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AN EXTENSION OF A THEOREM OF ZERMELO

JOUKO VÄÄNÄNEN

Abstract. We show that if (M,∈1,∈2) satisfies the first-order Zermelo–Fraenkel axioms of
set theory when the membership relation is ∈1 and also when the membership relation is ∈2,
and in both cases the formulas are allowed to contain both∈1and∈2, then (M,∈1) ∼= (M,∈2),
and the isomorphism is definable in (M,∈1,∈2). This extends Zermelo’s 1930 theorem in [6].

Zermelo [6] proved that if (M,∈1) and (M,∈2) both satisfy the second-
order Zermelo–Fraenkel axioms in which the Separation Schema and the
Replacement Schema of ZFC are replaced by single second-order axioms,
then (M,∈1) ∼= (M,∈2). We extend this as follows: Let us consider the
vocabulary {∈1,∈2}, where both ∈1 and ∈2 are binary predicate symbols.
Let ZFC (∈1) denote the first-order Zermelo–Fraenkel axioms of set theory
when ∈1 is the membership relation but formulas are allowed to contain ∈2
too. Similarly, in ZFC (∈2) the membership relation is ∈2 but formulas are
allowed to contain ∈1 too. We prove the following theorem:
Theorem 1. If (M,∈1,∈2) |= ZFC (∈1) ∪ ZFC (∈2), then (M,∈1) ∼=
(M,∈2) via a definable class function.
The result of Zermelo readily follows from our theorem. The impor-
tant difference between our result and Zermelo’s result is that our theories
ZFC (∈1) andZFC (∈2) are first-order theories. It is important that we allow
in these axiom systems formulas from the extended vocabulary {∈1,∈2}.
Without this the result would be blatantly false as there are countable noni-
somorphic models of ZFC , assuming there are models of ZFC at all. Since
the isomorphism in Theorem 1 is definable, the result can be seen as a
provable theorem of the first-order theory ZFC (∈1) ∪ ZFC (∈2).
Theorem 1 resembles the categoricity conclusion for set theory in [2, page
18]. There are two main differences: First, the axiomatization of set theory
in [2] is informal, based on the Axiom of Extensionality and an informal
full Comprehension Axiom, while our result is completely formal and in the
context of ZFC. Secondly, it is assumed in [2] that the two ∈-relations give
rise to the same (informal) structure of the ordinals, owing to the uniqueness
of the ordinal concept. We do not make this assumption but rather prove
that the two ∈-relations have isomorphic ordinals. Martin’s work has been
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extended to class theory in [5]. Theorem 1 was stated without proof in [3,
page 104].
We call our theorem an internal categoricity result because it shows
that one cannot have in one and the same domain two nonisomorphic
membership-relations ∈1 and ∈2 if these relations can “talk” about each
other.
Our theorem is a strong robustness result for set theory. Essentially, the
model cannot be changed “internally”. To get a nonisomorphic model one
has to go “outside” the model. Such robustness is important for set theory
because set theory is already the “outside” of mathematics, the framework
where mathematics is (or can be) built.
How are the numerous independence results in harmony with this internal
categoricity? Let us take the Continuum Hypothesis CH as an example. CH
is independent of ZFC in the sense that both ZFC ∪ {CH} and ZFC ∪
{¬CH} are consistent, if ZFC itself is. Internal categoricity means simply
that if (M,∈1) satisfiesCH and (M,∈2) satisfies¬CH , then either (M,∈1) or
(M,∈2) does not satisfy the Separation Schema or the Replacement Schema
if formulas are allowed to mention the other membership-relation. Such
models cannot be internal to each other in the sense discussed.
In the below proof wewill work inZFC (∈1)∪ZFC (∈2) but in fact operate
all the time in either ∈1-set theory or in ∈2-set theory. We have to keep the
two set theories separate even though they also interact via the Separation
and Replacement Schemas in the joint vocabulary {∈1,∈2}.
Let tri(x) be the formula ∀t ∈i x∀w ∈i t(w ∈i x). Let TCi (x) be the
unique u such that tri(u) ∧ ∀v ∈i x(v ∈i u) ∧ ∀v((tri(v) ∧ ∀w ∈i x(w ∈i
v)) → ∀w ∈i u(w ∈i v)) (“u is the ∈i -transitive closure of x”). When we
write TCi({x}), we mean by {x} the singleton {x} in the sense of ∈i . Let
φ(x, y) be the formula ∃f�(x, y, f), where �(x, y, f) is the conjunction of
the following formulas (where f(t), f(w) and f(x) are in the sense of ∈1):
(i) In the sense of∈1, the setf is a function with TC1({x}) as its domain.
(ii) ∀t ∈1 TC1(x)(f(t) ∈2 TC2(y)).
(iii) ∀t ∈2 TC2(y)∃w ∈1 TC1(x)(t = f(w)).
(iv) ∀t ∈1 TC1(x)∀w ∈1 TC1({x})(t ∈1 w ↔ f(t) ∈2 f(w)).
(v) f(x) = y.

