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On Projection Bodies of Order One

Dedicated to Ted Bisztriczky, on his sixtieth birthday.

Stefano Campi and Paolo Gronchi

Abstract. The projection body of order one Π1K of a convex body K in R
n is the body whose sup-

port function is, up to a constant, the average mean width of the orthogonal projections of K onto

hyperplanes through the origin.

The paper contains an inequality for the support function of Π1K , which implies in particular

that such a function is strictly convex, unless K has dimension one or two. Furthermore, an existence

problem related to the reconstruction of a convex body is discussed to highlight the different behavior

of the area measures of order one and of order n − 1.

1 Introduction

This paper investigates some properties of projection bodies of order one. Projection

bodies are special sets which play an important role in convex geometry. We refer to

Schneider’s treatise [11] for information about this area.

By a convex body we mean here a compact convex subset of R
n. The support

function of a convex body K is defined by

hK (x) = max
y∈K

〈x, y〉, for x ∈ R
n,

where 〈 · , · 〉 denotes the standard scalar product in R
n. Note that hK is positively

homogeneous and so it is determined everywhere by its values on the unit sphere

Sn−1 of R
n.

By definition, the Minkowski sum of two convex bodies K and L is the convex

body K + L such that hK+L(x) = hK(x) + hL(x).

In particular, the difference body DK of K is the Minkowski sum of K and its

reflection −K in the origin. Clearly DK is origin symmetric.

The intrinsic volumes are quantities naturally associated with a given convex body

which can be introduced in different ways. For instance (see [11, pp. 210, 295]), the

i-th intrinsic volume of K in R
n, 0 ≤ i ≤ n, is defined by

Vi(K) =

(

n

i

)

κn

κiκn−i

∫

G(n,i)

λi(K|S) dS,

where κi denotes the volume of the unit ball in R
i , λi the i-dimensional Lebesgue

measure in R
i , G(n, i) the Grassmann manifold of i-dimensional subspaces of R

n,
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K|S the orthogonal projection of K onto S, and integration is with respect to the

Haar probability measure. Special cases are Vn, which is the standard volume, Vn−1,

one half of the surface area, and V1, the mean width, up to the constant nκn/2κn−1.

For every convex body K the i-th intrinsic volume of the projection of K in the

direction u turns out to be the support function of a convex body. The projection

body ΠiK of order i of K is just the body defined by

(1.1) hΠi K (x) =
‖x‖κn−1−i

(

n−1
i

) Vi(K|x⊥),

where ‖ · ‖ denotes the usual norm in R
n and x⊥ the hyperplane through the origin

orthogonal to x. For fixed i, with every convex body K is associated a Borel measure

Si(K ; · ) on Sn−1, the i-th order area measure of K , such that, for x ∈ Sn−1,

(1.2) Vi(K|x⊥) =

(

n−1
i

)

2κn−1−i

∫

Sn−1

|〈x, z〉| dSi(K ; z)

(see [11, pp. 210, 421]). In the case of a smooth convex body K , the measure Si(K ; ·)
is absolutely continuous with respect to the Hausdorff measure and its density is the

i-th normalized elementary symmetric function of the radii of curvature of ∂K (see

[11, § 5.3]).

Combining (1.1) and (1.2) yields

(1.3) hΠi K (x) =
1

2

∫

Sn−1

|〈x, z〉| dSi(K ; z),

which says that hΠi K is the cosine transform of the measure Si(K ; ·) (see, for instance,

[8, p. 97] and [11, p. 421]).

The class of projection bodies of order n − 1 has been widely investigated and it

is closely related to the class of zonoids which are limits in the Hausdorff metric of

sequences of zonotopes, i.e., of finite Minkowski sums of segments (for a survey on

this topic we refer to [12]). Precisely every projection body of order n−1 is a zonoid.

The converse is true when the zonoid is full dimensional.

Every projection body of order i is a zonoid, but nontrivial characterizations are

not available when i < n − 1.

The interest in projection bodies was renewed by recent applications in geomet-

ric tomography. For exhaustive and updated information on this subject, see Gard-

ner [6].

