A CONJECTURE OF ZHI-WEI SUN ON MATRICES CONCERNING MULTIPLICATIVE SUBGROUPS OF FINITE FIELDS

JIE LI^D and HAI-LIANG WU^D[⊠]

(Received 15 May 2024; accepted 13 July 2024)

Abstract

Motivated by the recent work of Zhi-Wei Sun ['Problems and results on determinants involving Legendre symbols', Preprint, arXiv:2405.03626], we study some matrices concerning subgroups of finite fields. For example, let $q \equiv 3 \pmod{4}$ be an odd prime power and let ϕ be the unique quadratic multiplicative character of the finite field \mathbb{F}_q . If the set $\{s_1, \ldots, s_{(q-1)/2}\} = \{x^2 : x \in \mathbb{F}_q \setminus \{0\}\}$, then we prove that

$$\det[t + \phi(s_i + s_j) + \phi(s_i - s_j)]_{1 \le i, j \le (q-1)/2} = \left(\frac{q-1}{2}t - 1\right)q^{(q-3)/4}.$$

This confirms a conjecture of Zhi-Wei Sun.

2020 *Mathematics subject classification*: primary 11T24; secondary 11R18, 12E20, 15A15. *Keywords and phrases*: Legendre symbols, finite fields, cyclotomic matrices, determinants.

1. Introduction

Let *p* be an odd prime. Research on determinants involving the Legendre symbol $(\frac{1}{p})$ can be traced back to Lehmer [4], Carlitz [1] and Chapman [2]. For example, Carlitz [1, Theorem 4] studied the determinant

$$\det C(t) := \det \left[t + \left(\frac{i-j}{p}\right) \right]_{1 \le i, j \le p-1}$$

and showed that

$$\det C(t) = (-1)^{(p-1)/2} p^{(p-3)/2} ((p-1)t + (-1)^{(p-1)/2}).$$

Chapman [2] investigated some variants of det C(t). For instance, Chapman considered

det
$$C_1(t) := \det \left[t + \left(\frac{i+j-1}{p} \right) \right]_{1 \le i,j \le (p-1)/2}$$

This work was supported by the Natural Science Foundation of China (Grant No. 12101321).

[©] The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

If we let $\varepsilon_p > 1$ and h_p be the fundamental unit and the class number of $\mathbb{Q}(\sqrt{p})$, respectively, then Chapman [2] proved that

$$\det C_1(t) = \begin{cases} (-1)^{(p-1)/4} 2^{(p-1)/2} (-a_p t + b_p) & \text{if } p \equiv 1 \pmod{4}, \\ -2^{(p-1)/2} t & \text{if } p \equiv 3 \pmod{4}, \end{cases}$$

where $a_p, b_p \in \mathbb{Q}$ are defined by the equality

$$\varepsilon_p^{h_p} = a_p + b_p \sqrt{p}.$$

In 2019, Sun [5] initiated the study of determinants involving the Legendre symbol and binary quadratic forms. For example, Sun considered the determinant

$$\det S_p := \det \left[\left(\frac{i^2 + j^2}{p} \right) \right]_{1 \le i,j \le (p-1)/2}$$

Sun [5, Theorem 1.2] showed that $-\det S_p$ is always a quadratic residue modulo p. See also [3, 7] for recent work on this topic.

Recently, Sun [6] posed many interesting conjectures on determinants related to the Legendre symbol. We give one example.

CONJECTURE 1.1 (Sun; [6, Conjecture 1.1]). Let $p \equiv 3 \pmod{4}$ be a prime. Then,

$$\det\left[t + \left(\frac{i^2 + j^2}{p}\right) + \left(\frac{i^2 - j^2}{p}\right)\right]_{1 \le i, j \le (p-1)/2} = \left(\frac{p-1}{2}t - 1\right)p^{(p-3)/4}$$

Motivated by these results, we will study some determinants involving the quadratic multiplicative character of a finite field. We first introduce some notation.

Let $q = p^s$ be an odd prime power with p prime and $s \in \mathbb{Z}^+$ and let \mathbb{F}_q be the finite field of q elements. Let \mathbb{F}_q^{\times} be the cyclic group of all nonzero elements of \mathbb{F}_q . For any positive integer k which divides q - 1, let

$$D_k := \{a_1, a_2, \dots, a_{(q-1)/k}\} = \{x^k : x \in \mathbb{F}_q^{\times}\}$$

be the subgroup of all nonzero *k*th powers in \mathbb{F}_q .