We prove a sequence of lemmas about the formulas φ(x, y) and�(x, y, f):

Lemma 2. If �(x, y, f) and �(x, y, f′), then f = f′.
Proof. To prove f = f′ assume w ∈1 TC1({x}). We show f(w) =
f′(w). W.l.o.g. f(s) = f′(s) for s ∈1 w. Suppose t ∈2 f(w). Clearly,
t ∈2 TC2({y}). By (iii), t = f(s) for some s ∈1 TC1({x}). By (iv), s ∈1 w.
By (iv) again, f′(s) ∈2 f′(w). By assumption, f(s) = f′(s). Hence t ∈2
f′(w). Thus ∀t(t ∈2 f(w)→ t ∈2 f′(w)). By symmetry, f(w) = f′(w). 

Lemma 3. Suppose �(x, y, f). If x′ ∈1 x, then φ(x′, f(x′)). If y′ ∈2 y,
then there is x′ ∈1 x such that f(x′) = y′ and φ(x′, y′).
Proof. Let y′ = f(x′) and f′ = f � TC1({x′}). Clearly now
�(x′, y′, f′). Hence φ(x′, f(x′)). The other claim is proved similarly. 
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Lemma 4. If φ(x, y) and φ(x, y′), then y = y′. If φ(x, y) and φ(x′, y),
then x = x′.
Proof. Wemay assume the claim holds for all ∈1-elements of x. Suppose
�(x, y, f) and�(x, y′, f′). We prove y = y′. Let s ∈2 y. By Lemma 3 there
is t ∈1 x such that f(t) = s and φ(t, s). By (iv), s ∈1 x. Let s ′ = f′(t).
By (iv), s ′ ∈2 y′. By Lemma 3 again, φ(t, s ′). By the Induction Hypothesis,
s = s ′. We have proved ∀s(s ∈2 y → s ∈2 y′). The converse follows from
symmetry. Now to the second claim. We may assume the claim holds for all
∈2-elements of y. Suppose�(x, y, f) and�(x′, y, f′).We prove x = x′. Let
s ∈1 x. Thus f(s) ∈2 y. There is s ′ ∈1 TC1({x′}) such that f′(s ′) = f(s).
Now φ(s, f(s)) and φ(s ′, f(s)) by Lemma 3. Since f(s) ∈2 y, s = s ′.
Hence s ∈1 x′. We have proved ∀s(s ∈1 x → s ∈1 x′). The converse follows
from symmetry. 

Lemma 5. If φ(x, y) and φ(x′, y′), then x ∈1 x′ ↔ y ∈2 y′.
Proof. Suppose �(x, y, f) and �(x′, y′, f′). Suppose x ∈1 x′. Then
z = f′(x) ∈2 y′. By Lemma 3, φ(x, z). We have φ(x, y) and φ(x, z). By
Lemma 4, y = z. Hence y ∈2 y′. The converse is similar. 

Let On1(x) be the ∈1-formula saying that x is an ordinal, i.e., a transitive
set of transitive sets, and similarly On2(x). For On1(α) let V 1α be the α

th

level of the cumulative hierarchy in the sense of ∈1, and similarly V 2y when
On2(y).
Lemma 6. If φ(α, y), then On1(α) if and only if On2(y). If α is a limit
ordinal then so is y, i.e., if ∀u ∈1 α∃v ∈1 α(u ∈1 v), then ∀u ∈2 y∃v ∈2
y(u ∈2 v), and vice versa.
Proof. Let us fix y. Suppose �(α, y, f). We prove that y is a transitive
set of transitive sets. Suppose w ∈2 s ∈2 y. There are t ∈1 α and u ∈1 t
such that f(t) = s and f(u) = w. Now w ∈2 y follows from u ∈1 α. This
shows that tr2(y). Similarly one proves that all s ∈2 y satisfy tr2(y). This
ends the proof of the first claim. The second claim is proved similarly. 

