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Towards a finite-time singularity of the
Navier–Stokes equations. Part 3. Maximal
vorticity amplification
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An exact analytical solution is obtained for the dynamical system derived in Part 1 of
this series (Moffatt & Kimura, J. Fluid Mech, vol. 861, 2019a, pp. 930–967), which
describes the approach of two initially circular vortices of finite but small cross-section
symmetrically located on inclined planes. This exact solution, applicable in the inviscid
limit, allows determination of the amplification Aω of the axial vorticity within the finite
time T during which the basic assumptions of the model continue to apply. It is first shown
that, for arbitrarily prescribed Aω, it is possible to specify smooth initial conditions of
finite energy such that, in the inviscid limit, this amplification is achieved within the
time T . When viscosity is included, an estimate is provided for the minimum vortex
Reynolds number that is sufficient for the same result to hold. The predictions are broadly
compatible with results from direct numerical simulations at moderate Reynolds numbers.
Moreover, it is shown that one may come arbitrarily close to a finite-time singularity
of the Navier–Stokes equation by appropriate choice of an initial, smooth, finite-energy
velocity field; however, this approach to a singularity is ultimately thwarted through breach
of the assumptions on which the dynamical system is based. Thus we make no claim
here concerning realisation of a Navier–Stokes singularity. Moreover, we find that the
conditions required to attain a large amplification Aω � 1 during the time T are far beyond
those that can be realised in either experiment or direct numerical simulation.
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Figure 1. (a) Sketch of the initial vortex tube configuration. (b) Vorticity profiles represented as the sum of
Gaussians ω/ω0 = exp[−(x − s)2/4δ2] − exp[−(x + s)2/4δ2] for fixed δ (= 1) and s/δ = 7 (black), 5 (blue),
3 (green) and 1 (red). For s/δ � 5 the vortices are essentially non-overlapping, but, as s/δ decreases below 5,
the overlap becomes increasingly significant.

1. Introduction

In Moffatt & Kimura (2019a) (hereafter MK19a), we have derived the following
dimensionless equations describing the approach and early-stage interaction of two
initially circular vortex tubes (radius R, circulations ±Γ ) inclined to a plane of symmetry
at angles ±α (figure 1a; lengths and time τ ≥ 0 are made dimensionless relative to R and
R2/Γ ; the fluid is assumed incompressible):

ds
dτ

= −κ cos α

4π
Λ,

dκ

dτ
= κ cos α sin α

4πs2 ,
dδ2

dτ
= ε − κ cos α

4πs
δ2, (1.1a–c)

where Λ(τ) = log(s/δ) + β1 and (for vortices of Gaussian core structure) β1 = 0.4417.
Here, 2s(τ ), κ(τ) and δ(τ ) represent, respectively, the separation of the vortices, the
curvature and the vortex core radii at their nearest points of approach (the ‘tipping points’).
The term ε ≡ ν/Γ ≡ R−1

Γ is the inverse of the vortex Reynolds number, and represents the
natural tendency of δ2 to increase due to viscous diffusion; this is counteracted by the term
−(κ cos α/4πs)δ2, which represents the effect of vortex stretching. Arguments were given
in MK19a to justify the particular choice of angle α = π/4, but it was recognised in the
conclusions that smaller values of α should also be considered.

Equations (1.1a–c) were derived under the assumptions

0 < δ(τ) � s(τ ) � κ(τ)−1, with κ(0) = 1, (1.2)

and were assumed to be valid only for so long as these conditions are satisfied. However, it
became apparent that these severe inequalities fail to persist when time τ gets very near to
a critical finite ‘singularity time’ τc; as this time approaches, s ∼ δ, so that the initially
circular vortex cross-sections become deformed, and (if ε > 0) viscous reconnection
occurs. We attempted to describe the reconnection process by introducing a fourth variable
γ (τ) representing the proportion of the circulation Γ that is reconnected at time τ

(Moffatt & Kimura 2019b, 2020). However, direct numerical simulation (DNS) for the
same configuration (Yao & Hussain 2020) has indicated that the resulting fourth-order
dynamical system does not correctly capture the complexities of the reconnection process.

