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PRESENTATIONS OF THE GROUPS 
SL(2, m) AND PSL(2, m) 

J. G. SUNDAY 

1. In this paper, we refine the presentations of Behr and Mennicke [1] for 
SL(2, m) and PSL(2, m) where m is odd. The group SL(2, m) is first shown 
to be presented by the following system of generators and relations: 

(i.i) sm = T2 = (sry = (s^m+vTS*Ty, r4 = 1. 
The group PSL(2, m) appears as the factor group 

(i.2) sm = T2 = (sry = (&n+»TSAT)2 = 1. 

This simplification then permits us to use the results of Schur [3] to establish 
three-relation presentations for these groups. SL(2, m) is ultimately presented 
by 

(1.3) Sm = T2 = (STY = (S^m+»TS*T)2, 

and PSL(2, m) is presented by 

(1.4) Sm = 1, T2 = {STY, (S^m+1)TS4TY = 1. 

These results do not depend on the restriction of m to odd primes p which 
Zassenhaus [4] imposed. In addition, they simplify the Zassenhaus presentation 

(1.5) 5p = (STY, T2 = 1, (&<fi'+»TS*T)* = 1, 

of PSL(2, p),a,t the same time removing the exceptional case p = 17 (mod 28) 
for which he must use the presentation 

(1.6) Sp = (STY, T2 = 1, (S^P+VTS2TY = 1, 

and the exceptional case p = 3 (mod 28) for which neither of his presentations 
suffices to define PSL(2, p). 

2. Gunning [2, pp. 8-10] gives a description of the group SL(2, m) which 
consists of 2 X 2 matrices of determinant 1 whose entries belong to the ring 
of integers modulo m. In terms of the prime factorization m ~ TYp0, the order 
of this group is 

m3II(l - 1/p2). 
The presentation 

(2.1) Am = 1, (ABY = B2, B* = 1, (A^m+UBA2BY = 1 
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for SL(2, m) was discovered by Behr and Mennicke [1, p. 1433] when m is odd. 
Let Z denote the central element B2, and define S = AZ and T = BZ. An 
equivalent presentation is obviously 

(2.2) sm = T2 = (sry = z,z2 = 1, (s^m+i)TS2ry = z^+ i ) . 

Note that the elements 

- 1 0" 
, T = 

'0 - 1 " , z = - 1 0] 

_ - l - 1 
i •*• 

.1 0 
J " 

0 - l j 

fulfill the relations (2.2). Coxeter noticed that they also satisfy 

(£*(m+l) TS*T)2 = Z. 

Therefore, to show that (1.1) defines the same group SL(2, m), it is enough to 
show that (1.1) implies (S^m+1)TS2Ty = Zkm+1\ where Z is the central 
element T2. Letting q = \(m + 1), it follows from (1.1) that 

(SqTS2T)S(SQTS2T)-1 = S«-1(STSTZ)(TSTSr)S~2TS-q 

= Sq-1T-1S-1S-1ZS~2TS-Q 

= ZTS±T-\ 

Taking gth powers, noting that S2m = Z2 = 1, we find 

(SqTS2T)Sq(SqTS2T)-1 = ZqTS2T~l = Zq~lTS2T. 

Finally, 

Zq = (SqTS*T)2Zq~l = SqTS2T(Zq~lTS2T)SqTS2TTS2T = (SqTS2Ty, 

as required. 
Now, let G be one of the groups defined by either (1.3) or (1.4). In the com

mutator quotient group of G, which is obtained by adding the relation ST = TS 
to whichever of (1.3) or (1.4) defines G, the element T = S~3 is the identity. 
Hence, in G, every element of the subgroup (T2) belongs to the commutator 
subgroup. Furthermore, (T2) is normal and G/(T2), presented by (1.2), is 
isomorphic to PSL(2, m). Since the commutator quotient group of PSL(2, m) 
is either d or C3 and the multiplicator is a 2-group, Schur's theory [3, p. 96] 
implies that G is either SL(2, m) or PSL(2, m). Since the group defined by 
(1.3) has SL(2, m) in the form (1.1) as a factor group it must in fact be 
SL(2,m). Finally since (S*<m+1>rS4r)2 = 1 in (1.4), the group defined by 
(1.4) must be PSL(2, m). 
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