Qmu5:5, and,:z T i s S S e |

(cf. Germany in Table 2). Or it might stabilise inference and improve statistical accuracy, cf. the

bottom rows for Poland in Table 2.
Figure 8 shows the predicted log-mortality rates for individual cancers and age group 55-59

years via full-rank multi-level ICM and single-level ICM with Q = 2. Both models are fitted on age
groups 50-84 years and years 1998-2016 before we perform out-of-sample forecasts for the next
3 years (2014-2016). The single-level ICM produces over-smoothed forecasts m.(-) for several
cancers, especially cancers with large observation noise like stomach and pancreas; this problem
is mitigated by the shorter lengthscale in year in multi-level ICM (6, ~ 8.8 versus 6y, ~ 14.8 in
single-level ICM).

Coherence in cause-specific trends: Figure 8 demonstrates that males and females do not always
share similar progress in mortality reduction. While the trends in stomach, colorectal and pancre-
atic cancers are consistent for both genders, for lung cancer the male-female gap is diminishing
rapidly, especially in Germany and Poland. This is driven by a decrease in cigarette consumption
among men, while women are more likely to develop lung cancers that are not associated with
smoking. Thus, the concept of forecast coherence (namely extrapolating a stable male-female
spread, as observed historically) is not always well suited for cause-of-death analysis.

5.3 Borrowing the latest datasets from other populations

The period coverage in HCD varies by country as datasets for countries are uploaded asyn-
chronously. This implies that some countries have more up-to-date datasets than others; see
Figure A.1 in Appendix A.1 and offers opportunities to fuse data from other countries to update
domestic forecasts. For Age-Period-Cohort models, such as Li & Lee (2005), fusion is generally
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Figure 8. Predictive log-mortality distributions from single-level ICM (listed as ICM, Q = 2) and multi-level ICM (listed as Hier
ICM, Qctry = 3, Qcaus =5, Qgndr = 2) models with three factor inputs: country, cause and gender (30 populations). All models
are fitted on age groups 50-84 years and years 1998-2013 and applied for 3-year-out forecasts up to 2016. The shadings
indicate 95% predictive bands; the vertical lines mark the edge of training data. Note different y-axes in each panel.
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Figure 9. Comparison of the prediction accuracy for 2015 all-cancer log-mortality of French males for indicated age groups
between different models with “notched” set-up. Top row: predictive standard deviation s, (x,); bottom row: discrepancy
between the predictive mean m,.(x,) and the observed value y, (x).

challenging as model fitting relies on having a rectangular dataset. Our MOGP framework can
straightforwardly handle such “notched” datasets to take full advantage of additional observations
in different countries.

As an illustration, we consider joint modelling of male mortality in France and Germany. These
are two developed Western European countries with similar demographics. Relative to Germany
which has data for 1998-2016, France at the time of writing covers only 2000-2015. We choose
French males in 2015 as the target population and examine its 1-year-out prediction quality for
several models. We take French observations for 2000-2014 and borrow the more up-to-date
dataset from Germany (1998-2015) to implement the notched set-up.

We proceed to compare six different models; see Table A.2 in the Appendix. Our comparison
covers single-output models for France, multi-cause models for France and multi-cause models
joint for France and Germany. Figure 9 visualises relative performance by comparing two compo-
nents, both for French males in 2015 and across three different age bands: (a) predictive standard
deviation s, (x,) (top panels) and (b) prediction errors m..(x,) — y«(xs) relative to the realised 2015
all-cancer log-mortality rates (bottom). Our benchmark is French males SOGP fitted on all-cancer
log-mortality rates from 2000 to 2015, that is, the ideal case where latest domestic data are already
available. As expected, with access to only 2000-2014 French data, predictions have less credibil-
ity (higher s.(x,)) than the benchmark model that performs in-sample smoothing. However, a
country-cause MOGP that ingests both French and German data yields lower s, (x,), even with-
out seeing German 2015 mortality. Similarly, multi-cause models boost credibility compared to
all-cancer analysis.

For the forecasts, we observe that fusing German data yields prediction errors |m,(x,) —
y«(x4)| that are competitive to that from the benchmark. In fact, the prediction quality of the
notched country-cause MOGP (Germany ‘98-15, France ‘00-°14) is as good as the multi-cause
MOGP that simultaneously models the log-mortality rates of all five cancer types in French males
with 2015 observations available. Throughout, there are the intuitive gains from having 2015
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rather than only 2014 experience. In particular, we observe material improvement from access
to 2015 German data (right-most two points in Figure 9) which lowers prediction errors.

Remark 5. At the moment, the HCD offers cause-of-death data for less than 15 countries. Many
countries do not have recent data available yet (e.g. only up to 2015), leading to limited options
in terms of the selection and the number of countries we can incorporate with French males
in this experiment. Based on our analysis in Huynh & Ludkovski (2021), choosing countries
that are highly correlated with France is essential to maximise the prediction quality. Moreover,
the modeller should always double-check the results of a joint model on a validation set before
adoption.

6. Conclusion

In this article, we develop multi-output GP models for cause-specific mortality modelling within
a multi-population context. With the MOGP mechanism, we are able to capture the cross-cause
dependencies that allow joint models to gain more predictive power over single-output models
that treat each population independently. Among MOGP variants, SLFM offers more flexibility
and is recommended for modelling heterogenous causes, such as top-level ICD categories. Multi-
level ICM is demonstrated to work well for interpretable modelling across multiple factor inputs.
Our case studies show the applicability of MOGPs to understand cause-specific and aggregate
mortality trends, both within a country and across nations, whereby our framework is convenient
for information fusion and credibility boosting.