In this paper (Theorem 2.1) we provide a necessary condition for a function to be

the support function of a projection body of order one.
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By definition of V1 and (1.1), the support function of Π1K can be expressed as

(1.4) hΠ1K(x) =
‖x‖

(n − 1)

∫

Sn−1∩x⊥
hK (z) dz,

which implies the following linearity property:

(1.5) Π1(K + L) = Π1K + Π1L.

By (1.4), hΠ1K can be seen as the spherical Radon transform of hK (see, for instance,

[8, p. 98]. Since Π1K = Π1(−K), equality (1.5) implies that 2Π1K = Π1(DK).

Therefore, every projection body of order one comes from an origin-symmetric con-

vex body. In what follows we shall restrict the discussion to the class of origin-

symmetric bodies.

For n = 2, Π1K is nothing but a rotated copy of the difference body DK and we

shall not deal with this case.

For n = 3, the integral in (1.4) is just the perimeter of the projection of K onto

x⊥.

When K is a segment of R
n with length ℓ, the corresponding Π1K is an (n − 1)-

dimensional ball centered at the origin, with radius ℓκn−2/(n−1), lying on the hyper-

plane orthogonal to K . Indeed, Π1K inherits all symmetries of K and one projection

of K reduces to a point whose first intrinsic volume trivially vanishes.

When K is a zonotope, by the linearity property (1.5), Π1K is a sum of (n − 1)-

dimensional balls.

This case provides many examples of projection bodies of order one and suggests

that in general ∂Π1K has no singular points, and hence that the support function of

Π1K is more regular than that of an arbitrary zonoid.

This is just what we prove in Section 2, where we show that the support function

of Π1K is strictly convex (unless K is of dimension one or two). This result is achieved

by an inequality which in turn implies an estimate from below of quantities related

to the radii of curvature of ∂Π1K in terms of some particular values of hK .

Section 3 is devoted to comparing the class of projection bodies of first order with

that of order n− 1, through the study of the existence of special convex bodies whose

projection bodies satisfy given conditions. To this end, let us consider the following

general problem.

Problem 1 Find an origin-symmetric convex body K (or possibly an approximation

of K), given the i-th intrinsic volumes of the orthogonal projections of K onto all (or

possibly some, respectively) hyperplanes.

First, let us assume that the data are available for all projections. Then, by (1.3),

the even part of the i-th area measure can be recovered (see [8, §3.4]).

The problem of existence and uniqueness of a convex body having a given i-th area

measure is called the Minkowski problem of order i, for i 6= 1, and the Christoffel

problem, for i = 1. It is well known (see [11, Corollary 7.2.5]) that for every i,
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1 ≤ i ≤ n−1, the solution is unique. As far as the existence is concerned, a necessary

condition for a measure µ to be the i-th area measure of a convex body is

∫

Sn−1

z dµ(z) = 0.

Such a condition is also sufficient only for i = n − 1. In the case i = 1, necessary

and sufficient conditions were found by Firey [5] and Berg [1] (see also [11, Theo-

rem 4.3.4]. Recently, Guan and Ma [9] found sufficient conditions easy to handle for

the area measure of every order.

Let us assume now that the data are given only for finitely many hyperplanes,

orthogonal to the directions u1, u2, . . . , us, and consider the case of the brightness,

i.e., of the (n− 1)-volume of the projections. In [3] it is shown that among all convex

bodies with the same brightness as K along u1, u2, . . . , us, the element of maximal

volume is a polytope. Furthermore, its area measure is concentrated on the nodes of

the given directions, where by node we mean here a direction orthogonal to n − 1 of

the u j ’s.

The existence of such a polytope was used by Gardner and Milanfar [7] to de-

velop an algorithm for reconstructing arbitrarily close approximations to an origin-

symmetric convex body from finitely many (even noisy) values of its brightness func-

tion, thus completely solving Problem 1 when i = n − 1.

We prove here that even in R
3 the existence of a polytope P whose area measure

is concentrated on the nodes of the u j ’s and such that V1(P|u⊥
j ) = V1(K|u⊥

j ), for

all j, is not guaranteed for every K . This is done by a suitable choice of the set of

directions, which leads to rephrasing the existence problem in terms of an inequality

for the support function of Π1K . It is worth noting that such an inequality is of the

same kind as that proved in Theorem 2.1, but it does not hold for every K .

