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AN » + 1 MEMBER DECOMPOSITION FOR SETS WHOSE
Lnc POINTS FORM » CONVEX SETS

MARILYN BREEN

1. Introduction. Let S be a subset of R% A point x in S is a point of local
convexity of S if and only if there is some neighborhood N of x such that, if
y,2 € NN S, then [y, z] € S. If S fails to be locally convex at some point ¢ in
S, then g is called a point of local nonconvexity (Inc point) of S.

Several interesting results have been proved for a set S whose Inc points Q
may be represented as a finite union of convex sets. (See Valentine [5], Guay
and Kay [2].) In particular, in [2] it is proved that for S closed, connected,
S ~ Q connected, and Q having cardinality =, S is expressible as a union of
n 4+ 1 or fewer closed convex sets. Since the natural generalization of the
Guay-Kay Theorem fails when Q is merely decomposable into 7z convex sets [1],
this paper is concerned with obtaining sufficient conditions under which an
analogue of the theorem might be proved.

The notation and terminology, following that used in (1], are introduced for
completeness: Throughout the paper, S is a closed subset of R¢ where
d = dim aff S, the dimension of the affine hull of S. Q denotes the set of Inc
points of .S, and S ~ Q is connected. We assume that Q C ker S # 0 (so S is
connected) and that Q = ", C; where each C; is convex. Since Q is closed,
without loss of generality, we consider each C; to be closed. Further, we assume
that # is minimal in the following sense: For every 7, there are points of C; which
do not belong to any C;forj # 4,1 < 14,7 < n.

2. Preliminary results. We begin with a sequence of lemmas which will be
useful in proving the main theorem of the paper. The first is a variation of a
result by Valentine (5, Corollary 2].

LemMMA 1 (Valentine). If [x,y]\J [y,2] C S and no point of Q lies in
convix, v, z} ~ [x, z], then conv{x, vy, z} C S.

The second lemma is proved in [1].

LEMMA 2. For s in S, every neighborhood of s contains points in int S. Hence
S = cl(int S).

LEmMMA 3. If p € Q and N 1is any convex neighborhood of p, (N M S) ~ Q 1s
connected.
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Proof. We assert that N M int S is connected. Since S ~ Q is connected and
locally convex, it is polygonally connected [4], and by standard arguments,
since S = cl(int S), (intS) ~ Q = int S is also polygonally connected. Thus
for x,y in N M int .S, there is a polygonal path X in int .S from x to y. Since
p € ker S and X C int .S, for every z in N\, (p, 2] C intS. Then there is
a path N in (\J{(p,2]:2zin A\}) N N C (int.S) N N from x to y. We have
N N intS = (VN int S) ~ Q polygonally connected and hence connected.
Since (NN intS) ~QC (NNS)~QC cl((NNintS) ~Q), NNS)~Q
is also connected, and the lemma is proved.

COROLLARY. For each C;,1 =1 = n,dim aff C; = d — 2. Moreover,if Q = C
1s convex, then S may be represented as a union of two closed convex sets.

Proof. By Lemma 3, each C; satisfies the hypotheses of Theorems 1, 2, and 3
in [1]. Hence the corollary follows immediately from these results.

Finally, the following theorem by Lawrence, Hare and Kenelly [3, Theorem 2]
will be helpful.

LemmaA 4 (Lawrence, Hare, Kenelly). Let T be a subset of a linear space such
that for each finite subset F C T, F is a union of k sets Fi, ..., Fy, where
conv F; € T,1 =1 = k. Then T is a union of k convex sets.

3. The decomposition theorem.

THEOREM 1. Let S be a closed subset of R?, Q the points of local nonconvexity of S,
with S ~ Q connected. If Q C ker S = @ and Q 1is expressible as a union of n
convex sets, then S is a union of n + 1 or fewer convex sets.

Proof. We assert that, without loss of generality, we may assume .S to be a
finite union of sets of the form conv (7T \U Q), where T is a finite subset of .S:
For F any finite subset of S, define

Sp={x:x € conv(T'U Q) C S for some T C F}.

