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Abstract
We study the F𝑝-points of the Kisin–Pappas integral models of Shimura varieties of Hodge type with parahoric
level. We show that if the group is quasi-split, then every isogeny class contains the reduction of a CM point,
proving a conjecture of Kisin–Madapusi–Shin. We, furthermore, show that the mod p isogeny classes are of the
form predicted by the Langlands–Rapoport conjecture (cf. Conjecture 9.2 of [Rap05]) if either the Shimura variety
is proper or if the group at p is unramified. The main ingredient in our work is a global argument that allows us to
reduce the conjecture to the case of very special parahoric level. This case is dealt with in the Appendix by Zhou.
As a corollary to our arguments, we determine the connected components of Ekedahl–Oort strata.
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1. Introduction and statement of results

1.1. Introduction

In [Lan77], Langlands outlines a three-part approach to prove that the Hasse–Weil zeta functions of
Shimura varieties are related to L-functions of automorphic forms. The second part is about describing
the mod p points of suitable integral models of Shimura varieties, which is the central topic of this article.

A conjectural description of the mod p points of integral models of Shimura varieties was first given
by Langlands in [Lan76] and was later refined by Langlands–Rapoport and Rapoport [LR87, Rei97,
Rap05]. Together with the test function conjecture of Haines–Kottwitz [Hai14], which was recently
proved by Haines–Richarz [HR21], this conjecture is the main geometrical input to the Langlands–
Kottwitz method for Shimura varieties of parahoric level. To explain these conjectures, we first need to
introduce some notation.

Let (𝐺, 𝑋) be a Shimura datum of Hodge type, let p be a prime number and let 𝑈𝑝 ⊂ 𝐺 (Q𝑝) be a
parahoric subgroup. For sufficiently small compact open subgroups 𝑈 𝑝 ⊂ 𝐺 (A𝑝

𝑓 ), there is a Shimura
variety Sh𝑈 (𝐺, 𝑋) of level 𝑈 = 𝑈 𝑝𝑈𝑝 , which is a smooth quasi-projective variety defined over the
reflex field E. For a prime 𝑣 |𝑝 of E, we let O𝐸, (𝑣) be the localisation of the ring of integers O𝐸 of E
at the prime ideal v. Then there should be a canonical integral model 𝒮𝑈 (𝐺, 𝑋) over O𝐸, (𝑣) . When
𝑈𝑝 is hyperspecial, canonical integral models should be smooth and are unique if they satisfy a certain
extension property (cf. [Mil92]). Recent work [Pap22, PR21] of Pappas and Pappas–Rapoport defines
a notion of canonical integral models when𝑈𝑝 is an arbitrary parahoric and proves that they are unique
if they exist.

Then there should be a bijection (see [LR87, Section 5] and [Rap05, Conjecture 9.2])

lim
←−−
𝑈 𝑝

𝒮𝑈 𝑝𝑈𝑝 (𝐺, 𝑋) (F𝑝) �
∐
𝜙

𝑆(𝜙), (1.1.1)

where

𝑆(𝜙) = 𝐼𝜙 (Q)\𝑋𝑝 (𝜙) × 𝑋
𝑝 (𝜙).

Let us elaborate: If we think of 𝒮𝑈 𝑝𝑈𝑝 (𝐺, 𝑋) as parametrizing ‘abelian varieties with G-structure’, then
the sets 𝑆(𝜙) should correspond to points in a single isogeny class of ‘abelian varieties with G-structure’
over F𝑝 . For a fixed point x in such an isogeny class, the set 𝑋𝑝 (𝜙) parametrises ‘abelian varieties with
G-structure’ with a fixed p-power isogeny to x, and the set 𝑋 𝑝 (𝜙) parametrises ‘abelian varieties with
G-structure’ with a fixed prime-to-p isogeny to x. The isogeny class of x is then given by the quotient of
𝑋𝑝 (𝜙) × 𝑋

𝑝 (𝜙) by the group 𝐼𝜙 (Q) of self quasi-isogenies of x. The set 𝑋 𝑝 (𝜙) is a 𝐺 (A𝑝
𝑓 )-torsor, and

