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Abstract

DrNickMartin hasmade enormous contributions to the field of behavior genetics over the past 50 years. Of hismany seminal papers that have
had a profound impact, we focus on his early work on the power of twin studies. He was among the first to recognize the importance of sample
size calculation before conducting a study to ensure sufficient power to detect the effects of interest. The elegant approach he developed, based
on the noncentral chi-squared distribution, has been adopted by subsequent researchers for other genetic study designs, and today remains a
standard tool for power calculations in structural equation modeling and other areas of statistical analysis. The present brief article discusses
the main aspects of his seminal paper, and how it led to subsequent developments, by him and others, as the field of behavior genetics evolved
into the present era.
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Dr Nick Martin is one of the most prolific and influential behav-
ioral geneticists in the world, who has also been a key motivator,
teacher and role model for his students, including ourselves.
Over the years, we have greatly benefitted from Nick’s wonderful
teaching, very often demonstrating how theory can be applied in
practice to investigate interesting and important scientific ques-
tions, and providing a much-needed historical perspective on
the latest developments in our fast-moving field. It is therefore
our great honor and privilege to review one of Nick’s earliest
papers, in celebration of his 70th birthday.

The paper, ‘The power of the classical twin study’ (Martin et al.,
1978), was based on work from Nick’s PhD thesis (Martin, 1976),
completed in the Department of Genetics at the University of
Birmingham. It was in this department that the field of biometrical
genetics (Evans et al., 2002; Mather & Jinks, 1982) was established
by pioneers who included Kenneth Mather, John Jinks, David
Fulker and Lindon Eaves (Nick’s PhD supervisor). The principles
of biometrical genetics, as compared to other contemporary
approaches to the analysis of family data, were laid down in a semi-
nal paper from that department (Jinks & Fulker, 1970).

While the aim of biometrical genetics was to partition the
sources of individual differences in the population according to
various genetic and environmental sources of variation, Jinks
and Fulker recognized that the ability to untangle different
sources of variation from one another requires certain minimal

experimental conditions — the ‘minimum data.’ For example,
an analysis of variance for monozygotic (MZ) twins reared apart
would yield two summary statistics, the between-group and the
within-group mean-squares, which, when equated to the theoreti-
cal expected mean squares under the classical quantitative genetic
model, would provide estimates for the total genetic and the total
environmental variances. However, this analysis would not be able
to separate out additive genetic effects from those of genetic domi-
nance, nor could it distinguish the familial environment shared by
siblings reared together from environmental influences unique to
each sibling. A study that included a wider variety of relationships
would provide more summary statistics, which would enable more
sources of variation to be jointly estimated from the data.

Martin et al. (1978) recognized that even when an experimental
design could provide the ‘minimum data’ for resolving certain
sources of variation, the probability of achieving this in practice
would still depend on having a sufficient sample size. To quote,
‘If the power of a study to detect a given effect is low and in fact
we do not find evidence for the effect in our sample then we should
be foolish to infer that the effect is not present in the population’
(p. 99). This remark is equivalent to the ever-valid saying ‘Absence
of evidence is not evidence of absence.’ They pointed out that theo-
retical power calculations in the literature at the time dealt with
‘human experimental designs which are seldom (if ever) used’
but not ‘the classical twin design, the most common design in
human biometrical genetics’ (p. 99).

The paper then went on to describe an analytical approach to
perform a power calculation for the classical twin design. The
method involved calculating the expected values of the observed
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mean squares under the specified parameter values of a truemodel,
and then equating these to the theoretical expected mean squares
under a false model to estimate the parameters of the false model
(using iterative weighted least squares). By substituting the
expected mean squares under the true model as the observed mean
squares of a goodness-of-fit chi-square test statistic for the false
model, they obtained the noncentrality parameter of the (typically
chi-squared) distribution of the test statistic. This enabled them to
calculate the approximate power of the test for any desired signifi-
cance level. Because the noncentrality parameter is proportional to
sample size, the results can be easily extrapolated to calculate the
power for any sample size, and to calculate the required sample size
for any desired power. The accuracy of the power estimates
obtained from the noncentral chi-squared distribution was shown
to be acceptable by simulation for a range of parameter values and
sample sizes. Using this method, it was shown that 600 twin pairs
were required to reject most false models and that an optimal pro-
portion of monozygotic (MZ) and dizygotic (DZ) twin pairs under
most true models was between 1

3 and
1
2. The paper ended with a sec-

tion on the power of detecting nonadditive and directional effects,
with three subsections: (1) G × E interaction, by regressing pair
variances on pair means, (2) directional dominance, by testing
the phenotypic distribution for skewness and (3) directional allele
frequency differences, again by testing the phenotypic distribution
for skewness. The scoring of many behavioral and psychological
tests often results in non-normal distributions of sum or factor
scores, which can bias all three of these tests, but they still have
potential for other variables such as neuroimaging measures,
whose distributions accord better with the central limit theorem.

Two other papers fromNick and colleagues published at around
the same time (Eaves et al., 1978; Martin & Eaves, 1977) were
extremely influential in clarifying the properties of existing analytic
approaches to family studies that use raw data, correlations or mean
squares as the starting point. They also introduced the use of covari-
ance matrices as an alternative and integrated factor analysis meth-
odology into biometrical genetic analysis. These two papers,
together with Martin et al. (1978), laid much of the foundation
for the later developments in human behavior genetics, including
the establishment of large twin registries and the development of
modern maximum likelihood approaches for model estimation
and testing that enabled the extension of the classical twin model
to threshold traits, multiple phenotypes and extended twin-families
(Neale & Cardon, 1992).