Clearly each finite subset F’ of .S may be extended to a finite subset F of S for
which Sy is a full d-dimensional and Sy ~ Q is connected. Also, the set of Inc
points of Sy lies in Q, and by an appropriate choice of F, this set of Inc points
will be exactly Q. (For each Cy, select x; € (rel int C;) ~ U ,»; C,;and let N be
a neighborhood of x; disjoint from U 4; C;. By adapting an argument in [1,
Theorem 3], we may select p;, ¢;in N M Sso that for p” € conv({p;} U C;) ~ C;
and ¢’ € conv({q,} \J C;) ~ Cy, [p’, ¢] € S. Then if p,, ¢; € F, each point of
C, will be an Inc point for Si.) Clearly Q C ker S, so Sy satisfies the hypothesis
of Theorem 1. Now by the Lawrence, Hare, Kenelly Theorem, we need only
show that F’ is a union of #n 4+ 1 convex sets, each having its convex hull in
Sr C S. Therefore, it suffices to prove that Sz is a union of #» 4+ 1 convex sets,
so throughout the proof, we assume that .S is a finite union of sets of the form
conv(T U Q), where T is a finite subset of S.

https://doi.org/10.4153/CJM-1975-140-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-140-2

1380 MARILYN BREEN

The proof of the theorem will be by induction. For n = 0, Q = @, and the
result is an immediate consequence of a theorem by Tietze [4]. In case n = 1, Q
is convex, and the result follows from the corollary to Lemma 3. Inductively,
for some n > 1, we assume that the theorem is true whenever Q is expressible as
a union of fewer than # convex sets.

Select some point p € (relint C;) ~ (\U%=2 C;),and let N be a convex neighbor-
hood of p such that (cl N) N (U%=2 C;) = @. Letting 7" = cl[(NN.S) ~ Q],
the set Q7 of Inc points for 7" is exactly 7" M Ci. Using Lemma 3, it is clear that
1I"~ Qr is connected, and since Qr is convex, by Theorem 3 in [1], T is ex-
pressible as a union of two closed convex sets. Moreover, by the proof of that
theorem, there is a hyperplane M containing C; such that cl(7° M My),
cl(T" M M,) are convex sets whose union is 7" (where M, M. represent distinct
open halfspaces determined by M), and [(ker 7)) M M] ~ aff C; # 0.

Now let H denote a hyperplane supporting cl(7" M\ M;) which contains C,
and which also contains some point x in [N M (bdry S) M cl(I°MN My)] ~
cl(T"M M,). (Clearly since T is not convex, the set [N M (bdry S) N cl(T°MN
M1)] ~ cl(T"M M) is not empty, and by our opening assumption concerning
S, H may be obtained by rotating M about the (d — 2) flat aff C;.) Assume
that cI(7°M\ M,) C cl H,. We assert that cl(T"M Hy), cl(T"M H,) are also
convex sets whose union is 7". The proof follows:

If H = M, there is nothing to prove, so assume H, M are distinct. Now for y
in TN Hy, vy ¢ (T’ M), and y € TN Hy M\ M,. Thus cl(I'"M H,) =
cl ("M My M\ H,), which is convex. To see that 7" M H, is convex, recall that
there is some w in [(ker 7°) N M] ~ aff C;. Now w € (ker 7)) M\ M C cl(I" M
M) CclHy;alsow ¢ aff C, = HN M. Thusw € M M H,. For points y, z in
TN Hy, ly, w]\J [z, w] € T, and since C; € H, there can be no point of C; in
conv{y, w, z}. Hence by Valentine's lemma, [y, 2] C 7" Then [y, 2] & T M\ Hy,
"M H, is convex, and cl(I"M H,) is convex. Since S = cl(intS), 7" =
cl(T"M Hy) J cl(T"M H,), and the assertion is proved.

Furthermore, no point of Q may lie in H,: Otherwise, for y in Ho M Q € ker S
and x the member of H selected above, (x, y] © H,, and since x is interior to N,
there would be a sequence (x,) in TN H, & TN Hy M\ My & T\ M, con-
verging to x. But then x € cl(7° M M,), clearly impossible by our choice of x.

Define A4, = SN H,y, As = SN H,. We will show that cl 4, is convex and
that cl 41 is a set satisfying our induction hypothesis with its Inc points
expressible as a union of » — 1 or fewer convex sets.