Since the vorticity is localised (here exponentially small outside a finite domain) and
has Gaussian structure within the tubes, the fluid velocity u(x, 0) is analytic and of order
r−3 at infinity. The energy of the vortex tube configuration at time τ = 0 is of order
RΓ 2 log[R/δ(0)], and is finite since δ(0) > 0. Similarly, all Sobolev norms (including
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Towards a finite-time singularity. Part 3

enstrophy, of order Γ 2R/δ(0)2) are finite since δ(0) > 0 (for related discussion for the
case of a periodic domain, see Kang, Yun & Protas (2020)).

The first of the inequalities (1.2), s(τ ) � δ(τ ), ensured that the vortex cores
remain compact and non-overlapping, allowing use of the Biot–Savart law in deriving
(1.1a). Figure 1(b) shows a section of a vortex pair ω/ω0 = exp[−(x − s)2/4δ2] −
exp[−(x + s)2/4δ2] for several values of s/δ; the overlap of the cores becomes significant
only when s/δ � 5. The condition s(τ ) � δ(τ ) is evidently too restrictive: what is really
required is that

exp[−s2/4δ2] � 1. (1.3)

When s/δ = {3, 4, 5, 6, . . .}, then exp[−s2/4δ2] ≈ {0.11, 0.02, 0.002, 0.0001, . . .},
respectively. Hence (1.3) is in effect satisfied provided

s/δ ≥ k1, where k1 is a constant � 5. (1.4)

Similarly, the second of the inequalities (1.2), κ−1 � s(τ ), ensures that the interaction
between the two vortices is localised within an O(s) neighbourhood of the tipping points,
and this persists for so long as

(sκ)−1 ≥ k2, (1.5)

where, again, k2 is a constant somewhat greater than unity. We shall find that, if we require
that the limiting equalities, s/δ = k1 in (1.4) and (sκ)−1 = k2 in (1.5), be simultaneously
satisfied, then, for sufficiently small δ(0)/s(0), k2 is actually determined as a function of k1
(see (3.8) and figure 3b); this functional relationship provides a value of k2 that increases
monotonically from 3.89 to 4.96 as k1 increases from 5 to 10.

The inequalities (1.4) and (1.5) define what we may describe as phase I of the interaction
process, which is of finite duration, T say. Phase II is then the subsequent period when
these inequalities are not satisfied, and when strong deformation of the vortex cores occurs.
Our purpose in the present paper is to determine the maximum amplification of the axial
vorticity ω0 = Γ/4πδ2 that may be attained during phase I when both inequalities (1.4)
and (1.5) remain satisfied; in this respect, our aim parallels that of Kang et al. (2020).
(For the purpose of illustration, we shall generally adopt the values k1 = 5 and k2 = 3.89,
so that then, as explained above, the constraints s/δ ≥ k1 and (sκ)−1 ≥ k2 are precisely
compatible; the main conclusions do not, however, depend on these choices.)

In a related paper, Morrison & Kimura (2020) have proved that, when ε = 0 (the
Euler limit), the system (1.1a–c) is a ‘non-canonical’ Hamiltonian system with two
invariants, the Hamiltonian H(s, δ) (independent of κ) and a Casimir C(s, κ, δ). (These
invariants are closely associated with the results (2.8) and (3.6) of the present paper; see
Appendix A.) The solution trajectories are then curves of intersection of the surfaces
H = const. and C = const. in the three-dimensional space of the variables {s, κ, δ}. On
each such trajectory, s and κ are determined as functions of δ, so that (1.1c) provides a
quadrature determining δ(τ ). By this means, a general solution was obtained, revealing a
finite-time singularity with Leray scaling s ∼ (τc − τ)1/2, δ ∼ (τc − τ)1/2 and κ ∼ (τc −
τ)−1/2 (and confirming the asymptotic analysis in § 8 of MK19a). The problem, however,
is that δ/s increases to near unity as τ → τc (actually to exp(β1 − 1/2) ≈ 0.943), so that
the condition (1.3) no longer holds good as the singularity is approached. Some flattening
of the vortex-core cross-sections is inevitable, invalidating the basis on which the system
(1.1a–c) was obtained. The DNS of McKeown et al. (2018) and of Ostilla-Monica et al.
(2021), albeit at finite Reynolds number, indicated that this flattening process can be quite
severe, in effect converting tubes to sheets, which are then subject to elliptic instabilities,
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and/or Kelvin–Helmholtz instabilities (as earlier suggested by Brenner, Hormoz & Pumir
(2016)).