2 Strict Convexity of hΠ1K

This section is devoted to showing that for every convex body K , the support func-

tion of the projection body of the first order of K is strictly convex, unless K is of

dimension one or two.

Theorem 2.1 Let K be a convex body in R
n, and let u1, u2 ∈ Sn−1, u1 6= u2. Then

(2.1) hΠ1K (u1)+hΠ1K(u2)−hΠ1K (u1+u2) ≥ 2(2 − ‖u1 + u2‖)(n − 3)!!

(n − 1)(n − 2)!!
I(K ; u1, u2),

where

I(K ; u1, u2) =

∫

Sn−1∩u⊥

1 ∩u⊥

2

hK (z)2

hK (v) +
√

hK(v)2 + hK (z)2
dz, v =

u1 − u2

‖u1 − u2‖
.

Proof The proof is based on formula (1.4). By taking into account the homogeneity

of hK , the integration is performed on a suitable linear subspace and the result follows

using the convexity of hK .
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Choose a Cartesian coordinate system so that u1 = (cos θ, sin θ, 0, . . . , 0) and

u2 = (cos θ,− sin θ, 0, . . . , 0), θ ∈ (0, π/2). We introduce suitable polar coordinates

ϕ1 ∈ [0, 2π), ϕ2, ϕ3, . . . , ϕn−1 ∈ [−π/2, π/2], so that

(2.2)







































































x1 = cos ϕn−1 cos ϕn−2 · · · cos ϕ2 cos ϕ1,

x2 = cos ϕn−1 cos ϕn−2 · · · cos ϕ2 sin ϕ1,

x3 = cos ϕn−1 cos ϕn−2 · · · cos ϕ3 sin ϕ2,

...

xk = cos ϕn−1 · · · cos ϕk sin ϕk−1

...

xn = sin ϕn−1,,

and new variables y2, y3, . . . , yn−1 defined by

(2.3)

y2 =
tan ϕ2

cos θ
,

y3 =
tan ϕ3

cos θ cos ϕ2
,

y4 =
tan ϕ4

cos θ cos ϕ2 cos ϕ3
,

...

yn−1 =
tan ϕn−1

cos θ cos ϕ2 · · · cos ϕn−2
.

If we denote by | ∂xi

∂ϕ j
| and | ∂ϕi

∂y j
| the determinant in absolute value of the Jacobian

matrix of the above changes of variables, respectively, then we can write

hΠ1K (u1) =
2

n − 1

∫

[− π
2
, π

2
]n−2

hK

(

x(θ +
π

2
, ϕ2, . . . , ϕn−1)

)∣

∣

∣

∂xi

∂ϕ j

∣

∣

∣
dϕ2 · · · dϕn−1

=
2

n − 1

∫

Rn−2

hK(− tan θ, 1, y2, y3, . . . , yn−1)

× cos θ cos ϕ2 · · · cos ϕn−1

∣

∣

∣

∂xi

∂ϕ j

∣

∣

∣

∣

∣

∣

∂ϕi

∂y j

∣

∣

∣
dy2 · · · dyn−1

=
2

n − 1

∫

Rn−2

hK

(

− tan θ, 1, y2, y3, . . . , yn−1

)

× cosn−1 θ
[

1 + cos2 θ
∑n−1

k=2 y2
k

]

n
2

dy2 · · · dyn−1,
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where x = (x1, x2, . . . , xn) and we make use of (2.2) and (2.3), as well as the homo-

geneity of hK and the assumption hK(z) = hK (−z).