To see that ¢l 4, is convex, let y,z € A, = S H,. Then |y, pl, [z, p] & S
and each of these segments contains points of NN\ .S Hy, € "M H,. Select
y',s in T'M H, for which [y, '], [2,5'] € S. Since TN H, is convex,
[v',2'] €S M H,, and since no Inc points of S lie in H», by repeated use of
Valentine’s lemma, [y, z] £ S /M H,. Therefore 4. is convex, as in cl As.

It remains to show that cl 4, satisfies our induction hypothesis. Clearly
cl Ay is connected since [a, p] € cl 4, for every a« € cl 4,. To see that
cl 4, ~ Qisconnected, lety, s € (S Hy) ~ Qand let U, V be neighborhoods
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of y, z respectively, with UM S, VM S convex (and hence disjoint from Q).
We assert that U M S contains some y; for which [y, p) € (SN Hy) ~ Q:
Each C;hasdimensiond — 2,soforeachs,1 < ¢ < n, aff ({p} U C;) determines
a flat of dimension at most d — 1. Since S = cl(int.S), we may select y, in
UNSMN H;, and in none of these flats. Then [y, p) is disjoint from Q.
Similarly, there is some z; in V' /NS M H; with [z1, ) C (SN Hy) ~ Q.

Now select y; on (yi1, p), z20n (21, p), with ys, 20in (SNAN)NNH, S T M H,.
Since 7'M H, is convex and disjoint from Q, the path [y, yi] \JU [y, y2] U
[va, 22] \J [29, 21] U [21, 2] lies in (S M H;) ~ Q. Thus theset (SN H;) ~Q =
A, ~ Qs polygonally connected and hence connected. Since A; ~ Q C (cl 4,)
~QCcl(d:~ Q), (cl 41) ~ Qis also connected. Trivially, if Q, denotes the
set of Inc points of cl 44, (cl A1) ~ Q4 is connected.

Finally, we show that Q, is expressible as a union of # — 1 or fewer convex
sets, each in ker(cl 4:1). However, the following preliminary result will be
needed: Fori £ j,1 < 1,7 < n,if (rel int C;) N aff C; # @, then aff C; = aff C,.
The proof is given below.

For simplicity of notation, we will prove the result for 7 = 1. Recall that p is
an arbitrary point in rel int C; and in no Cy, 7 # 1, N is a convex neighborhood
of p disjoint from C;, 2 % 1, and H a hyperplane supporting cl(7° "\ M), H
containing C; and some x in [N M\ (bdry S) M cl(T° M My)] ~ (TN M),
("M M,) € cl Hy. Similarly, let J be a hyperplane supporting cl(7°M M,), J
containing C; and some point in [N M (bdry S) N cl(T"M My)] ~ cl(T"M My),
cl(T"M M,) C cl J.. By previous remarks, no point of Q may lie in H, or in
Ji. Hence Q C cl HiMclJy For 2 <1 =< n, if C; contains a point in
[l Hy M ¢l Jo] ~ (aff Cy), then certainly (rel int C;) M aff C; = @. Otherwise,
C; C aff Cy, and aff C; = aff C,.

Using this result, it is not hard to show that no point of C; ~ U2 C; is in
Qa. Let u € C; ~ ULy C;yu # p. Then (u, p] C rel int Cy. If [u, p],
contains any point of C; 2 £ 17 = #n, then rel int G\ C; # @, and by our
earlier result, C; C aff C;. We assert that for each v on [, p] there is a convex
neighborhood N, of v such that N, Q € C;: Since u € C; ~ U'—s Cy,
select N, disjoint from each C;, 2 = 1 = n. Foro € (u, p], it is simple to select
a neighborhood N, of v disjoint from every C; not containing v. Also, since
v € rel int Cy, N, may be selected so that N, M aff C; C rel int C,. If N, con-
tains a point g of some C;, 7 # 1, thenv € C;, v € (rel int C;) N C; # 0, and
C; Caff €. Henceq € N, C; € N, N aff ¢; C rel int Cy, and N, N\ Q ©
rel int C;. Thus the assertion is proved.

By Lemma 3, (N, M S) ~ Q is connected for each neighborhood N, selected
above. Reduce to a finite subcollection Ny, . .., N;of the N, sets which covers
[#, p]. Choose a convex cylinder U’ so thatcl U’ C N, U ...\U N}, and define

U= (U'NS)~ Q.