𝑋𝑝 (𝜙) is a subset of 𝐺 (Qur
𝑝 )/G (Zur

𝑝 ), where G/Z𝑝 is the parahoric group scheme with G (Z𝑝) = 𝑈𝑝 . In
fact, the set 𝑋𝑝 (𝜙) is the set of F𝑝-points of an affine Deligne–Lusztig variety (see Section 2.4.3). In
the unramified PEL case, (1.1.1) corresponds to Rapoport–Zink uniformisation of isogeny classes (see
[RZ96, Section 6]), with 𝑋𝑝 (𝜙) corresponding to the set of F𝑝-points of a Rapoport–Zink space. This
is why we will often refer to (1.1.1) as uniformisation of isogeny classes. Uniformisation of isogeny
classes for Shimura varieties of Hodge type is often assumed in recent work in the area (see, e.g. [HK19,
Hes20, PR21]).
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One also expects that (1.1.1) is compatible with the action of 𝐺 (A𝑝
𝑓 ) on both sides, and that the

action of Frobenius on the left-hand side should correspond to the action of a certain operator Φ on the
right-hand side, see [Rap05, Conjecture 9.2]. If 𝐺Q𝑝 is quasi-split, then we moreover expect that each
isogeny class contains the reduction of a special point (see [KMPS22, Conjecture 1]).

1.2. Main results

Let (𝐺, 𝑋) be a Shimura datum of Hodge type, and let 𝑝 > 2 be a prime number. We will assume
throughout this Introduction that: The group 𝐺Q𝑝 is quasi-split and splits over a tamely ramified
extension, the prime p does not divide the order of 𝜋1 (𝐺

der) and 𝜋1 (𝐺)𝐼𝑝 is torsion-free1. Here,
𝐼𝑝 ⊂ Gal(Q𝑝/Q𝑝) is the inertia group and 𝜋1 (𝐺) is the algebraic fundamental group of G (see [Bor98]).

Let 𝑈𝑝 ⊂ 𝐺 (Q𝑝) be a parahoric subgroup, let 𝑈 𝑝 ⊂ 𝐺 (A𝑝
𝑓 ) be a sufficiently small compact open

subgroup and consider the Shimura variety Sh𝑈 (𝐺, 𝑋) of level 𝑈 = 𝑈 𝑝𝑈𝑝 . By [KP18, Theorem 0.1],
this Shimura variety has an extension to a flat normal scheme 𝒮𝑈 (𝐺, 𝑋) over O𝐸, (𝑣) , where 𝑣 |𝑝 is a
prime of the reflex field E. Under our assumptions, these integral models are canonical in the sense of
[Pap22, Definition 7.1.3] (see [Pap22, Theorem 1.4]).

Theorem 1. Let (𝐺, 𝑋) be a Shimura variety of Hodge type as above. Then each isogeny class of
𝒮𝑈 (𝐺, 𝑋) (F𝑝) contains a point x which is the reduction of a special point on Sh𝑈 (𝐺, 𝑋).

This confirms [KMPS22, Conjecture 1]. Theorem 1 for very special parahoric subgroups𝑈𝑝 is part 2
of Theorem A.4.5 of the Appendix by Zhou.2

Theorem 1 was proved by Kisin when 𝑈𝑝 is a hyperspecial subgroup, see [Kis17], and proved by
Zhou when 𝐺Q𝑝 is residually split in the sense of [KP23, Definition 9.10.2] (see [Zho20]). We remind
the reader that split implies residually split, implies quasi-split, and that residually split and unramified
implies split. As in [Kis17, Zho20], such a lifting result is deduced from uniformisation of isogeny
classes, which is our second main result. Part 1 of the next theorem is part 1 of Theorem A.4.5 of the
Appendix.

Theorem 2. Let (𝐺, 𝑋) be as above, and let𝑈𝑝 denote a parahoric subgroup of 𝐺 (Q𝑝).

1. If𝑈𝑝 is very special, then each isogeny class of 𝒮𝑈 (𝐺, 𝑋) (F𝑝) has the form

𝐼𝜙 (Q)\𝑋𝑝 (𝜙) × 𝑋
𝑝 (𝜙)/𝑈 𝑝 .

2. If either𝐺Q𝑝 splits over an unramified extension or if Sh𝑈 (𝐺, 𝑋) is proper, then the same conclusion
holds for arbitrary parahoric subgroups 𝑈𝑝 .

As a consequence of part 2 of Theorem 2, we verify that the He–Rapoport axioms of [HR17] hold
for the Kisin–Pappas integral models. All but one of the axioms (Axiom 4(c)) were proved in earlier
work of Zhou (see [Zho20]).

Theorem 3. Let (𝐺, 𝑋) be a Shimura datum of Hodge type as above. If either 𝐺Q𝑝 splits over an
unramified extension or if Sh𝑈 (𝐺, 𝑋) is proper, then the He–Rapoport axioms of [HR17, Section 3]
hold for the Kisin–Pappas integral models.