An analogous expression holds for hΠ1K(u2). For hΠ1K(u1 + u2), by (1.4) again, we

get

hΠ1K (u1 + u2)

=
2‖u1 + u2‖

n − 1

∫

[− π
2
, π

2
]n−2

hK

(

x
( π

2
, ϕ2, . . . , ϕn−1

))

∣

∣

∣

∣

∂xi

∂ϕi

∣

∣

∣

∣

dϕ2 · · · dϕn−1

=
4 cos θ

n − 1

∫

Rn−2

hK

(

0,
1

cos θ
, y2, y3, . . . , yn−1

)

× cos θ cos ϕ2 · · · cos ϕn−1

∣

∣

∣

∂xi

∂ϕi

∣

∣

∣

∣

∣

∣

∂ϕi

∂yi

∣

∣

∣
dy2 · · · dyn−1

=
4

n − 1

∫

Rn−2

hK

(

0, 1, ȳ2, ȳ3, . . . , ȳn−1

) cos θ
[

1 +
∑n−1

k=2 ȳ2
k

]

n
2

dȳ2 · · · dȳn−1,

where we performed the substitutions ȳi = yi cos θ, for i = 2, 3, . . . , n − 1.

The sublinearity of hK implies that

hK(− tan θ, 1, y2, y3, . . . , yn−1) + hK (tan θ, 1, y2, y3, . . . , yn−1)

≥ 2hK(0, 1, y2, y3, . . . , yn−1)K

and so we obtain the inequality

hΠ1K (u1) + hΠ1K (u2) − hΠ1K(u1 + u2) ≥ 4

n − 1

∫

Rn−2

hK

(

0, 1, y2, y3, . . . , yn−1

)

×
(

cosn−1 θ
[

1 + cos2 θ
∑n−1

k=2 y2
k

]

n
2

− cos θ
[

1 +
∑n−1

k=2 y2
k

]

n
2

)

dy2 · · · dyn−1.

Now we introduce polar coordinates r ∈ R and z ∈ Sn−3 in the (n − 2)-dimensional

subspace where the integration is made and denote hK (0, 1, y2(r, z), . . . , yn−1(r, z))

by HK(r, z) so that the last inequality can be rewritten as

hΠ1K (u1) + hΠ1K (u2) − hΠ1K(u1 + u2)

≥ 4 cos θ

n − 1

∫

Sn−3

∫ ∞

0

HK (r, z)

(

cosn−2 θ

[1 + r2 cos2 θ]
n
2

− 1

[1 + r2]
n
2

)

rn−3 drdz.

As a convex function of r, for every z ∈ Sn−3, ∂HK (r,z)
∂r

exists almost everywhere. Since

d

dr

(

rn−2

(n − 2)(1 + r2)
n−2

2

)

=
rn−3

(1 + r2)
n
2
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and

d

dr

(

rn−2

(n − 2)(1 + r2 cos2 θ)
n−2

2

)

=
rn−3

(1 + r2 cos2 θ)
n
2

,

integration by parts yields

hΠ1K(u1) + hΠ1K (u2) − hΠ1K (u1 + u2) ≥

4 cos θ

n − 1

∫

Sn−3

[

HK (r, z)
rn−2

n − 2

(

cosn−2 θ
[

1 + r2 cos2 θ
]

n−2
2

− 1
[

1 + r2
]

n−2
2

)]∞

0

dz

− 4 cos θ

n − 1

∫

Sn−3

∫ ∞

0

∂ HK (r, z)

∂r

rn−2

n − 2

(

cosn−2 θ
[

1 + r2 cos2 θ
]

n−2
2

− 1
[

1 + r2
]

n−2
2

)

drdz.

Note that HK (r, z)/
√

1 + r2 is the value of the support function hK at a point of the

unit sphere and so the first integral in the above formula vanishes, since

lim
r→+∞

rn−2 cosn−2 θ
√

1 + r2

[

1 + r2 cos2 θ
]

n−2
2

− rn−2

[

1 + r2
]

n−3
2

= 0.

In order to estimate the second integral we first note that the integrand is non-

negative. By the definition of HK , ∂ HK (r,z)
∂r

is the derivative of hK at the point x =

(0, 1, y2(r, z), . . . , yn−1(r, z)) in the direction z and then (see [11, Theorem 1.7.2]) it

is the value of the support function at z of the support set of K with exterior normal

vector x/‖x‖. Hence, by considering the projection of K onto the two-dimensional

plane spanned by z and v =
u1−u2

‖u1−u2‖ = (0, 1, 0, . . . , 0), we obtain

(2.4)
∂ HK (r, z)

∂r
≥ hK (z) − hK(v)

r
,

for all r ≥ r0(z) =
hK (v)
hK (z)

, where, for simplicity, by identifying Sn−3 with Sn−1 ∩ u⊥
1 ∩

u⊥
2 , we wrote z instead of (0, 0, y2(1, z), . . . , yn−1(1, z)).