Let $\widehat{\mathbb{F}_q^{\times}}$ be the cyclic group of all multiplicative characters of \mathbb{F}_q . Throughout this paper, for any $\psi \in \widehat{\mathbb{F}_q^{\times}}$, we extend ψ to \mathbb{F}_q by setting $\psi(0) = 0$. Also, if $2 \nmid q$, we use the symbol ϕ to denote the unique quadratic multiplicative character of \mathbb{F}_q , that is,

$$\phi(x) = \begin{cases} 1 & \text{if } x \in D_2, \\ 0 & \text{if } x = 0, \\ -1 & \text{otherwise.} \end{cases}$$

Inspired by the above results, we define the matrix $A_k(t)$ by

$$A_k(t) := [t + \phi(a_i + a_j) + \phi(a_i - a_j)]_{1 \le i, j \le (q-1)/k}.$$

The integers c_k and d_k , which are related to the number of \mathbb{F}_q -rational points of certain hyperelliptic curves over \mathbb{F}_q , are defined by

$$|\{\infty\} \cup \{(x, y) \in \mathbb{F}_q \times \mathbb{F}_q : y^2 = x^k + 1\}| = q + 1 - c_k$$
(1.1)

and

 $|\{\infty\} \cup \{(x, y) \in \mathbb{F}_q \times \mathbb{F}_q : y^2 = x^k - 1\}| = q + 1 - d_k.$ (1.2)

Now we state the main results of this paper.

THEOREM 1.2. Let $q = p^s$ be an odd prime power with p prime and $s \in \mathbb{Z}^+$. Then, for any positive integer k which divides q - 1, the following results hold.

- (i) Suppose $q \equiv 1 \pmod{2k}$. Then det $A_k(t) = 0$. In particular, if $q \equiv 1 \pmod{4}$, then det $A_2(t) = 0$.
- (ii) If $q \equiv 3 \pmod{4}$, then

$$\det A_2(t) = \left(\frac{q-1}{2}t - 1\right)q^{(q-3)/4}$$

(iii) Suppose $q \equiv 1 \pmod{4}$ and $q \not\equiv 1 \pmod{2k}$. Then there is an integer u_k such that

$$\det A_k(t) = \left(\frac{q-1}{k}t - \frac{1}{k}(c_k + d_k + 2)\right) \cdot u_k^2.$$

REMARK 1.3. (i) Theorem 1.2(i) generalises [6, Theorem 1.1] to an arbitrary finite field with odd characteristic. In the case where q = p is an odd prime, Theorem 1.2(ii) confirms Conjecture 1.1 posed by Zhi-Wei Sun.

(ii) For any k with $3 \le k < q-1$, $k \mid q-1$ and $q-1 \ne 0 \pmod{2k}$, we can also obtain the explicit value of det $A_k(t)$. However, finding a simple expression for det $A_k(t)$ seems very difficult.

We will prove our main results in Section 2.

2. Proof of Theorem 1.2

Throughout this section, we let χ be a generator of $\widehat{\mathbb{F}}_q^{\times}$. Also, for any $\chi^i, \chi^j \in \widehat{\mathbb{F}}_q^{\times}$, the Jacobi sum of χ^i and χ^j is defined by

$$J(\chi^i,\chi^j) = \sum_{x \in \mathbb{F}_q} \chi^i(x) \chi^j(1-x).$$

We begin with a known result in linear algebra.

LEMMA 2.1. Let *n* be a positive integer and let *M* be an $n \times n$ complex matrix. Let $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$, and let $\mathbf{v}_1, \ldots, \mathbf{v}_n \in \mathbb{C}^n$ be column vectors. Suppose that

$$M\mathbf{v}_i = \lambda_i \mathbf{v}_i$$

for $1 \le i \le n$ and that the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly independent over \mathbb{C} . Then $\lambda_1, \ldots, \lambda_n$ are exactly all the eigenvalues of M (counting multiplicity).

Before the proof of our main results, we first introduce the definition of circulant matrices. Let *R* be a commutative ring and let $b_0, b_1, \ldots, b_{n-1} \in R$. Then the circulant matrix of the tuple $(b_0, b_1, \ldots, b_{n-1})$ is defined by

$$C(b_0, b_1, \ldots, b_{n-1}) := [b_{i-j}]_{0 \le i,j \le n-1},$$

where the indices are cyclic modulo n.

The second author [7, Lemma 3.4] proved the following result.

