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Abstract

Motivated by the recent work of Zhi-Wei Sun [‘Problems and results on determinants involving Legendre
symbols’, Preprint, arXiv:2405.03626], we study some matrices concerning subgroups of finite fields.
For example, let q ≡ 3 (mod 4) be an odd prime power and let φ be the unique quadratic multiplicative
character of the finite field Fq. If the set {s1, . . . , s(q−1)/2} = {x2 : x ∈ Fq \ {0}}, then we prove that

det[t + φ(si + sj) + φ(si − sj)]1≤i,j≤(q−1)/2 =

(q − 1
2

t − 1
)
q(q−3)/4.

This confirms a conjecture of Zhi-Wei Sun.
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1. Introduction

Let p be an odd prime. Research on determinants involving the Legendre symbol ( ·p )
can be traced back to Lehmer [4], Carlitz [1] and Chapman [2]. For example, Carlitz
[1, Theorem 4] studied the determinant

det C(t) := det
[
t +
( i − j

p

)]
1≤i,j≤p−1

and showed that

det C(t) = (−1)(p−1)/2 p(p−3)/2((p − 1)t + (−1)(p−1)/2).

Chapman [2] investigated some variants of det C(t). For instance, Chapman considered

det C1(t) := det
[
t +
( i + j − 1

p

)]
1≤i,j≤(p−1)/2

.
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If we let εp > 1 and hp be the fundamental unit and the class number of Q(
√

p),
respectively, then Chapman [2] proved that

det C1(t) =

⎧⎪⎪⎨⎪⎪⎩(−1)(p−1)/42(p−1)/2(−apt + bp) if p ≡ 1 (mod 4),
−2(p−1)/2t if p ≡ 3 (mod 4),

where ap, bp ∈ Q are defined by the equality

ε
hp
p = ap + bp

√
p.

In 2019, Sun [5] initiated the study of determinants involving the Legendre symbol
and binary quadratic forms. For example, Sun considered the determinant

det Sp := det
[( i2 + j2

p

)]
1≤i,j≤(p−1)/2

.

Sun [5, Theorem 1.2] showed that − det Sp is always a quadratic residue modulo p. See
also [3, 7] for recent work on this topic.

Recently, Sun [6] posed many interesting conjectures on determinants related to the
Legendre symbol. We give one example.

CONJECTURE 1.1 (Sun; [6, Conjecture 1.1]). Let p ≡ 3 (mod 4) be a prime. Then,

det
[
t +
( i2 + j2

p

)
+

( i2 − j2

p

)]
1≤i,j≤(p−1)/2

=

( p − 1
2

t − 1
)
p(p−3)/4.

Motivated by these results, we will study some determinants involving the quadratic
multiplicative character of a finite field. We first introduce some notation.

Let q = ps be an odd prime power with p prime and s ∈ Z+ and let Fq be the finite
field of q elements. Let F×q be the cyclic group of all nonzero elements of Fq. For any
positive integer k which divides q − 1, let

Dk := {a1, a2, . . . , a(q−1)/k} = {xk : x ∈ F×q }

be the subgroup of all nonzero kth powers in Fq.
Let F̂×q be the cyclic group of all multiplicative characters of Fq. Throughout this

paper, for any ψ ∈ F̂×q , we extend ψ to Fq by setting ψ(0) = 0. Also, if 2 � q, we use the
symbol φ to denote the unique quadratic multiplicative character of Fq, that is,

φ(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if x ∈ D2,
0 if x = 0,
−1 otherwise.

Inspired by the above results, we define the matrix Ak(t) by

Ak(t) := [t + φ(ai + aj) + φ(ai − aj)]1≤i,j≤(q−1)/k.
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The integers ck and dk, which are related to the number of Fq-rational points of certain
hyperelliptic curves over Fq, are defined by

|{∞} ∪ {(x, y) ∈ Fq × Fq : y2 = xk + 1}| = q + 1 − ck (1.1)

and

|{∞} ∪ {(x, y) ∈ Fq × Fq : y2 = xk − 1}| = q + 1 − dk. (1.2)

Now we state the main results of this paper.