By (2.4) we obtain

hΠ1K(u1) + hΠ1K (u2) − hΠ1K (u1 + u2) ≥
4 cos θ

(n − 1)(n − 2)

∫

Sn−3

HK(1, z)

∫ ∞

r0(z)

(

1 − r0(z)

r

)

×
(( r√

1 + r2

) n−2

−
( r cos θ√

1 + r2 cos2 θ

) n−2)

drdz.
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It is not difficult to verify that

∫

rn−3

(1 + r2)
n−2

2

dr =



























ln(r +
√

1 + r2) −
n−5

2
∑

k=0

r2k+1

(2k + 1)(1 + r2)
2k+1

2

n odd,

ln(
√

1 + r2) −
n−4

2
∑

k=1

r2k

2k(1 + r2)k
n even,

∫

rn−2

(1 + r2)
n−2

2

dr =



























(n − 3)!!

(n − 4)!!

√
1 + r2 − 1

n − 1

n−3
2

∑

k=1

(n − 1)(n − 3) · · · (2k + 2) r2k

(n − 4)(n − 6) · · · (2k − 1)(1 + r2)
2k−1

2

n odd,

(n − 3)!!

(n − 4)!!
(r − arctan r) − 1

n − 1

n−4
2

∑

k=1

(n − 1)(n − 3) · · · (2k + 3) r2k+1

(n − 4)(n − 6) · · · 2k (1 + r2)k
n even.

These formulas allow us to rewrite the above inequality as follows:

hΠ1K (u1) + hΠ1K (u2) − hΠ1K(u1 + u2)

≥ 4 cos θ

(n − 1)(n − 2)

∫

Sn−3

HK (1, z)
[

F
( 1

cos θ

)

− F(1)
]

dz,

where

F(x) =
(n − 3)!!

(n − 4)!!

√

x2 + r0(z)2 − r0(z) ln(r0(z) +
√

x2 + r0(z)2)

+

n−5
2

∑

k=1

(1 − λk)r0(z)2k

(2k − 1)(x2 + r0(z)2)
2k−1

2

,

for n odd, with λk =
(n−3)(n−5)···(2k+2)
(n−4)(n−6)···(2k+1)

and

F(x) =
(n − 3)!!

(n − 4)!!

[ π

2
x − x arctan

r0(z)

x

]

− r0(z)

2
ln(x2 + r0(z)2)

+

n−6
2

∑

k=1

(1 − µk)r0(z)2k+1

2k(x2 + r0(z)2)k
,

for n even, with µk =
(n−3)(n−5)···(2k+3)
(n−4)(n−6)···(2k+2)

.

Note that λk and µk are not smaller than 1, for every k.

If n is odd, then simple computations give

F ′(x) ≥ x√
x2 + r0(z)2

[

(n − 3)!!

(n − 4)!!
− r0(z)

r0(z) +
√

x2 + r0(z)2

]

.
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Since the right-hand side above is an increasing function with respect to x, by the

mean value theorem, we have that

hΠ1K (u1) + hΠ1K (u2) − hΠ1K(u1 + u2)

≥ 4(n − 3)!!

(n − 1)(n − 2)!!
(1 − cos θ)

∫

Sn−3

hK (z)2

hK(v) +
√

hK (v)2 + hK (z)2
dz,

which is nothing but inequality (2.1).

If n is even, then for x ≥ 1,

F ′(x) ≥ (n − 3)!!

(n − 4)!!

( π

2
− arctan r0(z)

)

≥ (n − 3)!!

(n − 4)!!

1

r0(z) +
√

1 + r0(z)2
,

where we used inequalities arctan 1
x
≥ 1√

1+x2
≥ 1

x+
√

1+x2
. Hence, (2.1) holds in the

even case, too.

Corollary 2.2 If dim K > 2, then the body Π1K has no singular points.