Combining our proof of part 2 of Theorem 2 with the ℓ-adic monodromy theorem of [vH24], we
obtain a computation of the set of irreducible components of the Ekedahl–Kottwitz–Oort–Rapoport
(EKOR) strata defined by Shen–Yu–Zhang in [SYZ21]. We assume for simplicity that 𝐺ad is simple
over Q (see Theorem 4.5.2 for a more general statement).

1For Shimura data of abelian type that are not of type 𝐷H in the sense of [Mil05, Appendix B], one can always find an auxiliary
Shimura datum of Hodge type where the last two conditions are satisfied (see [KP18, Lemma 4.6.22].

2This article has an Appendix by Rong Zhou.
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Theorem 4. Let (𝐺, 𝑋) be as above, and let 𝑈𝑝 denote a very special parahoric. Let 𝒮𝑈,F𝑝
{𝑤} be

an EKOR stratum that is not contained in the smallest Newton stratum. If either 𝐺Q𝑝 splits over an
unramified extension or if Sh𝑈 (𝐺, 𝑋) is proper, then the natural map

𝒮𝑈,F𝑝
{𝑤} → 𝒮𝑈,F𝑝

(𝐺, 𝑋)

induces a bijection on sets of connected components.
If 𝑈𝑝 is hyperspecial, then EKOR strata coincide with Ekedahl–Oort strata, and this theorem de-

termines their connected components. Theorem 4 was proved by Ekedahl and van der Geer [EvdG09]
in the Siegel case. Theorem 4 is used in [VanHX24] to determine the connected components of Igusa
varieties and Newton strata.
Remark 1.2.1. We have stated Theorem 4 only for very special parahoric subgroups because we do not
understand the set of connected components of 𝒮𝑈,F𝑝

(𝐺, 𝑋) when 𝑈𝑝 is a general parahoric subgroup
and Sh𝑈 (𝐺, 𝑋) is not proper. If the Shimura variety is proper, then a similar statement holds at arbitrary
parahoric level (see the proof of Theorem 4.5.2).

1.3. Overview of the proof

Both [Kis17] and [Zho20] employ roughly the same strategy, which we will now briefly sketch: The
integral models 𝒮𝑈 (𝐺, 𝑋) of Shimura varieties of Hodge type come equipped, by construction, with
finite maps 𝒮𝑈 (𝐺, 𝑋) → 𝒮𝑀 (GSp, 𝑆±) to Siegel modular varieties. Given a point 𝑥 ∈ 𝒮𝑈 (𝐺, 𝑋) (F𝑝),
classical Dieudonné theory produces a map

𝑋𝑝 (𝜙) → 𝒮𝑀 (GSp, 𝑆±)(F𝑝),

and the main difficulty is to show that it factors through 𝒮𝑈 (𝐺, 𝑋). A deformation theoretic argument
shows that it suffices to prove this factorisation for one point on each connected component of 𝑋𝑝 (𝜙)3,
and, therefore, we need to understand these connected components. In the hyperspecial case, this is
done in [CKV15], and in the parahoric case, this is done in [HZ20], under the assumption that 𝐺Q𝑝 is
residually split. The main obstruction to extend the methods of [Zho20] beyond the residually split case
is that we do not understand connected components of affine Deligne–Lusztig varieties of parahoric
level for more general groups.4

1.3.1.
The geometry of affine Deligne–Lusztig varieties is simpler the larger the parahoric subgroup is. For
unramified groups, the geometry is simplest for hyperspecial subgroups, and for more general quasi-
split groups, the geometry is simplest for very special subgroups. This is why it is reasonable to try to
prove Theorems 2 and 1 for very special parahoric subgroups, using the above strategy.

In Appendix A, Zhou studies connected components of affine Deligne–Lusztig varieties for quasi-
split groups and very special parahoric subgroups, generalising results of [CKV15] and [Nie18] in the
case of unramified groups and hyperspecial level. In particular, part 1 of Theorem 2 and Theorem 1 in
the case of a very special parahoric are proved there (see Theorem A.4.5).

1.3.2.
To prove uniformisation for a general parahoric subgroup, we use the fact that every parahoric subgroup
contains an Iwahori subgroup, and that every Iwahori subgroup is contained in a very special parahoric

3There is a perfect scheme whose set of F𝑝-points is naturally identified with 𝑋𝑝 (𝜙) , which gives a decomposition of 𝑋𝑝 (𝜙)
into connected components (see Lemma 2.4.5).