Similar behaviour was found in the DNS of Yao & Hussain (2020), who also reported
that, at a vortex Reynolds number of 4000 (and with s(0) = 0.1 and δ(0) = 0.01), the
maximum vorticity did not increase by more than a factor of about 1.6 during the whole
interaction and reconnection process. This surprising result may be contrasted with the
result of simulations based on the Biot–Savart law for vortex filaments, as shown in figure 1
of MK19a, which indicated a singularity (s → 0, κ → ∞) as τ → τc. Here, we seek to
understand this contrasting behaviour by choosing z ≡ δ(0)/s(0) very small (to approach
the vanishingly small value implicit in the above use of the Biot–Savart law for vortex
filaments), and by considering the asymptotic behaviour as z → 0. (We here ignore the
fact that, on ever decreasing microscopic scales, the continuum description of the fluid
must ultimately fail.)

To recap, it is apparent that there are two phases to the vortex interaction process:
phase I, of finite duration T , when the cores do not significantly overlap, but the axes of
both vortex rings are deformed by the interaction, with associated stretching; and phase II,
when the cores do impinge on each other, with consequent strong core deformation and
(if ε > 0) the onset of reconnection. Phase I is defined by the inequalities (1.4) and (1.5),
and the analysis of the present paper is restricted to this phase. We make no assertion
concerning phase II, for which DNS is an indispensable mode of investigation (as, for
example, in the paper of Kerr (2018), who has used DNS to study the phase II reconnection
process for two prototypical vortex tube configurations (antiparallel and trefoil knot)).

2. Solution in the Euler limit ε = 0

Here we first provide a straightforward derivation of the exact solution, obtained by
Morrison & Kimura (2020), of the dynamical system (1.1a–c) in the Euler limit. When
ε = 0, we note first that (1.1a–c) imply that κ(τ) is monotonically increasing and (with
s > δ) s(τ ) and δ(τ ) are monotonically decreasing. Moreover, these equations give

dδ

ds
= dδ/dτ

ds/dτ
= δ

2Λs
. (2.1)

Here it is convenient to introduce variables

σ ≡ s(τ )/s0 < 1 and λ ≡ δ(τ )/δ0 < 1, for τ > 0, (2.2)

where s0 = s(0) and δ0 = δ(0) (with κ0 = κ(0) = 1). Equations (1.1a–c) become

dσ

dτ
= −κ cos α

4πs0
Λ,

dκ

dτ
= κ cos α sin α

4πs2
0σ

2
,

dλ2

dτ
= ε

δ2
0

− κ cos α

4πs0σ
λ2, (2.3a–c)

and the logarithmic term Λ becomes

Λ(σ, λ, z) = log(σ/λ) − log z + β1, where z = δ0/s0 � 1. (2.4)

Equation (2.1) becomes

dλ
λ

= dσ

2Λ(σ, λ, z)σ
, or equivalently d log λ = d log σ

2Λ(σ, λ, z)
, (2.5)

with ‘initial’ condition λ = 1 when σ = 1. The condition s � δ becomes σ/λ� z. As
argued above, it seems reasonable to adopt 5z as the value of σ/λ above which the vortex
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Towards a finite-time singularity. Part 3

cores do not significantly overlap and so remain effectively circular, i.e. the inequality (1.3)
may then be deemed to be satisfied. (We choose this level for illustrative purposes only;
any level k1z, with k1 � 3 and constant in the limit z → 0, could be chosen.)

Now, defining L = log λ, S = log σ and Z = β1 − log z = log[eβ1/z], and using (2.4),
we obtain the linear equation

dS/dL = 2(S − L + Z), with initial condition S(0) = 0. (2.6)

The solution is

S(L) = L + 1
2(1 − 2Z)(1 − e2L), (2.7)

or, returning to the variables {σ, λ},

σ = λqλ2−1 where q = eβ1−1/2/z ≈ 0.943/z. (2.8)

Here, note immediately that σ/λ→ q−1 = 1.060z when λ→ 0, so that, as recognised
by MK19a, the condition σ/λ� z is not satisfied in this limit. (Note further that σ/λ =
const. if q = 1, i.e. z = 0.943; this is the special situation for which Morrison & Kimura’s
Hamiltonian H(s, δ) = 0.)