The current work focuses on exploiting the structured Kronecker covariance to efficiently learn
the joint covariance kernel. This is sufficient for handling a moderately large number of sub-
populations (up to 30 in our case studies); additional techniques would be needed to handle larger
datasets, for example, across more causes of death or across all the countries in HCD. There is an
active research area looking at alternative methods (local kernel interpolation, inducing points,
block structures, etc.; see e.g. Flaxman et al., 2015) for massive scalable GP well suited for gridded
mortality datasets. Another methodological extension would be to consider a linear coregionalisa-
tion model (LCM) for mortality modelling. LCM generalises ICM and SLFM and allows multiple
latent functions from GP priors with different covariance kernels. The third direction would be to
investigate other kernel families, such as composite kernels or kernels that can incorporate struc-
tural changes. The latter would be useful to model (sub-)causes that exhibit strong disruptions
over time in their mortality trends.
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Appendix A. Additional Plots for the Case Study on Cancer Sub-Types
A.1 Year ranges available in the HCD by country
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Figure A.1. Countries in the HCD and their historical data coverage as of early 2022.
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A.2 Age patterns of log-mortality rates of different cancers
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Figure A.2. Raw log mortality as a function of age for five cancer variations in male populations. We show 19 faint curves for
each year in the 1998-2016 range used for training, as well as the respective average historical log-mortality rate in bold.

A.3 Kernel hyperparameter learning

Searching for optimal hyperparameters in GP can be challenging if the marginal likelihood fea-
tures multiple local maxima or flattens around its global maximum (Rasmussen & Williams,
2005). When the optimiser fails to find the global maximum, unsuitable lengthscales in age and
year sometimes result, leading to a poor fit of the data. Table A.1 reports the inferred lengthscale in
age (64¢) and year (6),) of the SOGP models fitted on the five cancer types for the male populations
in the three considered countries. Many SOGP models have 6y, being too short (less than 5 or so),
resulting in oscillatory fitted m.(-)’s. Such models lack the ability to distinguish between true sig-
nal and the inherent randomness in the data. Similarly, when the estimated lengthscales are too
large, the fitted GP surfaces are over-smoothed. Joint models tend to better learn the hyperpa-
rameters by enabling data fusion across multiple populations and utilising more observations. In
Table A.1, we show that when we fit multi-cause MOGP (both ICM and SLFM) on all five cancer
types, the resulting lengthscales are all well calibrated.
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GP lengthscales 644, 6y in age and year for different models. All models are fitted on age groups 50-84 years
and years 1998-2016.

Multi-cause Multi-cause
SOGP on each cancer type ICM SLFM
Czech Rep. Stomach Colorectal Pancreas Lung Others (@=2) Q=2
Oag 159.92 16.32 6.21 17.69 12.52 16.90 21.26 19.67
Oyr 38.49 9.03 7.82 13.87 3.69 10.12 13.05 11.42
Multi-cause Multi-cause
Germany SOGP on each cancer type ICM SLFM
Stomach Colorectal Pancreas Lung Others (Q=2) (@=2)
Oag 8.65 3.72 8.99 0.00 2.79 8.59 11.75 9.46
Oyr 7.35 4.90 7.69 4.82 4.44 10.26 9.92 6.77
Multi-cause Multi-cause
SOGP on each cancer type ICM SLFM
Poland Stomach Colorectal Pancreas Lung Others (=2 (Q=2)
Oag 23.96 16.28 5.72 15.25 22.80 16.98 16.20 21.89
Oyr 253.34 3.69 6.19 9.04 6.01 12.83 11.19 12.11

A.4 Training designs in notched datasets

Table A.2. Descriptions for models being applied to forecast 2015 all-cancer log-mortality rates of French males. All the
models are fitted on ages 50-84 years (seven age groups) and year coverage listed below.
GP models Outcome variable Country Year Pred. type Abbrev.
SOGP All-cancer log-mortality France 2000-2015 In-sample SOGP (’00-’15)
» » » 2006—2014 Out—of—samplé SOGP (‘00-‘14) »
Multi-cause P By-cancerlog-mortality ~ France  2000-2015  In-sample  Multi-cause (00-15)
e (5var|at|ons) htsesests Ao 2000_2014 - Outofsample - Mumcause (‘00‘14) .
France 2000-2014 Out-of-sample Country-cause (‘00-‘14)
. FBy.céncber i(.)g_.mo.r.ta“ty.. G.er.n.]a.n.y - .1.998._.2(.)14.. ssiudvutaiuousets s sibussaient st Aot
(;ountry_causeep
sostetns Mt (5var|at|ons) e France o 2000_2014 - outofsamp[e - Country_cause (0015)
Germany 1998-2015
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A.5 Illustrating latent factor loadings in SLFM

Figure A.3. Factor loadings ag = (a1, - -

ag
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., aL,q)T in the country-cause SLFM with Q = 3 (left) and Q = 2 (right). The model is

fitted on ages 50-84 years, years 1998-2016, over three countries and five cancer types. For each of the 15 populations, we

plot (a;1, a1, a13) as a point in three-space on the left panel and (a;1, ;) on the right.

Appendix B. Additional Plots for the US Top-Level-Cause Study
B.1 Adjusting drug overdose trend
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Figure B.1. Comparison of original and adjusted predicted log-mortality for age group 40-44 years, US males and Females.
Left: same model after reducing drug abuse yearly trend ¥ by one-third. Right: corresponding aggregated all-cause trends.
Vertical lines indicate the edge of training data (1999-2018).
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B.2 Cross-correlation matrices for the US all-cause analysis
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Figure B.2. Cross-cause correlation matrices derived from multi-cause single-level (Q = 6) ICM MOGP, fitted on ages 40-69
years (six age groups) and years 1999-2018, separately for US nales and US females.
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