4After a first version of our paper appeared, we learned of work of Nie [Nie21], which solves this problem for unramified
groups. Recently, there has been work of Gleason–Lim–Xu [GLX22] and Gleason–Lourenço [GL22], which completely settles
the problem of understanding connected components of affine Deligne–Lusztig varieties.
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subgroup if 𝐺Q𝑝 is quasi-split. Thus, given the results of Appendix A, we need to show that the validity
of Theorems 2 and 1 propagates ‘up’ from very special parahoric subgroups to Iwahori subgroups,
and propagates ‘down’ from Iwahori subgroups to general parahoric subgroups. The latter is proved in
[Zho20, Proposition 7.7], and so we focus on the former.

Let𝑈𝑝 denote a very special parahoric subgroup, and let𝑈 ′𝑝 denote an Iwahori subgroup contained in
𝑈𝑝 , then, by [Zho20, Section 7], there is a proper morphism of integral models𝒮𝑈 ′ (𝐺, 𝑋) → 𝒮𝑈 (𝐺, 𝑋),
and we let Sh𝑈 ′𝑝 → Sh𝑈𝑝 be the induced morphism on the perfections of their special fibres. There is a
commutative diagram

Sh𝐺,𝑈 ′ Sht𝐺,𝜇,𝑈 ′𝑝

Sh𝐺,𝑈 Sht𝐺,𝜇,𝑈𝑝 ,

(1.3.1)

where Sht𝐺,𝜇,𝑈𝑝 is the stack of parahoric 𝑈𝑝-shtukas of type 𝜇 introduced by Xiao–Zhu [XZ17] and
Shen–Yu–Zhang [SYZ21] (see Sections 2.2.9, 2.2.14), with 𝜇 the inverse of the Hodge cocharacter
induced by the Shimura datum (𝐺, 𝑋).

The horizontal morphisms in (1.3.1) are the Hodge type analogues of the morphism from the moduli
space of abelian varieties to the moduli stack of quasi-polarised Dieudonné modules. If (𝐺, 𝑋) =
(GSp, 𝑆±), then this diagram is Cartesian. In general, it follows from ‘local uniformisation’ of Sht𝐺,𝜇,𝑈 ′ ,
that isogeny classes in Sh𝐺,𝑈 ′𝑝 have the correct form if (1.3.1) is Cartesian (see Theorem 3.3.1). One
of the main technical results of this paper, Theorem 4.4.1, is that the diagram is Cartesian under the
assumptions of part 2 of Theorem 2, which proves a conjecture of He and Rapoport that we learned
from Zhou.

1.3.3.
We prove in Section 2, see Proposition 2.2.17, that the morphism Sht𝐺,𝜇,𝑈 ′𝑝 → Sht𝐺,𝜇,𝑈𝑝 is repre-
sentable in perfectly proper algebraic spaces, and we let Sh𝐺,𝑈 ′,★ be the fibre product of (1.3.1). There is
a map 𝜄 : Sh𝐺,𝑈 ′ → Sh𝐺,𝑈 ′,★ given by the universal property of the fibre product, and we prove that it is
a closed immersion (see Proposition 4.1.4). To prove the main theorem, it suffices to show that 𝜄 is an iso-
morphism. We do this by showing it is a closed immersion of equidimensional perfect algebraic spaces
of the same dimension whose image intersects every irreducible component of the target, which clearly
must then be an isomorphism. We first show that Sh𝐺,𝑈 ′,★ is equidimensional of the same dimension as
Sh𝐺,𝑈 ′ and that it has a Kottwitz–Rapoport (KR) stratification with the expected properties. To do this,
we build a local model diagram for Sh𝐺,𝑈 ′,★ in the world of perfect algebraic geometry (see Proposition
4.2.1). This requires us to produce a version of the diagram in (1.3.1) for stacks of restricted shtukas,
and to analyse the forgetful maps for these stacks. Another key ingredient is the fact, proved by Hoff,
[Hof23], that the morphisms from Sh𝐺,𝑈 to these stacks of restricted shtukas are perfectly smooth.