The less restrictive condition σ/λ � k1z with k1 � 3 now becomes

qλ
2−1 � k1z, (2.9)

or equivalently

λ2 � λ2
m = 1 + log[k1z]

log q
∼ log k1 − 0.059

log[1/z]
as z → 0. (2.10)

(The condition λ � λm(z) now determines the duration of phase I of the evolution.) With
the choice k1 = 5 (log k1 = 1.609), (2.10) becomes

λ2
m ∼ 1.550

log[1/z]
as z → 0. (2.11)

The corresponding asymptotic amplification of vorticity at the tipping points is then

Aω ≡ ωmax/ω0 ≡ 1/λ2
m ∼ 0.645 log[1/z], (2.12)

where ω0 now represents the initial axial vorticity magnitude in each vortex tube. Thus an
arbitrarily large amplification of vorticity Aω can be achieved in phase I (in principle if
not in practice) by choosing z sufficiently small, specifically by choosing

z ∼ e−1.550Aω . (2.13)

Figure 2(a) shows plots of σ/λz (= s/δ) versus λ for four values of z decreasing from
10−5 to 10−50. The black line at level 5 intersects these curves at the values λ = λm(z)
given by (2.11) and indicated by the vertical dashed lines, showing the very slow decrease
of λm(z) as z → 0 (for example, λm(10−5) ≈ 0.367, λm(10−50) ≈ 0.116). The model loses
validity where the curves lie in the shaded phase II region below the level σ/λz = 5.
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Figure 2. (a) Plot of σ/λz (= s/δ) versus λ in the range 0 ≤ λ ≤ 0.5 for z = 10−5 (blue), 10−10 (red), 10−25

(green) and 10−50 (purple). The horizontal line at the level k1 = 5 separates phase I (unshaded, above)
from phase II (shaded, below), and intersects the curves at λ = λm(z) for each z (as marked by the vertical
dashed lines). Note the very slow decrease of λm(z) with decreasing z. All these curves asymptote to 1.060 as
λ→ 0. (b) The same with corresponding dashed curves of (s0κσ)−1 [= (sκ)−1] superposed (with s0 = 0.02
and α = π/4). These dashed curves are scaled by the factor k1/k2 = 5/3.89 ≈ 1.29, bringing them into
approximate coincidence with the solid curves at the level 5. This shows that, when k1 = 5, both inequalities
(1.4) and (1.5) are simultaneously satisfied with the choice k2 = 3.89. The dashed curves asymptote to
1.29/

√
2 ≈ 0.912 as λ→ 0.

3. Evaluation of σκ as a function of λ

We also need to satisfy the inequality (s0σκ)−1 > k2 (with k2 = 3.89 corresponding to
k1 = 5); s0 must also be chosen to be suitably small. It is now convenient to calculate

dκ

dλ
= dκ/dτ

dλ/dτ
= −2 sin α

s0σλ
. (3.1)

Here we may use (2.8), so that, with q = 0.943/z as before,

dλ

λ2q λ2−1
= − s0

2 sin α
dκ, and so κ − 1 = 2 sin α

s0
I(q, λ), (3.2)

where, using the initial condition κ = 1 when λ = 1,

I(q, λ) =
∫ 1

λ

dλ1

λ2
1qλ

2
1−1

= λ−1q1−λ2 − 1 + q
√

π log q[erf(λ
√

log q) − erf(
√

log q)].