Clearly the Inc points for ¢l U are exactly Cy el U, C; N\ cl U= C,Ncl U’
is convex, cl U is closed, connected, and using Lemma 3, it is easy to see that
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(cl U) ~ C, is connected. Hence our previous argument for cl 7 may be
adapted to cl U to show that each of the sets cl(U M H,), cl(UMN H,) is
convex. Thus # cannot be an Inc point for cl 4, = cl(S M H,), since U’ is a
neighborhood of # whose intersection with cl 4, is convex. Then u € Qy, the
desired result.

Itis a simple matter to show that foreach?,1 <7 < #%,C,MNcl4, = C;, and
hence C;MNcl A, is convex: Let z € C,, to prove z € cl A,. By previous
remarks, 2 ¢ C;NHy=0,andifz € C;NH, C SN H, = A4, the result is
immediate. Therefore, we need only consider the case for z € C; M H. Since
S = cl(int S), there is a sequence in S ~ H converging to z. Moreover, since 2
cannot be an Inc point for the convex set cl A, = cl(S M H,), there must be a
sequence in.S M H; converging toz,and z € cl A,. Thus C; N\ cl 4, = C;, and
the set is convex.

Furthermore, for 2 £ 7 £ n, either C; C Q4 or C; ~ U x C; is disjoint
from Q4. The proof follows: Since we have already proved the result for: = 1,
suppose that for some 2 < 7 < n, C; & Q,. For convenience, relabel the C; sets
so that 7 = 2. Then clearly C. € H. There is some point 7 in rel int C; with
r € Q4, and for some convex neighborhood W of », cI(W M H,y), cIl(W M H,)
are convex. For tin Co ~ U x2 C;, (£, 7] C rel int C;, and a previous argument
may be repeated to select a convex neighborhood of [¢, 7] whose intersection
with cl 4, is convex. Thus ¢t ¢ Q4 and Cy ~ U jx2 C; is disjoint from Q.

The set Q4 is the union of some of the n — 1 convex sets Cy, . . ., C,. More-
over, each Inc point for cl 4, is in ker(cl 4,): For ¢ in Q, s in cl 4,, there is a
sequence (s,) in S M H, converging to s, (g, s,] €S M Hy, and [g, s] T cl(SMN
H,) = cl 4,. Hence Q C ker(cl 4,) and certainly Q, C ker(cl 4,).

Therefore, the set cl 4, satisfies our induction hypothesis and is expressible
asaunionof (n — 1) + 1 = = or fewer convex sets. Then S = cl 4, U cl 4, is
a union of # 4+ 1 or fewer convex sets, finishing the proof of Theorem 1.

Clearly the bound of #» 4+ 1 in Theorem 1 is best possible for » = 0 and for
n = 1. For n = 2, the bound is best possible provided S C R?%, d = 3, as the
following example reveals.

Example 1. Let P be a prism in R? whose basis is a 2n-gon, n = 2. Remove
disjoint wedges Wi, ..., W, from non-adjacent, non-basis facets of P to
produce the convex sets of Inc points Cjy, ..., C,. Each wedge W; should be
removed so that the corresponding C; intersects both bases of P, and so that for
1 £ 4 < j £ n, no hyperplane containing C; contains C;. This may be done in
such a way that the resulting set .S satisfies the hypothesis of Theorem 1, and .S
is not expressible as a union of fewer than #» 4+ 1 convex sets.

The example may be generalized to d > 3.

In case d £ 1, » must be zero, and the theorem is trivial. Thus the only
other interesting case occurs when d = 2, and we have the following theorem.

THEOREM 2. Let S be a closed subset of the plane, Q the set of Inc points of S
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with S ~ Q connected. If Q C ker S # @, then S is expressible as a union of three
or fewer convex sets.

Proof. 1f card Q = 0, S is convex, and if card Q = 1, S is a union of two
convex sets by Theorem 1. For card Q = 2, it is easy to see that the line deter-
mined by Q yields the desired decomposition. Similarly, in case Q = {x, v, 2}, it
is not hard to show that the points in Q cannot be collinear. Hence these points
determine three lines, each pair of which yield a convex subset of S for the
decomposition.

For card Q = 4, an argument similar to that used by Valentine in Lemma 5
of [6] may be applied to show that S is 3-convex. Then S is expressible as a
union of three or fewer convex sets by Theorem 2 of [6].
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