The next step is to study the irreducible components of Sh𝐺,𝑈 ′,★ and Sh𝐺,𝑈 ′ . In Section 4.3, see
Proposition 4.3.17, we will show that each irreducible component of Sh𝐺,𝑈 ′,★ can be moved into Sh𝐺,𝑈 ′

using prime-to-p Hecke operators. Since Sh𝐺,𝑈 ′,★ is stable under the prime-to-p Hecke operators, we
may conclude from this that 𝜄 : Sh𝐺,𝑈 ′ → Sh𝐺,𝑈 ′,★ is an isomorphism.

To prove Proposition 4.3.17, we use the KR stratification of both Sh𝐺,𝑈 ′ and Sh𝐺,𝑈 ′,★ to reduce
to analysing irreducible components in each KR stratum separately. Our proof then proceeds by de-
generating to the zero-dimensional KR stratum, which we describe explicitly using Rapoport–Zink
uniformisation of the basic locus.

Our assumption that either 𝐺Q𝑝 splits over an unramified extension or that Sh𝑈 (𝐺, 𝑋) is proper will
be used to prove that every irreducible component of the closure of a KR stratum in Sh𝐺,𝑈 ′,★ intersects
the zero-dimensional KR stratum (see Lemma 4.3.4 and Proposition 4.3.5). In the proper case, it is
enough to prove that KR strata in Sh𝐺,𝑈 ′,★ are quasi-affine. In the unramified case, we use results
of [WZ18] and [And21] on the Ekedahl–Oort stratification and results of [He14] on the geometry of
forgetful maps.
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1.4. Outline of the paper

In Section 2, we will study forgetful maps for moduli stacks of local shtukas and moduli stacks of
restricted local shtukas. We will also study Newton strata in moduli spaces of shtukas and describe them
explicitly in terms of affine Deligne–Lusztig varieties. In Section 3, we study uniformisation of isogeny
classes in Shimura varieties of Hodge type at parahoric level. We will deduce the existence of CM lifts
at arbitrary parahoric level from the results of Appendix A, and we will show that uniformisation for
general parahoric subgroups is equivalent to a certain diagram being Cartesian. In Section 4, we prove
that this diagram is Cartesian.

2. Local shtukas

We start this section by recalling some perfect algebraic geometry from [XZ17, Appendix A] and
defining a notion of weakly perfectly smooth morphisms of perfect algebraic stacks.

In the rest of the section, we will recall the moduli stacks of local shtukas with parahoric level of
[SYZ21] and study the forgetful maps between them. We start by proving Proposition 2.2.17, which
states that this forgetful map is representable and (perfectly) proper. We then study forgetful maps of
restricted local shtukas and prove Proposition 2.3.4, which is an important technical result that will be
used in Section 3 to prove equidimensionality of Sh𝐺,𝑈 ′𝑝 ,★.

In the second half, we discuss 𝜎-conjugacy classes and the Newton stratification on moduli stacks
of local shtukas. We end by discussing affine Deligne–Lusztig varieties and use them in Lemma 2.4.6
to describe Newton strata in moduli stacks of local shtukas. This latter result is used in Section 3 to lift
uniformisation along forgetful maps.

2.1. Some perfect algebraic geometry

We will use the language of perfect algebraic geometry from [Zhu17, Appendix A]. Let k be a perfect
field and denote by Affperf

𝑘 the category of perfect k-algebras, on which we will consider both the étale
and fpqc topologies. Perfect k-schemes define fpqc sheaves on Affperf

𝑘 , and for X a scheme over k, we
will write 𝑋perf for the (inverse) perfection of X, given by the inverse limit over the relative k-Frobenius
of X. This inverse limit exists in the category of schemes, see [BGA18, Section 5], and the natural map
𝑋perf → 𝑋 is a universal homeomorphism.

Perfect algebraic spaces are defined to be sheaves X on Affperf
𝑘 , such that the diagonal 𝑋 → 𝑋 × 𝑋 is

representable in perfect schemes, and such that X admits an étale surjection from a scheme (cf. [Sta23,
Definition 025Y]; see [XZ17, Definition A.1.7] for the definition of a perfectly finite presentation (pfp)
algebraic space). A perfect algebraic space is pfp if and only if it is isomorphic to the perfection of
an algebraic space of finite presentation over k (see [XZ17, Proposition A.1.8]). We will often write
pfp algebraic space to mean pfp perfect algebraic space. A deperfection of a pfp algebraic space Y
is a morphism 𝑌 → 𝑌0 with Y an algebraic space of finite presentation that induces an isomorphism
𝑌
∼
−→ 𝑌

perf
0 .

