PRESENTATIONS OF THE GROUPS $\operatorname{SL}(2, m)$ AND $\operatorname{PSL}(2, m)$

J. G. SUNDAY

1. In this paper, we refine the presentations of Behr and Mennicke [1] for $\operatorname{SL}(2, m)$ and $\operatorname{PSL}(2, m)$ where m is odd. The group $\operatorname{SL}(2, m)$ is first shown to be presented by the following system of generators and relations:

$$
\begin{equation*}
S^{m}=T^{2}=(S T)^{3}=\left(S^{\frac{1}{2}(m+1)} T S^{4} T\right)^{2}, T^{4}=1 \tag{1.1}
\end{equation*}
$$

The group PSL $(2, m)$ appears as the factor group

$$
\begin{equation*}
S^{m}=T^{2}=(S T)^{3}=\left(S^{\frac{1}{2}(m+1)} T S^{4} T\right)^{2}=1 \tag{1.2}
\end{equation*}
$$

This simplification then permits us to use the results of Schur [3] to establish three-relation presentations for these groups. $\operatorname{SL}(2, m)$ is ultimately presented by

$$
\begin{equation*}
S^{m}=T^{2}=(S T)^{3}=\left(S^{\frac{1}{2}(m+1)} T S^{4} T\right)^{2}, \tag{1.3}
\end{equation*}
$$

and $\operatorname{PSL}(2, m)$ is presented by

$$
\begin{equation*}
S^{m}=1, T^{2}=(S T)^{3},\left(S^{\frac{1}{2}(m+1)} T S^{4} T\right)^{2}=1 \tag{1.4}
\end{equation*}
$$

These results do not depend on the restriction of m to odd primes p which Zassenhaus [4] imposed. In addition, they simplify the Zassenhaus presentation

$$
\begin{equation*}
S^{p}=(S T)^{3}, T^{2}=1,\left(S^{\frac{1}{2}\left(p^{2}+1\right)} T S^{2} T\right)^{3}=1 \tag{1.5}
\end{equation*}
$$

of $\operatorname{PSL}(2, p)$, at the same time removing the exceptional case $p \equiv 17(\bmod 28)$ for which he must use the presentation

$$
\begin{equation*}
S^{p}=(S T)^{3}, T^{2}=1,\left(S^{\frac{1}{2}(p+1)} T S^{2} T\right)^{3}=1 \tag{1.6}
\end{equation*}
$$

and the exceptional case $p \equiv 3(\bmod 28)$ for which neither of his presentations suffices to define $\operatorname{PSL}(2, p)$.
2. Gunning [2, pp. 8-10] gives a description of the group $\operatorname{SL}(2, m)$ which consists of 2×2 matrices of determinant 1 whose entries belong to the ring of integers modulo m. In terms of the prime factorization $m=\Pi^{c}$, the order of this group is

$$
m^{3} \Pi\left(1-1 / p^{2}\right)
$$

The presentation

$$
\begin{equation*}
A^{m}=1,(A B)^{3}=B^{2}, B^{4}=1,\left(A^{\frac{1}{2}(m+1)} B A^{2} B\right)^{3}=1 \tag{2.1}
\end{equation*}
$$

Received October 20, 1971 and in revised form, January 10, 1972.
for $\operatorname{SL}(2, m)$ was discovered by Behr and Mennicke $[\mathbf{1}, \mathrm{p} .1433]$ when m is odd. Let Z denote the central element B^{2}, and define $S=A Z$ and $T=B Z$. An equivalent presentation is obviously

$$
\begin{equation*}
S^{m}=T^{2}=(S T)^{3}=Z, Z^{2}=1,\left(S^{\frac{1}{2}(m+1)} T S^{2} T\right)^{3}=Z^{\frac{1}{2}(m+1)} . \tag{2.2}
\end{equation*}
$$

Note that the elements

$$
S=\left[\begin{array}{rr}
-1 & 0 \\
-1 & -1
\end{array}\right], \quad T=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right], \quad Z=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

fulfill the relations (2.2). Coxeter noticed that they also satisfy

$$
\left(S^{\frac{1}{2}(m+1)} T S^{4} T\right)^{2}=Z
$$

Therefore, to show that (1.1) defines the same group $\operatorname{SL}(2, m)$, it is enough to show that (1.1) implies $\left(S^{\frac{1}{2}(m+1)} T S^{2} T\right)^{3}=Z^{\frac{1}{2}(m+1)}$, where Z is the central element T^{2}. Letting $q=\frac{1}{2}(m+1)$, it follows from (1.1) that

$$
\begin{aligned}
\left(S^{q} T S^{2} T\right) S\left(S^{q} T S^{2} T\right)^{-1} & =S^{q-1}(S T S T Z)(T S T S T) S^{-2} T S^{-q} \\
& =S^{q-1} T^{-1} S^{-1} S^{-1} Z S^{-2} T S^{-q} \\
& =S^{q-1}\left(S^{q} T S^{4} T\right)^{-1} \\
& =Z T S^{4} T T^{-1} .
\end{aligned}
$$

Taking q th powers, noting that $S^{2 m}=Z^{2}=1$, we find

$$
\left(S^{q} T S^{2} T\right) S^{q}\left(S^{q} T S^{2} T\right)^{-1}=Z^{q} T S^{2} T^{-1}=Z^{q-1} T S^{2} T
$$

Finally,

$$
Z^{q}=\left(S^{q} T S^{4} T\right)^{2} Z^{q-1}=S^{q} T S^{2} T\left(Z^{q-1} T S^{2} T\right) S^{q} T S^{2} T T S^{2} T=\left(S^{q} T S^{2} T\right)^{3},
$$

as required.
Now, let G be one of the groups defined by either (1.3) or (1.4). In the commutator quotient group of G, which is obtained by adding the relation $S T=T S$ to whichever of (1.3) or (1.4) defines G, the element $T=S^{-3}$ is the identity. Hence, in G, every element of the subgroup $\left\langle T^{2}\right\rangle$ belongs to the commutator subgroup. Furthermore, $\left\langle T^{2}\right\rangle$ is normal and $G /\left\langle T^{2}\right\rangle$, presented by (1.2), is isomorphic to $\operatorname{PSL}(2, m)$. Since the commutator quotient group of $\operatorname{PSL}(2, m)$ is either C_{1} or C_{3} and the multiplicator is a 2 -group, Schur's theory [3, p. 96] implies that G is either $\operatorname{SL}(2, m)$ or $\operatorname{PSL}(2, m)$. Since the group defined by (1.3) has $\mathrm{SL}(2, m)$ in the form (1.1) as a factor group it must in fact be SL $(2, m)$. Finally since $\left(S^{\frac{1}{2}(m+1)} T S^{4} T\right)^{2}=1$ in (1.4), the group defined by (1.4) must be $\operatorname{PSL}(2, m)$.

References

1. H. Behr and J. Mennicke, A Presentation of the groups PSL(2, p), Can. J. Math. 20 (1968), 1432-1438.
2. R. C. Gunning, Lectures on modular forms (Princeton University Press, Princeton, 1962).
3. J. Schur, Untersuchungen uber die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 132 (1907), 85-137.
4. H. J. Zassenhaus, A Presentation of the groups $\operatorname{PSL}(2, p)$ with three defining relations, Can. J. Math. 21 (1969), 310-311.

University of Toronto,
Toronto, Ontario