Lemma 7. Suppose �(α, y, f). If On1(α) (or equivalently On2(y)), then
there is f̄ ⊇ f such that �(V 1α , V 2y , f̄).
Proof. We use induction on α. Suppose the claim holds for α. We prove
the claim for α +1. Suppose to this end �(α+1, y +1, f). We construct f̄
such that �(V 1α+1, V

2
y+1, f̄). From �(α +1, y +1, f) we obtain �(α, y, f �

α + 1). By assumption there is g ⊇ f � α + 1 such that �(V 1α, V 2y , g). Let
�(u, v) be the formula

∀w(w ∈2 v ↔ (w ∈2 V 2y ∧ ∃t ∈1 u(g(t) = w))).
It follows from the Separation Schema of ZFC (∈2) that for all u ∈1 V 1α+1
there is v such that �(u, v). By the Replacement Schema of ZFC (∈1), we
can let f̄ be a function (in the sense of {∈1}) such that for all u ∈1 V 1α+1 we
have �(u, f̄(u)). It is easy to see, using the Separation Schema of ZFC (∈1),
that �(V 1α+1, V

2
y+1, f̄).

Suppose then the claim holds for all � < α =
⋃
α. For each � < α there

is thus some g� such that �(V 1� , V
2
f(�), g�). By the Replacement Schema of
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ZFC (∈1) we can form the ∈1-set f̄ =
⋃
�<α g� ∪ {(V 1α , V 2y )}. It is easy to

see that �(V 1α , V
2
y , f̄). 


Lemma 8. ∀x∃yφ(x, y) and ∀y∃xφ(x, y).
Proof. Let us first assume that both

∀α(On1(α)→ ∃yφ(α, y)) (1)

and
∀y(On2(y)→ ∃αφ(α, y)). (2)

hold. In order to prove ∀x∃yφ(x, y), suppose x is given. There is α such
that On1(α) and x ∈1 V 1α . By (1) there are v and f such that �(α, v, f). By
Lemma 7 there is f̄ ⊇ f such that �(V 1α , V 2v , f̄). By Lemma 3, φ(x, f̄(x)).
Thus ∃yφ(x, y).
In order to prove ∀y∃xφ(x, y), suppose y is given. There is v such that
On2(v) and y ∈2 V 2v . By (2) there are α and f such that �(α, v, f). By
Lemma 7 there is f̄ ⊇ f such that �(V 1α, V 2v ). By condition (iii) of the defi-
nition of� there isw ∈1 V 1α such that f̄(w) = y. By Lemma 3, φ(w, f̄(w)).
Thus ∃xφ(x, y).
Thus it suffices to show that the failure of (1) or (2) to hold leads to a
contradiction.

Case 1. ¬(1)∧¬(2). Let α be the ∈1-least α such that On1(α) ∧
¬∃yφ(α, y). Let y be the ∈2-least y such that On2(y) ∧ ¬∃�φ(�, y). It
is easy to see that φ(α, y), a contradiction.

Case 2. (1)∧¬(2). Let y be the∈2-least y such that On2(y)∧¬∃αφ(α, y).
Now,∀t ∈2 y∃α(On1(α)∧φ(α, t)). Clearly,y is an∈2-limit ordinal. Suppose
z ∈2 V 2t , where t ∈2 y. Let α and f be such that On1(α) ∧ �(α, t, f). By
Lemma 7 there is f̄ ⊇ f such that �(V 1α, V 2t , f̄). There is x ∈1 V 1α such
that f̄(x) = z. Thus φ(x, z) and hence

∀z ∈2 V 2y ∃x φ(x, z).
By the Replacement Schema in ZFC (∈2) there is c such that

∀z ∈2 V 2y ∃x ∈2 c φ(x, z). (3)

Let α be such that c ∈1 V 1α . By (1) there are t and f such that φ(α, t, f).
Necessarily, t ∈2 y. By Lemma 7 there is f̄ ⊇ f such that �(V 1α, V 2t , f̄). In
particular, f̄(c) ∈2 V 2y . By (3) there is b ∈2 c such that φ(b, f̄(c)). Since
also φ(c, f̄(c)), Lemma 4 gives c = b. Thus c ∈2 c, a contradiction.
Case 3. ¬(1)∧(2). This case is analogous to Case 2. 

Proposition 9. The class defined by φ(x, y) is an isomorphism between the

∈1-reduct and the ∈2-reduct.
Proof. By Lemmas 4, 5, and 8. 

A similar result holds for first-order Peano arithmetic, extending the cate-
goricity result of Dedekind [1] of second-order Peano arithmetic. The proof
(see [4]) of this is similar, but somewhat easier.
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