Lemma 2.1.1. If X is a pfp algebraic space, then for every directed set I and any inverse system {𝑇𝑖}𝑖∈𝐼
of perfect qcqs k-schemes with affine transition maps 𝑇𝑖 → 𝑇𝐽 , the natural map

Hom(lim
←−−
𝑖

𝑇𝑖 , 𝑋) → lim
−−→
𝑖

Hom(𝑇𝑖 , 𝑋)

is a bijection.5

5Note that the inverse limit 𝑇 = lim
←−−𝑖

𝑇𝑖 exists in the category of schemes by [Sta23, Tag 01YX]. Moreover, this T is a perfect
scheme since perfection commutes with inverse limits (being an inverse limit).
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Proof. Choose a deperfection 𝑋 → 𝑋0 of X using [XZ17, Proposition A.1.8]. We may then apply
[Sta23, Proposition 01ZC] to deduce that the natural map

Hom(lim
←−−
𝑖

𝑇𝑖 , 𝑋0) → lim
−−→
𝑖

Hom(𝑇𝑖 , 𝑋0) (2.1.1)

is an isomorphism. We conclude by noting that (2.1.1) can be identified

Hom(lim
←−−
𝑖

𝑇𝑖 , 𝑋) → lim
−−→
𝑖

Hom(𝑇𝑖 , 𝑋)

since the 𝑇𝑖 are perfect and since lim
←−−𝑖

𝑇𝑖 is perfect. �

2.1.2.
We will use the notion of perfectly proper morphisms of perfect algebraic spaces (see [Zhu17, Definition
A.18]). A morphism 𝑓 : 𝑋 → 𝑌 of pfp algebraic spaces over k is perfectly proper if and only if it is
isomorphic to the perfection of a proper morphism of algebraic spaces of finite presentation over k (see
[Zhu17, Lemma A.19]). We will often write perfectly proper algebraic space to mean a perfect algebraic
space whose structure map to Spec 𝑘 is perfectly proper.

Recall that a morphism 𝑓 : 𝑋 → 𝑌 of perfect algebraic spaces is called perfectly smooth of relative
dimension d at x, where 𝑥 ∈ 𝑋 , if there is an étale neighbourhood 𝑈 → 𝑋 of x and 𝑉 → 𝑌 of 𝑓 (𝑥),
such that 𝑈 → 𝑋 → 𝑌 factors through a map ℎ : 𝑈 → 𝑉 and such that h factors as

𝑈 𝑋

(A𝑑𝑘 )
perf ×𝑉 𝑉 𝑌,

ℎ′ ℎ 𝑓

pr
(2.1.2)

where ℎ′ is étale and where pr is the projection onto V. It is called perfectly smooth of relative dimension
d if it is perfectly smooth of relative dimension d at all points 𝑥 ∈ 𝑋 . This property is preserved
under base change, and the composition of a perfectly smooth morphism of relative dimension d with
a perfectly smooth morphism of relative dimension 𝑑 ′ is perfectly smooth of relative dimension 𝑑 + 𝑑 ′.
A morphism 𝑋 → 𝑌 is called perfectly smooth if it is perfectly smooth of some dimension at every
𝑥 ∈ 𝑋 . This property is also preserved under base change and composition.

Example 2.1.3. If 𝑓 : 𝑋 → 𝑌 is a morphism of schemes over k that is smooth of relative dimension d
at 𝑥 ∈ 𝑋 , then 𝑓 perf : 𝑋perf → 𝑌perf is perfectly smooth of relative dimension d at x by [Sta23, Lemma
054L]. Indeed, the natural map 𝑋perf → 𝑋 is a universal homeomorphism and thus identifies the étale
sites of X and 𝑋perf (see [Sta23, Theorem 05ZH]).

Example 2.1.4. Let G be a pfp group scheme over Spec 𝑘 . Then 𝐺 → Spec 𝑘 arises as the perfection
of a smooth group scheme over k by [Zhu17, Lemma A.26], and, therefore, 𝐺 → Spec 𝑘 is perfectly
smooth by Example 2.1.3. This, furthermore, means that G-torsors for the étale topology are perfectly
smooth morphisms, as the property of being perfectly smooth is clearly étale local on the target.

The following lemma is a straightforward consequence of the definition.

Lemma 2.1.5. Let 𝑓 : 𝑋 → 𝑌 be a perfectly smooth morphism of perfect algebraic spaces. If X is
connected, then f is perfectly smooth of relative dimension d for some integer d.