We recall that a singular point of a convex body is a boundary point where the

normal cone has dimension greater than one (see [11, p. 73]).

Proof Assume that Π1K has a singular point p and let u1, u2 be two distinct direc-

tions belonging to the normal cone of Π1K at p. This implies that the left-hand side

in (2.1) vanishes and consequently the same happens for I(K ; u1, u2). By the conti-

nuity of hK we deduce that such a function must vanish everywhere in u⊥
1 ∩ u⊥

2 .

Hence, K lies in the plane spanned by u1 and u2.

Recall that the projection body of order one of a segment is an (n−1)-dimensional

ball centered at the origin.

If K is two-dimensional, then DK is a zonoid and Π1K is a sum (or a limit of

sums) of (n − 1)-dimensional balls. Furthermore, the section of Π1K with the two-

dimensional plane containing DK is similar to DK .

In particular, by Corollary 2.2 and the above remarks about special cases, we con-

clude that Π1K has no point with an n-dimensional normal cone; in short, it has no

vertex. As Rolf Schneider pointed out to the authors, the same conclusion can be ob-

tained by the following alternative argument. If Π1K has a vertex, then the first order

area measure of K vanishes on a neighborhood of some equator (see [10], Lemma

6.1). This contradicts the result proved by Fedotov [4], stating that the support of

the first order area measure of an n-dimensional convex body is arcwise connected if

n > 2 (see also [11, Note 7.1.6]).

Fix a point p on the boundary of Π1K and denote by n(p) the outward unit nor-

mal vector to ∂Π1K at p. For any v orthogonal to n(p), we denote by α(p; v) the

two-dimensional plane through p spanned by n(p) and v. We define r(p; v) as the

radius of curvature of the projection of Π1K onto α(p; v) at p, if it exists.

Corollary 2.3 If dim K > 2, then

r(p; v) ≥ 2(n − 3)!!

(n − 1)(n − 2)!!

∫

Sn−1∩n(p)⊥∩v⊥

hK (z)2

hK (n(p)) +
√

hK(n(p))2 + hK (z)2
dz.
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Proof The statement is a straightforward consequence of (2.1), by taking into ac-

count that

r(p; v) = lim
ε→0

hΠ1K (n(p) + εv) + hΠ1K (n(p) − εv) − 2hΠ1K (n(p))

ε2
,

which can be deduced, for example, from [2, p. 71, (2)].

Note that if dim K > 2, then the support of the area measure S1(Π1K ; · ) coincides

with Sn−1. Indeed, if Π1K is C2
+, then for every open subset ω of Sn−1, S1(Π1K ; ω)

is the integral over ω of the arithmetic mean of the principal radii of curvature (see

[11, (4.2.20)]). Hence, S1(Π1K ; ω) = 0 implies that every radius of curvature at every

point with normal in ω is zero. This contradicts Corollary 2.3. If Π1K is not C2
+, then

an approximation argument based on Weil’s result [13] leads to the same conclusion

(see also [11, p. 119]).

3 An Existence Problem

In this section we deal with a version of Problem 1.1 when the data are available

only for finitely many hyperplanes. The aim is to show that some existence results

obtained in [3] for the (n − 1)-th area measure are not reproducible for the one of

the first order.

In particular, the results contained in [3] imply that for arbitrary fixed directions

u1, u2, . . . , us, v ∈ S2 with u j ∈ v⊥, j = 1, 2, . . . , s, and convex body K ⊂ R
3,

there exists a convex origin-symmetric prism P, such that each facet is parallel to two

directions from u1, u2, . . . us, v, and

V2(P|v⊥) = V2(K|v⊥), V2(P|u⊥
j ) = V2(K|u⊥

j ), for j = 1, 2, . . . , s.

By a limit process we obtain that for every convex body K and direction v, there

exists a convex origin-symmetric cylinder C, with axis parallel to v, such that

V2(C|v⊥) = V2(K|v⊥), V2(C|u⊥) = V2(K|u⊥), for every u ∈ v⊥.

We now consider the case i = 1 and show that for n = 3, the existence of a convex

origin-symmetric cylinder C whose axis is parallel to v such that

V1(C|v⊥) = V1(K|v⊥),(3.1)

V1(C|u⊥) = V1(K|u⊥), for every u ∈ v⊥,(3.2)

is not guaranteed, i.e., may depend on K and v.