LEMMA 2.2. Let $n \ge 1$ be an odd integer. Let R be a commutative ring and let $b_0, \ldots, b_{n-1} \in R$ such that $b_i = b_{n-i}$ for $1 \le i \le n-1$. Then there is an element $u \in R$ such that

det
$$C(b_0, b_1, \ldots, b_{n-1}) = \left(\sum_{i=0}^{n-1} b_i\right) u^2.$$

Now we are in a position to prove our main results. For simplicity, we set n = (q-1)/k.

PROOF OF THEOREM 1.2. (i) Suppose $q - 1 \equiv 0 \pmod{2k}$. Let $\xi_{2k} \in \mathbb{F}_q$ be a primitive 2*k*th root of unity. Then $-1 = \xi_{2k}^k \in D_k$. Thus, for any *j* with $1 \le j \le n$, there exists an integer *j'* with $1 \le j' \le n$ such that $a_{j'} = -a_j$ and $j \ne j'$. This implies that the *j*th column of $A_k(t)$ is the same as the *j*'th column of $A_k(t)$ and hence det $A_k(t) = 0$.

(ii) Suppose now $q - 1 \neq 0 \pmod{2k}$. Then, clearly k is even. For any integers m, n with $0 \le m \le n - 1$ and $1 \le i \le n$,

$$\sum_{1 \le j \le n} (\phi(a_i + a_j) + \phi(a_i - a_j))\chi^m(a_j) = \sum_{1 \le j \le n} \left(\phi\left(1 + \frac{a_j}{a_i}\right) + \phi\left(1 - \frac{a_j}{a_i}\right)\right)\chi^m\left(\frac{a_j}{a_i}\right)\chi^m(a_i)$$
$$= \sum_{1 \le j \le n} (\phi(1 + a_j) + \phi(1 - a_j))\chi^m(a_j)\chi^m(a_i).$$

Let

$$\mathbf{v}_m = (\chi^m(a_1), \chi^m(a_2), \dots, \chi^m(a_n))^T$$
 and $\lambda_m = \sum_{1 \le j \le n} (\phi(1+a_j) + \phi(1-a_j))\chi^m(a_j).$

By the above results,

$$A_k(0)\mathbf{v}_m = \lambda_m \mathbf{v}_m \quad \text{for } 0 \le m \le n-1$$

Since

$$\det[\chi^{i}(a_{j})]_{0 \le i \le n-1, 1 \le j \le n} = \prod_{1 \le i < j \le n} (\chi(a_{j}) - \chi(a_{i})) \neq 0,$$

the vectors $\mathbf{v}_0, \ldots, \mathbf{v}_{n-1}$ are linearly independent over \mathbb{C} and hence by Lemma 2.1, the complex numbers $\lambda_0, \ldots, \lambda_{n-1}$ are exactly all the eigenvalues of $A_k(0)$.

5

Now let k = 2. Then clearly $q \equiv 3 \pmod{4}$ and n is odd in this case. We first evaluate det $A_2(0)$. By the above,

$$\det A_2(0) = \lambda_0 \prod_{1 \le m \le n-1} \lambda_m = \lambda_0 \prod_{1 \le m \le (n-1)/2} |\lambda_{2m}|^2.$$
(2.1)

The last equality follows from $\overline{\lambda_m} = \lambda_{n-m}$ for $1 \le m \le n-1$. For λ_0 ,

$$\lambda_0 = \sum_{1 \le j \le n} (\phi(1+a_j) + \phi(1-a_j)) = \frac{1}{2} \sum_{x \in \mathbb{F}_q^\times} \phi(1+x^2) - \frac{1}{2} \sum_{x \in \mathbb{F}_q^\times} \phi(x^2-1) = -1.$$
(2.2)

The last equality follows from

$$\sum_{x \in \mathbb{F}_q} \phi(x^2 \pm 1) = -1$$

For λ_{2m} with $1 \le m \le (n-1)/2$, one can verify that

$$\lambda_{2m} = \sum_{1 \le j \le n} (\phi(1+a_j) + \phi(1-a_j))\chi^{2m}(a_j)$$

$$= \frac{1}{2} \sum_{x \in \mathbb{F}_q} \phi(1+x^2)\chi^{2m}(x^2) + \frac{1}{2} \sum_{x \in \mathbb{F}_q} \phi(1-x^2)\chi^{2m}(-x^2)$$

$$= \sum_{x \in \mathbb{F}_q} \phi(1+x)\chi^{2m}(x)$$

$$= \sum_{x \in \mathbb{F}_q} \phi(1+x)\chi^{2m}(-x) = J(\phi, \chi^{2m}).$$
(2.3)

Combining (2.2) and (2.3) with (2.1),

$$\det A_2(0) = -\prod_{1 \le m \le (n-1)/2} |J(\phi, \chi^{2m})|^2 = -q^{(q-3)/4}.$$