We will later use the notion of normality for perfect algebraic spaces. Note that if an algebraic space
Y is normal, then its perfection𝑌perf is normal. Indeed, since normality is étale local, see [Sta23, Lemma
034F], this can be reduced to the affine case using the fact that Frobenius is affine, and then it follows
from the fact that a filtered colimit of normal rings is normal.

Lemma 2.1.6. A normal pfp algebraic space Y admits a normal deperfection.
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Proof. Since Y has finitely many irreducible components (because it is pfp), it follows from [Sta23,
Lemma 0357] that Y is a disjoint union of finitely many integral normal algebraic spaces. Thus, we may
assume that Y is integral and normal. Choose a deperfection 𝑌 → 𝑌0 with 𝑌0 reduced, and observe that
𝑌0 is irreducible because Y is, and thus 𝑌0 is integral. Let 𝑌0 → 𝑌0 be the normalisation of 𝑌0, and note
that it suffices to show that 𝑌0 has the same perfection as 𝑌0. Since normalisation commutes with étale
base change, see [Sta23, Lemma 082F], we may assume that 𝑌0 = Spec 𝐴0 with 𝐴0 an integral domain.

Then 𝑌0 corresponds to an 𝐴0-algebra B, and Y corresponds to an 𝐴0-algebra A. Since the morphism
𝐴0 → 𝐴 is an injective integral morphism and A is normal, it follows that B is isomorphic to the integral
closure of 𝐴0 inside of A. But this implies that B has the same perfection as 𝐴0. �

Lemma 2.1.7. Let 𝑓 : 𝑋 → 𝑌 be a perfectly smooth morphism of pfp algebraic spaces. If Y is normal,
then X is normal. If f is, moreover, surjective and X is normal, then Y is normal.

Proof. Fix 𝑥 ∈ 𝑋 with image 𝑦 ∈ 𝑌 . By definition, we know that f is perfectly smooth of relative
dimension d at x. Thus, there are étale neighbourhoods 𝑈 → 𝑋 of x and 𝑉 → 𝑌 of u, such that
𝑈 → 𝑋 → 𝑌 factors through a map ℎ : 𝑈 → 𝑉 and such that h factors as in equation (2.1.2).

Assume that Y is normal, and choose a normal deperfection 𝑌 → 𝑌0 of Y using Lemma 2.1.6. Then,
by topological invariance of the étale site, see [Sta23, Theorem 05ZH], there is a unique étale morphism
𝑉0 → 𝑌0 whose perfection recovers 𝑉 → 𝑌 . Similarly, there is a unique étale morphism𝑈0 → A

𝑑
𝑘 ×𝑉0

whose perfection recovers ℎ′. The induced map 𝑈0 → 𝑌0 is smooth because it is a composition of
smooth maps. It follows from [Sta23, Lemma 034F] that 𝑈0 is normal since 𝑌0 is normal. Hence, U is
normal and so X is normal (in a neighbourhood of x) (by [Sta23, Lemma 034F]). This argument works
for arbitrary x and thus proves the normality of X.

We will now assume that X is normal and show that Y is normal in a neighbourhood of y (if f
is surjective, this thus shows that normality of X implies the normality of Y). Let 𝑌 → 𝑌0 be any
deperfection, then we will show that the normalisation 𝑌0 → 𝑌0 is a universal homeomorphism. This
implies that 𝑌0 → 𝑌0 induces an isomorphism on perfections by [BS17, Lemma 3.8], and thus Y is the
perfection of a normal scheme, and hence normal.

Let 𝑉0 → 𝑌0 and 𝑈0 → A
𝑑
𝑘 × 𝑉0 be as above. Since normalisation commutes with smooth base

change, see [Sta23, Lemma 082F], we find that there is a Cartesian diagram (where �̃�0 → 𝑈0 is the
normalisation of𝑈0)

�̃�0 𝑌0

𝑈0 𝑌0.

Since X is normal, we find that U is normal by [Sta23, Lemma 034F]. By [Sta23, Lemma 0BB4], there
is a unique commutative diagram

�̃�0 𝑈

𝑈0

.