Assume C = av + L, where a is a positive number and L is a two-dimensional

origin-symmetric convex body contained in v⊥. Conditions (3.1) and (3.2) can be

written as

(3.3)
1

2

∫

S2∩v⊥
hL(u) du = hΠ1K(v)

https://doi.org/10.4153/CMB-2009-038-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-038-6


On Projection Bodies of Order One 359

and

(3.4) a + 2hL(u) = hΠ1K(u × v),

for every u ∈ S2 ∩ v⊥, where × stands for the standard cross product. By integrating

(3.4) with respect to u and using (3.3) we obtain

(3.5) a =
1

2π

∫

S2∩v⊥
hΠ1K (u) du − 2

π
hΠ1K (v)

and

(3.6) hL(u) =
1

2
hΠ1K (u × v) − 1

4π

∫

S2∩v⊥
hΠ1K (z) dz +

1

π
hΠ1K (v) .

Note that for every convex body K , the right-hand side in (3.5) is nonnegative.

Indeed, K|u⊥ is inscribed in a rectangle with edge lengths 2hK(v) and 2hK(u×v) and

so its perimeter is not less than twice the length of one of the edges. Therefore,

∫

S2∩v⊥
hΠ1K(u) du ≥ 2

∫

S2∩v⊥
hK (u × v) du = 4hΠ1K (v).

On the other hand, the perimeter of K|u⊥ does not exceed that of the rectangle.

Consequently, the right-hand side in (3.6) is nonnegative too. Indeed,

∫

S2∩v⊥
hΠ1K (u) du ≤ 2

∫

S2∩v⊥
hK(u × v) du + 4πhK (v) ≤ 4hΠ1K (v) + 2πhΠ1K (u × v).

Nevertheless, it turns out that there are convex bodies K for which the function hL

in (3.6), extended everywhere in R
n−1 as a positively homogeneous function, is not a

support function. To see this, we take the segment K whose endpoints are −w and w,

where w = (0, cos ϕ, sin ϕ), and show that hL is not convex for suitable ϕ ∈ [0, π/2].

Indeed the quantity

(3.7) hL(1/
√

2, 1/
√

2, 0) + hL(1/
√

2,−1/
√

2, 0) − 2hL(1/
√

2, 0, 0)

assumes negative values for ϕ close to 0. Since hΠ1K(x) = 2‖x × w‖, by (3.6) the

quantity (3.7) can be explicitly written as

F(ϕ) =

√
2
[

√

2 − cos2 ϕ − 1 −
√

2 − 1

2π

(

∫ 2π

0

√

1 − cos2 ϕ sin2 θ dθ − 4 cos ϕ
)]

and it is easy to verify that F(0) = 0 and F ′(ϕ) is negative for sufficiently small

positive values of ϕ.

The freedom in the choice of ϕ provides many different segments such that F is

negative and so the corresponding function hL is not convex. The linearity of Π1

with respect to Minkowski addition implies that sums of such segments give rise to a
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function hL such that (3.7) is negative. In other words, one can construct zonotopes

for which no cylinder satisfying (3.1) and (3.2) exists.

This conclusion implies also that there are directions u1, u2, . . . us, v, with u j ∈
v⊥, j = 1, 2, . . . , s, and convex bodies K such that no convex origin-symmetric prism

P exists, with each facet parallel to two of the chosen directions, satisfying

V1(P|u⊥) = V1(K|u⊥), for every u ∈ {u1, u2, . . . , us, v}.

As a final remark, we want to emphasize that the convexity of hL in (3.6) is equiv-

alent to the following inequality:

(3.8)
hΠ1K(u1) + hΠ1K (u2) − hΠ1K (u1 + u2)

2 − ‖u1 + u2‖
≥ 1

2π

∫

S2∩v⊥
hΠ1K(z) dz − 2

π
hΠ1K(v),

for every u1, u2 ∈ S2 ∩ v⊥, u1 6= u2. Inequality (3.8) is of the same kind as (2.1),

which turns out to hold for every convex body.
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