(3.3)
The function I(q, λ) has the asymptotic behaviour

I(q, λ) ∼ q
λ

− [1 + q
√

π log q erf(
√

log q)] + O(λ) asλ→ 0, (3.4)

so that, from (3.2),

κ ∼
(

2q sin α

s0

)
1
λ

+ O(1) asλ→ 0. (3.5)

It follows further from (3.2) that

sκ ≡ s0σκ = λqλ2−1[s0 + 2 sin αI(q, λ)]. (3.6)

This expression approaches the limit 2 sin α as λ→ 0. We require that λ be restricted to
the range for which (s0σκ)−1 > k2. The relevant portions of the curves of 1.29(s0σκ)−1
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Figure 3. (a) Plot of k1(λm, z) (solid) and k2(λm, z) (dashed) for α = π/4 and z = 10−5 (blue), 10−10 (red),
10−25 (green) and 10−50 (purple). The dotted line is at the level 3.08 where the curves cross. (b) Plot of the
asymptotic function k2(k1) for s0 = 0.02, α = π/4, in the range 3 ≤ k1 ≤ 10.

are shown, dashed, in figure 2(b) for α = π/4, s0 = 0.02, and for the same four values
of z as in figure 2(a). The scaling factor 1.29 = k1/k2 corresponds to the choices
k1 = 5, k2 = 3.89, for which the limiting equalities in (1.4) and (1.5) are simultaneously
satisfied.

As recognised by Morrison & Kimura (2020), if α ≤ π/6, the limit 2 sin α for (sκ)

satisfies (sκ)|lim ≤ 1, supporting the possibility of a fluid-dynamical singularity as τ →
τc. However, the corresponding limit (δ/s)|lim = 0.943 does not depend on α, and is too
large to provide any confidence that both the underlying conditions (1.2) of the model are
adequately satisfied right up until the instant at which the potential singularity might be
attained.

If, instead of the level 5, we choose any level k1 � 3 for the minimum allowed value of
s/δ, then, for given z, (2.10) determines k1 as a function of λm. We may then obtain the
corresponding minimum allowed value k2 for (s0σκ)−1, as a function of the same λm. In
this way, with q(z) = 0.943/z, we find

k1(λm, z) = z−1q(z)λ
2
m−1, k2(λm, z) = λ−1

m q(z)1−λ2
m[s0 + 2 sin α I(q(z), λm)]−1. (3.7)

Figure 3(a) shows the functions k1(λm, z) and k2(λm, z) as functions of λm for
s0 = 0.02, α = π/4, and for z = 10−5, 10−10, 10−25 and 10−50.

If λm is now eliminated from (3.7) the dependence of k2 on k1 may be obtained.
The asymptotic behaviour of this relationship as z → 0, i.e. as q(z) → ∞, is, to good
approximation,

k2 ∼ 2−1/2{1 + k1
√

π log k1(erf[
√

log k1] − 1)}−1 as z → 0. (3.8)

This asymptotic function k2(k1) is shown in figure 3(b) for the range 3 ≤ k1 ≤ 10. We
note that k2(3) ≈ 3.08, k2(5) ≈ 3.89 and k2(10) ≈ 4.96, and that, in this range of k1, one
has 0.49 < k2/k1 < 1.1. Since this ratio is of order unity, the implication is that, if the first
required inequality s/δ > k1 is satisfied, then so is the second (sκ)−1 > k2, with k2 chosen
to satisfy (3.8). It is sufficient then to focus just on the requirement s/δ ≡ σ/λz > k1.
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Figure 4. The function λ(τ ) obtained by numerical integration of (4.1) with initial condition λ(0) = 1;
α = π/4, s0 = 0.02 and z = 10−5 (blue), 10−8 (red) and 10−11 (purple). The vertical dashed lines indicate the
‘singularity time’ τc(z) in each case. The horizontal dotted lines indicate the corresponding levels λ = λm(z),
as given by (2.10) with k1 = 5, below which the conditions of the model lose validity.

4. Determination of λ(τ)

From (1.1c), with ε = 0, we now have

dλ
dτ

= −
(

cos α

8πs0

) [
κ(λ)

σ (λ)

]
λ, with λ(0) = 1, (4.1)

where κ(λ) and σ(λ) are now given by (3.2) and (2.8), respectively. This equation shows
that λ(τ ) does indeed decrease monotonically to zero, and determination of λ(τ ) is now
reduced to a quadrature that does not admit evaluation in terms of known functions.
However, we require the behaviour only for so long as λ > λm(z), and this can be
obtained by numerical integration. Figure 4 shows the results of such integration (using
Mathematica) for α = π/4, s0 = 0.02 and z = 10−5 (blue), 10−8 (red) and 10−11 (purple).
Each computation stalls just before the singularity is reached; for smaller z we cannot be
sure of the accuracy of the integration process.