THEOREM 1.2. Let q = ps be an odd prime power with p prime and s ∈ Z+. Then, for
any positive integer k which divides q − 1, the following results hold.

(i) Suppose q ≡ 1 (mod 2k). Then det Ak(t) = 0. In particular, if q ≡ 1 (mod 4), then
det A2(t) = 0.

(ii) If q ≡ 3 (mod 4), then

det A2(t) =
(q − 1

2
t − 1
)
q(q−3)/4.

(iii) Suppose q ≡ 1 (mod 4) and q � 1 (mod 2k). Then there is an integer uk such that

det Ak(t) =
(q − 1

k
t − 1

k
(ck + dk + 2)

)
· u2

k .

REMARK 1.3. (i) Theorem 1.2(i) generalises [6, Theorem 1.1] to an arbitrary finite
field with odd characteristic. In the case where q = p is an odd prime, Theorem 1.2(ii)
confirms Conjecture 1.1 posed by Zhi-Wei Sun.

(ii) For any k with 3 ≤ k < q − 1, k | q − 1 and q − 1 � 0 (mod 2k), we can also
obtain the explicit value of det Ak(t). However, finding a simple expression for det Ak(t)
seems very difficult.

We will prove our main results in Section 2.

2. Proof of Theorem 1.2

Throughout this section, we let χ be a generator of F̂×q . Also, for any χi, χj ∈ F̂×q , the
Jacobi sum of χi and χj is defined by

J(χi, χj) =
∑
x∈Fq

χi(x)χj(1 − x).

We begin with a known result in linear algebra.

LEMMA 2.1. Let n be a positive integer and let M be an n × n complex matrix. Let
λ1, . . . , λn ∈ C, and let v1, . . . , vn ∈ Cn be column vectors. Suppose that

Mvi = λivi

for 1 ≤ i ≤ n and that the vectors v1, . . . , vn are linearly independent over C. Then
λ1, . . . , λn are exactly all the eigenvalues of M (counting multiplicity).
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Before the proof of our main results, we first introduce the definition of circulant
matrices. Let R be a commutative ring and let b0, b1, . . . , bn−1 ∈ R. Then the circulant
matrix of the tuple (b0, b1, . . . , bn−1) is defined by

C(b0, b1, . . . , bn−1) := [bi−j]0≤i,j≤n−1,

where the indices are cyclic modulo n.
The second author [7, Lemma 3.4] proved the following result.

LEMMA 2.2. Let n ≥ 1 be an odd integer. Let R be a commutative ring and let
b0, . . . , bn−1 ∈ R such that bi = bn−i for 1 ≤ i ≤ n − 1. Then there is an element u ∈ R
such that

det C(b0, b1, . . . , bn−1) =
( n−1∑

i=0

bi

)
u2.

Now we are in a position to prove our main results. For simplicity, we set
n = (q − 1)/k.

PROOF OF THEOREM 1.2. (i) Suppose q − 1 ≡ 0 (mod 2k). Let ξ2k ∈ Fq be a primitive
2kth root of unity. Then −1 = ξk

2k ∈ Dk. Thus, for any j with 1 ≤ j ≤ n, there exists an
integer j′ with 1 ≤ j′ ≤ n such that aj′ = −aj and j � j′. This implies that the jth column
of Ak(t) is the same as the j′th column of Ak(t) and hence det Ak(t) = 0.

(ii) Suppose now q − 1 � 0 (mod 2k). Then, clearly k is even. For any integers m, n
with 0 ≤ m ≤ n − 1 and 1 ≤ i ≤ n,
∑

1≤j≤n

(φ(ai + aj) + φ(ai − aj))χm(aj) =
∑

1≤j≤n

(
φ
(
1 +

aj

ai

)
+ φ
(
1 −

aj

ai

))
χm
(aj

ai

)
χm(ai)

=
∑

1≤j≤n

(φ(1 + aj) + φ(1 − aj))χm(aj)χm(ai).

Let

vm = (χm(a1), χm(a2), . . . , χm(an))T and λm =
∑

1≤j≤n

(φ(1 + aj) + φ(1 − aj))χm(aj).

By the above results,

Ak(0)vm = λmvm for 0 ≤ m ≤ n − 1.