Now we turn to det $A_2(t)$. By (2.2) for $1 \le j \le n$,

$$\sum_{1 \le i \le n} (t + \phi(a_i + a_j) + \phi(a_i - a_j)) = nt + \sum_{1 \le i \le n} (\phi(1 + a_j/a_i) + \phi(1 - a_j/a_i))$$
$$= nt + \sum_{1 \le i \le n} (\phi(1 + a_i) + \phi(1 - a_i))$$
$$= nt - 1.$$

This implies that $(nt - 1) | \det A_2(t)$. Noting that $\det A_2(t) \in \mathbb{Z}[t]$ with degree ≤ 1 ,

$$\det A_2(t) = -\det A_2(0) \cdot (nt-1) = q^{(q-3)/4} \left(\frac{q-1}{2}t - 1\right).$$

(iii) Suppose $q \equiv 1 \pmod{4}$ and $q \not\equiv 1 \pmod{2k}$. Clearly, $k \equiv 0 \pmod{2}$ in this case. Let $g \in \mathbb{F}_q$ be a generator of the cyclic group \mathbb{F}_q^{\times} . Then one can verify that

$$det A_k(t) = det[t + \phi(a_i + a_j) + \phi(a_i - a_j)]_{1 \le i,j \le n}$$

= det[t + \phi(g^{k(i-j)} + 1) + \phi(g^{k(i-j)} - 1)]_{0 \le i,j \le n-1}.

For $0 \le i \le n - 1$, let

$$b_i = t + \phi(g^{ki} + 1) + \phi(g^{ki} - 1).$$

Then one can easily verify that

$$\det A_k(t) = \det C(b_0, b_1, \dots, b_{n-1})$$

and that $b_i = b_{n-i}$ for $1 \le i \le n - 1$. Now applying Lemma 2.2, we see that there is an element $u_k \in \mathbb{Z}[t]$ such that

$$\det A_k(t) = \Big(\sum_{i=0}^{n-1} b_i\Big) \cdot u_k^2.$$

One can verify that

$$\sum_{i=0}^{n-1} b_i = nt + \sum_{1 \le j \le n} (\phi(a_i + 1) + \phi(a_i - 1))$$
$$= nt + \frac{1}{k} \sum_{x \in \mathbb{F}_q^{\times}} (\phi(x^k + 1) + \phi(x^k - 1))$$
$$= nt - \frac{1}{k} (c_k + d_k + 2),$$

where c_k and d_k are defined by (1.1) and (1.2), and the last equality follows from

$$\sum_{x \in \mathbb{F}_q^{\times}} \phi(x^k + 1) = -c_k - 1 \quad \text{and} \quad \sum_{x \in \mathbb{F}_q^{\times}} \phi(x^k - 1) = -d_k - 1.$$

As det $A_k(t) \in \mathbb{Z}[t]$ with degree ≤ 1 , by the above, we see that $u_k \in \mathbb{Z}$. Hence,

$$\det A_k(t) = \left(\frac{q-1}{k}t - \frac{1}{k}(c_k + d_k + 2)\right) \cdot u_k^2.$$

In view of the above, we have completed the proof of Theorem 1.2.

Acknowledgement

The authors would like to thank the referee for helpful comments.

References

- [1] L. Carlitz, 'Some cyclotomic matrices', Acta Arith. 5 (1959), 293–308.
- [2] R. Chapman, 'Determinants of Legendre symbol matrices', Acta Arith. 115 (2004), 231–244.
- [3] D. Krachun, F. Petrov, Z.-W. Sun and M. Vsemirnov, 'On some determinants involving Jacobi symbols', *Finite Fields Appl.* 64 (2020), Article no. 101672.
- [4] D. H. Lehmer, 'On certain character matrices', Pacific J. Math. 6 (1956), 491–499.

[7] Matrices concerning multiplicative subgroups of finite fields

- [5] Z.-W. Sun, 'On some determinants with Legendre symbols entries', *Finite Fields Appl.* **56** (2019), 285–307.
- [6] Z.-W. Sun, 'Problems and results on determinants involving Legendre symbols', Preprint, 2024, arXiv:2405.03626.
- [7] H.-L. Wu, 'Elliptic curves over F_p and determinants of Legendre matrices', *Finite Fields Appl.* **76** (2021), Article no. 101929.

JIE LI, School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China e-mail: lijiemath@163.com

HAI-LIANG WU, School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, PR China e-mail: whl.math@smail.nju.edu.cn