We can, however, obtain the asymptotic behaviour of λ(τ ) as τ → τc by using the
results σ ∼ λ/q (from (2.8)) and κ ∼ 2q sin α/(s0λ) (from (3.5)) as λ→ 0. With these
asymptotic results, and with ε = 0, (2.3c) gives

dλ2

dτ
∼ −m2, where m = q

2s0

(
sin 2α

π

)1/2

, (4.2)

so that λ ∼ m(τc − τ)1/2 and so

σ ∼ m
q

(τc − τ)1/2, κ ∼ 2q sin α

s0m
(τc − τ)−1/2, asτ → τc, (4.3)

thus recovering Leray scaling.
We emphasise, however, that these asymptotic results apply in the grey area of

figure 2(b), and that our present model loses validity as the curves descend into this area.
(Recall that the minimum value λ = λm(z) at which the underlying approximation (1.3)
fails to persist is given explicitly by (2.10), and asymptotically for small z by (2.11).) The
derivation of the results (4.3) is nevertheless of interest in that (3.1) involves the ‘stretched
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variable’ κ(λ) which is asymptotically proportional to λ−1 and so tends to infinity as
τc − τ → 0. Use of a stretched variable is the key ingredient of the technique developed
by Mulungye, Lucas & Bustamante (2015) in a more general context for the resolution of
finite-time singularities.

Note that the impending singularity times τ = τc(z), indicated by the vertical lines in
figure 4, actually decrease with decreasing z; this is because the two vortices propagate
towards each other more rapidly as δ0 decreases (due to the logarithmic factor), other
parameters being fixed. The levels λ = λm(z) below which the model loses validity,
indicated by the horizontal dotted lines, also decrease with decreasing z, as already evident
over the much wider range of z in figure 2(a,b). Note that the levels λm(z) are reached only
when the ‘plunge to zero’ is already well under way.

5. Inclusion of viscosity ε > 0

It has been proved by Constantin (1986, § 1) that if, for given initial conditions of finite
suitably defined Sobolev norm ‖·‖, a solution u(x, t) of the Euler equations remains
smooth throughout a time interval 0 < t < T , then, for sufficiently small viscosity ν, the
solution v(x, t) of the Navier–Stokes equations satisfying the same initial conditions also
remains smooth for the same time interval; and moreover that ‖v(x, t) − u(x, t)‖ = O(ν)

for 0 < t < T as ν → 0. In our present situation, we have a solution of (1.1a–c) when
ε (≡ ν/Γ ) = 0 that is smooth up to the finite time T by which λ has decreased to λm(z). In
the light of Constantin’s theorem, we may therefore anticipate the existence of a similarly
smooth solution for sufficiently small ε > 0 during the same finite time interval.

Returning to (1.1a–c), it is obvious that if, for so long as λ > λm(z), ε satisfies the
inequality

ε � κ cos α

4πs
δ2 = z2s0κλ

2 cos α

4πσ
, (5.1)

then inclusion of viscosity should have little effect on λm, and so on the maximum vorticity
amplification factor Aω = λ−2

m that can be attained for given z. We can now seek to
determine just how large a Reynolds number RΓ = ε−1 will be sufficient for the result
(2.12) to remain valid. Note first that σ/λ decreases monotonically as λ decreases from 1
to 0, and so does (κσ )−1, provided s0 is sufficiently small, specifically provided

s0 < 2 sin α/(1 + 2 log q). (5.2)

It follows that, under this condition, the expression on the right of (5.1) increases
monotonically as λ decreases, and is minimal at the initial instant when λ = σ = κ = 1.
The inequality (5.1) at this instant is

ε � εc = z2s0 cos α/(4π) (5.3)

(cf. (8.8) of MK19a) and, if this holds at τ = 0, then a fortiori (5.1) holds throughout the
subsequent evolution until λ = λm. Thus, to achieve a vorticity amplification factor Aω , it
is sufficient that z should satisfy (2.13) and, in addition, that RΓ ≡ ε−1 should satisfy the
inequality

RΓ � 4π sec α s−1
0 e3.10Aω . (5.4)