Since

det[χi(aj)]0≤i≤n−1,1≤j≤n =
∏

1≤i<j≤n

(χ(aj) − χ(ai)) � 0,

the vectors v0, . . . , vn−1 are linearly independent over C and hence by Lemma 2.1, the
complex numbers λ0, . . . , λn−1 are exactly all the eigenvalues of Ak(0).
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Now let k = 2. Then clearly q ≡ 3 (mod 4) and n is odd in this case. We first evaluate
det A2(0). By the above,

det A2(0) = λ0

∏
1≤m≤n−1

λm = λ0

∏
1≤m≤(n−1)/2

|λ2m|2. (2.1)

The last equality follows from λm = λn−m for 1 ≤ m ≤ n − 1. For λ0,

λ0 =
∑

1≤j≤n

(φ(1 + aj) + φ(1 − aj)) =
1
2

∑
x∈F×q

φ(1 + x2) − 1
2

∑
x∈F×q

φ(x2 − 1) = −1. (2.2)

The last equality follows from ∑
x∈Fq

φ(x2 ± 1) = −1.

For λ2m with 1 ≤ m ≤ (n − 1)/2, one can verify that

λ2m =
∑

1≤j≤n

(φ(1 + aj) + φ(1 − aj))χ2m(aj)

=
1
2

∑
x∈Fq

φ(1 + x2)χ2m(x2) +
1
2

∑
x∈Fq

φ(1 − x2)χ2m(−x2)

=
∑
x∈Fq

φ(1 + x)χ2m(x)

=
∑
x∈Fq

φ(1 + x)χ2m(−x) = J(φ, χ2m). (2.3)

Combining (2.2) and (2.3) with (2.1),

det A2(0) = −
∏

1≤m≤(n−1)/2

|J(φ, χ2m)|2 = −q(q−3)/4.

Now we turn to det A2(t). By (2.2) for 1 ≤ j ≤ n,∑
1≤i≤n

(t + φ(ai + aj) + φ(ai − aj)) = nt +
∑

1≤i≤n

(φ(1 + aj/ai) + φ(1 − aj/ai))

= nt +
∑

1≤i≤n

(φ(1 + ai) + φ(1 − ai))

= nt − 1.

This implies that (nt − 1) | det A2(t). Noting that det A2(t) ∈ Z[t] with degree ≤ 1,

det A2(t) = − det A2(0) · (nt − 1) = q(q−3)/4
(q − 1

2
t − 1
)
.

(iii) Suppose q ≡ 1 (mod 4) and q � 1 (mod 2k). Clearly, k ≡ 0 (mod 2) in this case.
Let g ∈ Fq be a generator of the cyclic group F×q . Then one can verify that
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det Ak(t) = det[t + φ(ai + aj) + φ(ai − aj)]1≤i,j≤n

= det[t + φ(gk(i−j) + 1) + φ(gk(i−j) − 1)]0≤i,j≤n−1.

For 0 ≤ i ≤ n − 1, let

bi = t + φ(gki + 1) + φ(gki − 1).

Then one can easily verify that

det Ak(t) = det C(b0, b1, . . . , bn−1)

and that bi = bn−i for 1 ≤ i ≤ n − 1. Now applying Lemma 2.2, we see that there is an
element uk ∈ Z[t] such that

det Ak(t) =
( n−1∑

i=0

bi

)
· u2

k .

One can verify that
n−1∑
i=0

bi = nt +
∑

1≤j≤n

(φ(ai + 1) + φ(ai − 1))

= nt +
1
k

∑
x∈F×q

(φ(xk + 1) + φ(xk − 1))

= nt − 1
k

(ck + dk + 2),

where ck and dk are defined by (1.1) and (1.2), and the last equality follows from∑
x∈F×q

φ(xk + 1) = −ck − 1 and
∑
x∈F×q

φ(xk − 1) = −dk − 1.

As det Ak(t) ∈ Z[t] with degree ≤ 1, by the above, we see that uk ∈ Z. Hence,

det Ak(t) =
(q − 1

k
t − 1

k
(ck + dk + 2)

)
· u2

k .

In view of the above, we have completed the proof of Theorem 1.2. �
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