Power calculation has remained an important issue in human
genetics research. Subsequent papers to Martin et al. (1978) have
considered the power of new study designs including threshold traits
(Neale et al., 1994), multivariate phenotypes (Schmitz et al., 1998)
and extended twin designs (Posthuma & Boomsma, 2000). As the
field moved to include molecular data for gene mapping, analytic
power calculations were developed for quantitative trait linkage
and association analyses under the variance componentsmodel, also
using the noncentral chi-squared distribution (Nance&Neale, 1989;
Purcell et al., 2003; Sham et al., 2000). In the genome-wide associ-
ation studies (GWAS) era, the variance components model has been
applied to estimate the heritability attributable to common single-
nucleotide polymorphisms (SNPs), and the power of this approach
has also been characterized (Visscher et al., 2014).

Where the noncentral, chi-squared distribution is a poor
approximation of the sampling distribution of the test, simula-
tion-based approaches to power calculation can be used. Of course,
all power calculations are effectively simulations, where expected
values of statistics such as mean squares or covariances are

generated from known values of the parameters of the model in
question. Fitting models to summary statistics in this way is very
efficient because only two models need to be fitted to the data —
the true one and a submodel where one or more of the parameters
have been fixed to zero. An extension of this method is to generate
raw data and to fit the true and the false models to them. This
approach is more flexible because it allows datasets with many pat-
terns of missing observations to be handled with ease. Similarly,
models with definition variables can be tested with this approach.
A key consideration here is whether to generate data that exactly
conform to the covariance matrix and means used to simulate
them (e.g., using argument empirical = TRUE in the mvrnorm()
routine in the MASS R library; Venables & Ripley, 2002). Doing
so reduces the computational complexity to simulating and
model-fitting to only one raw dataset. At other times, permitting
stochastic variation in the generation of datasets can be useful, par-
ticularly when the statistics used to evaluate model fit do not con-
form to, for example, the noncentral chi-squared distribution. The
multivariate ACE Cholesky is one example. Here, large numbers of
trials of simulating and fitting are needed to characterize the dis-
tribution of the trials’ test statistics. Having done so, it is then pos-
sible to evaluate the probability of observing effect sizes that exceed
a particular threshold on the empirical distribution of the test sta-
tistics. This procedure aligns closely with using the bootstrap like-
lihood ratio test (BLRT; Boker et al., 2020).

The seminal paper of Martin et al. (1978) on the power of the
classical twin design was revisited by Visscher (2004), who calcu-
lated power via the standard errors of the variance components and
the expected values of the maximum likelihood ratio test statistics.
His results are largely comparable to those of Martin et al. (1978),
with the major difference being that the consideration of likelihood
ratio statistics enabled a specific parameter in a model to be tested
(e.g., the additive genetic effects within a full model that also con-
tains shared sibship environment and individual-specific environ-
ment), rather than the entire model. It should be noted that such
calculations are not limited to estimating the power to detect non-
zero heritability. Estimates of the power to detect other variance
components, particularly that due to the shared or family environ-
ment (Visscher et al., 2008), are also of great utility.

An important further consideration in statistical power is
whether variance components should be bounded to be greater
than zero. If a model’s variance components are estimated directly
and without bounds, they may return nonsensical negative values.
However, this difficulty in interpretability is counterbalanced by
the good statistical properties of the noncentrality parameter,
which can be interpreted without transformation. Of note, in
recent work by Verhulst et al. (2019), is that models that do bounds
can deliver very poor estimates of statistical power, unless chal-
lenging mathematical transformations are carried out (Wu &
Neale, 2013). Some prior discrepancies between the articles emerge
as a result of model constraints; for example, estimating the path
coefficient from genotype to phenotype versus estimating the vari-
ance component VA and allowing this quantity to be negative. This
issue becomes much more serious in power calculations for multi-
variate genetic models. That Nick’s 1978 paper and thesis have led
to new studies on the topic over 40 years later is a great tribute to
his ability to produce useful science that stands the test of time.

By highlighting statistical power considerations, Nick calls to
mind Ronald Fisher (1938), who in his Presidential Address to
the First Indian Statistical Congress said ‘to consult the statistician
after an experiment is finished is often merely to ask him to con-
duct a post mortem examination. He can perhaps say what the
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experiment died of’ (p. 17). The power calculations of Martin and
colleagues are exactly the kind of prospective treatments that can
prevent horribly underpowered research studies from being carried
out. While meta-analysis can overcome some shortcomings of stud-
ies that involve too few subjects, most researchers would prefer to
have results from adequately powered studies that can contribute
substantively either alone or in aggregate with others. Power calcu-
lations can take much of the guesswork out of research planning. In
some cases, logistical considerations place additional constraints on
the maximum sample size that can practically be collected. Power
calculations remain useful here— at the very least to avoid proceed-
ing with a study where all the findings will be equivocal and difficult
to validate. The International Methodology Workshops taught in
Europe and Colorado continue to teach methodology for statistical
power calculations for exactly this reason, which is but one reflection
of an enduring contribution by Dr Martin.

As a pioneer of the fields of biometrical and behavioral genetics,
Nick’s knowledge, insights and perspectives have benefitted entire
generations of researchers in behavioral genetics who have
attended the annual ‘twin workshops,’ often multiple times. We
were fortunate to progress to faculty members of the workshop
and have more directly experienced Nick’s enthusiasm and intel-
lectual curiosity, greatly facilitating the sharing of ideas and lively
debates, not only among faculty members but also with the stu-
dents. These debates and discussions were what have made the
workshops so enjoyable and often led to new and fruitful research
directions. On the occasion of Nick’s 70th birthday, we express our
appreciation and gratitude to him, glance backward to what we
have achieved and look forward to working together to extend
the frontiers of the field.
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