Figure 5(a) shows the effect of increasing ε from zero for the case α = π/4, z = 10−5,
first to the critical level εc, then to multiples of εc up to 200εc; we here choose s0 = 0.02,
which safely satisfies the inequality (5.2). Remarkably, the function λ(τ ) is negligibly
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(b)(a)

(c) (d )

Figure 5. Effect of viscosity for α = π/4, s0 = 0.02 and z = 10−5. (a) The function λ(τ ) obtained
by numerical integration of the full dynamical system (1.1a–c) for ε = 0 (blue), ε = εc (red), almost
indistinguishable from the blue curve, ε = 50εc (green), ε = 100εc (purple) and ε = 200εc (black), where εc
is given by (5.3). In the last three cases, although λ increases initially, it ultimately falls to zero at a ‘singularity
time’ τc(ε) just a little greater than that found for ε = 0. (b) Evolution of λ(τ ) (blue) and zλ(τ )/σ (τ) (red)
very near to τc for the case ε = 0; the red curve crosses the level 1/5 = 0.2 at τ = τm, and λ(τm) = λm. The
model is valid only for τ < τm (phase I). (c) The same for ε = 4εc, for which the value of λm is only slightly
increased. (d) The same for ε = 100εc, for which the increase in λm (and corresponding decrease in Aω) is
now substantial.

affected by viscosity in the range 0 < ε < εc. This means that if RΓ � RΓ c ≡ ε−1
c , then

the amplification factor Aω is likewise negligibly affected by viscosity.
For ε > εc, the function λ(τ ) initially rises (due to conventional viscous diffusion of the

vortex cores), but ultimately plunges to zero just as for the case ε = 0. However, the value
λm at which the model loses validity increases with ε, and eventually exceeds unity, so that
then Aω < 1, i.e. there is then no amplification of maximum vorticity. Figure 5(b) shows
how this effect may be quantified; this shows a late stage of evolution for the case ε = 0.
The red curve shows zλ(τ )/σ (τ ), which crosses the level 1/5 = 0.2 at time τ = τm, say.
We can be confident that the model is valid up to this time. The function λ(τ ) is decreasing
and λ(τm) = λm. This graphical procedure determines λm = 0.368 (just as given by the
formula (2.10) with z = 10−5) with correspondingly Aω = 1/λ2

m = 7.38.
The same procedure can be carried out for any ε. Figure 5(c) shows the result for ε =

4εc; here, λm has increased by only a small amount to 0.389 (Aω = 6.61). Figure 5(d)
shows the result for ε = 100εc; here, as might be expected, the effect is more marked
(note the change of scale in the ordinate): λm = 0.752 (Aω = λ−2

m = 1.77). For ε = 200εc,
λm = 1.015 (Aω = 0.97), and vorticity is suppressed rather than amplified. These results
are all for z = 10−5; for smaller z, one may expect a corresponding reduction in the values
of λm.

The above results help us to understand the very modest vorticity amplification found
in the DNS of Yao & Hussain (2020), who, with the choices s0 = 0.1, δ0 = 0.01 (so
z = 0.1), found an amplification factor of only ∼1.6 at Reynolds number RΓ = 4000.
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zλ(τ)/σ(τ)
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λ(τ)

λm = 0.832
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λm = 0.772
λm = 0.780

k1 = 4

k1 = 2

k1 = 5
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(b)(a)

zλ(τ)/σ(τ)

Figure 6. As for figure 5, with s0 = 0.1, z = 0.1, as in Yao & Hussain (2020). (a) Result for
ε = εc ≈ 5.627 × 10−5 (RΓ ≈ 17 770): when k1 = 5, λm = 0.832 (Aω ≈ 1.44); if k1 is reduced to 4, λm

decreases to 0.772, so Aω increases to ≈1.68. (b) Result for ε = 2.5 × 10−4 (RΓ = 4000): when k1 = 5,
λm = 1.082 (Aω ≈ 0.85); if k1 is reduced to 2, λm decreases to 0.780, so Aω increases to ≈1.64.

With these values of s0 and z, (2.10) gives Aω = 1.45 if k1 = 5 (and 1.69 if k1 = 4), and
(5.4) gives a sufficiently large Reynolds number of about 16 000. Figure 7(a) of Yao &
Hussain (2020) actually shows an initial decrease of ωmax/ω0 to ∼0.7; this is because the
condition (5.3) is not satisfied initially (in fact ε ≈ 4.44εc for their assumed parameter
values), although RΓ ≡ ε−1 is still large enough, despite vortex reconnection, to ensure a
subsequent net increase to ∼1.6.

Detailed comparison is here at best qualitative, because the dynamical system (1.1a–c)
does not incorporate vortex reconnection. However, some tentative comparison is
illuminating. Figure 6 shows, in the same format as figure 5, results for the same values
s0 = 0.1, z = 0.1 as used by Yao & Hussain. These values give εc = 5.627 × 10−5, with
a corresponding RΓ c ≈ 17 770. Figure 6(a) shows the result for ε = εc; the graphical
procedure with k1 = 5 leads to Aω ≈ 1.44, but if k1 is reduced to 4, Aω increases to
1.69. Figure 6(b) shows the behaviour at the Reynolds number RΓ = 4000. Here, when
k1 = 5, Aω = 0.85, and there is no amplification of vorticity; but if k1 is reduced to 2, Aω

increases to about 1.64, very much as found by Yao & Hussain. We may speculate that
this is because the early stage of the vortex reconnection process involves some stripping
of the outer layers of vorticity of the vortex cores, allowing the ratio s/δ to continue to
decrease and the centreline vorticity to continue to intensify by a modest amount, before
this process ends through continuing progress towards complete reconnection.

6. Conclusion

The above results show that, in order to achieve a large vorticity amplification Aω � 1
during phase I (defined by the inequalities (1.4) and (1.5)), it would require spatial
resolution and Reynolds numbers far beyond current DNS possibilities. For example,
the relatively modest ‘target level’ Aω = 10 would require that z ≡ δ0/s0 ∼ 10−7 (from
(2.13)) and RΓ ∼ 1016 (from (5.4)). But results in the range up to Aω ∼ 3 (for which z ∼
10−2 and RΓ ∼ 106) may be accessible to DNS in the foreseeable future.

From a purely mathematical point of view, an important conclusion is this: given an
arbitrarily large ‘target’ vorticity amplification factor Aω = ωmax/ω0, we can specify at
time τ = 0 a smooth localised vorticity field of finite energy in the form of two vortex
tubes of Gaussian core cross-sections (as illustrated in figure 1a) and a vortex Reynolds

967 R1-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

47
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.472


H.K. Moffatt and Y. Kimura

number RΓ , such that the maximum vorticity in the field is amplified by at least the factor
Aω within a finite time T in phase I (a time that actually decreases as Aω increases). This
means that, in effect, we can in principle get as near as we like to a finite-time singularity
for both the Euler equation and the Navier–Stokes equation for incompressible flow (of
course, assuming a continuum model for the fluid). We emphasise, however, that this
approach to a physical singularity is unavoidably thwarted (through breach of the assumed
inequalities (1.4) and (1.5)) just before the impending mathematical singularity is realised.
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Appendix A. Relationship with Hamiltonian H(s, δ) and Casimir C(s, κ, δ)

From (2.8), we may easily obtain

log(σ/λ) + log q = λ2 log q, (A1)

or equivalently

H(s, δ) ≡ δ−2
[
log(s/δ) + β1 − 1

2

]
= δ−2

0 log q = const. (A2)

This is precisely the Hamiltonian H(s, δ) (independent of κ) as found by Morrison &
Kimura (2020, equation (21)). The constant is, of course, just H(s0, δ0), and is determined
by the initial conditions.

Similarly, from (3.6) and (3.3), we have

s0 = s0σκ

λqλ2−1
− 2 sin α

[
1

λqλ2−1
− 1 + q

√
π log q(erfλ

√
log q − erf

√
log q)

]
, (A3)

and hence, using (2.8), and with σ = s/s0, λ = δ/δ0 and Λ − 1/2 = λ2 log q,

C(s, κ, δ) ≡ s0(κ − 2 sin α/s) − 2 sin αq
√

π log q(erf
√

Λ − 1/2) = const. (A4)

Allowing for the change of notation, this is precisely the Casimir C(s, κ, λ) of Morrison &
Kimura (2020, equation (56)), and again the constant is just C(s0, κ0, δ0) (with κ0 = 1).
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