This shows that �̃�0 → 𝑈0 is injective on k-points, and hence universally injective. Since �̃�0 → 𝑈0
is also surjective and closed, it follows that �̃�0 → 𝑈0 is a universal homeomorphism. It follows from
[Sta23, Lemma 0CFX] that 𝑌0 → 𝑌0 is a universal homeomorphism, as desired. �

2.1.8.
Let 𝑓 : 𝑋 → 𝑌 be a morphism of pfp algebraic spaces. We expect that if there is a perfectly smooth
surjective map 𝑔 : 𝑍 → 𝑋 , such that 𝑓 ◦𝑔 is perfectly smooth, then f itself is perfectly smooth. However,
we do not know how to prove this, hence, we make the auxiliary definitions 2.1.9 and 2.1.16.
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Definition 2.1.9. A morphism 𝑓 : 𝑌 → 𝑍 of perfect algebraic spaces is called weakly perfectly smooth
of relative dimension d at y for 𝑦 ∈ 𝑌 if: there exists an open neighbourhood U of y and a surjective map
𝑔 : 𝑋 → 𝑈 that is perfectly smooth of relative dimension e, where X is a perfect algebraic space, such
that 𝑓 ◦𝑔 : 𝑋 → 𝑍 is perfectly smooth of relative dimension 𝑒+𝑑. A morphism is called weakly perfectly
smooth of relative dimension d if it is weakly perfectly smooth of relative dimension d at y for all 𝑦 ∈ 𝑌 .

This property is preserved under base change, and the composition of a weakly perfectly smooth
morphism of relative dimension 𝑑1 with a weakly perfectly smooth morphism of relative dimension 𝑑2
is a weakly perfectly smooth morphism of relative dimension 𝑑1 + 𝑑2. Indeed, suppose we are given
morphisms 𝑓1 : 𝑋 → 𝑌 and 𝑓2 : 𝑌 → 𝑍 together with surjections 𝑔1 : 𝑋 ′ → 𝑋 and 𝑔2 : 𝑌 ′ → 𝑌
that are perfectly smooth of relative dimension 𝑒1 and 𝑒2, respectively, and such that 𝑋 ′ → 𝑋 → 𝑌
and 𝑌 ′ → 𝑌 → 𝑍 are perfectly smooth of relative dimension 𝑑1 + 𝑒1 and 𝑑2 + 𝑒2, respectively. Then
𝑋 ′′ := 𝑋 ′ ×𝑌 𝑌

′ is perfectly smooth over X of relative dimension 𝑒1 + 𝑒2, and 𝑋 ′′ → 𝑋 → 𝑍 is perfectly
smooth of relative dimension 𝑒2 + 𝑑2 + 𝑒1 + 𝑑1 by writing it as the composition of 𝑋 ′′ → 𝑌 ′ and𝑌 ′ → 𝑍 .

The following lemmas show that the integer d is well-defined.

Lemma 2.1.10. Let 𝑓 : 𝑋 → 𝑌 be a weakly perfectly smooth morphism of equidimensional pfp algebraic
spaces, such that the fibres of f are equidimensional of dimension d. Then Dim 𝑋 + 𝑑 = Dim𝑌 .

Proof. Since the dimension can be computed étale locally, we may assume that X and Y are equidi-
mensional pfp schemes. We can, moreover, compute the dimensions of X and Y in terms of the Krull
dimensions of their local rings at closed points since X and Y are pfp. So let 𝑥 ∈ 𝑋 be a closed point
with image 𝑦 ∈ 𝑌 , then since f is the perfection of a finite type morphism between Noetherian schemes,
it follows from [Sta23, Lemma 00OM] that

DimO𝑋,𝑥 ≤ DimO𝑌 ,𝑦 + DimO 𝑓 −1 (𝑦) ,𝑥 . (2.1.3)

Since f is flat (perfectly smooth morphisms are clearly flat, and flatness can be checked after an fpqc
cover (in particular a perfectly smooth cover)), it follows that going down holds for O𝑋,𝑥 → O𝑌 ,𝑦 (see
[Sta23, Lemma 00HS]). The inequality in (2.1.3) is then an equality by [Sta23, Lemma 00ON] applied
to the local rings of a choice of deperfection of f. �

The following lemma has a straightforward proof.

Lemma 2.1.11. If 𝑓 : 𝑌 → 𝑍 is weakly perfectly smooth of relative dimension d at 𝑦 ∈ 𝑌 , then there is
an open neighbourhood U of y, such that 𝑈 ∩ 𝑓 −1( 𝑓 (𝑦)) is equidimensional of dimension d.

A morphism 𝑓 : 𝑌 → 𝑍 is called weakly perfectly smooth if there is a perfectly smooth surjection
𝑔 : 𝑋 → 𝑌 , such that 𝑓 ◦ 𝑔 is perfectly smooth. The following lemma relates this to Definition 2.1.9,
the proof is straightforward.

Lemma 2.1.12. A morphism 𝑓 : 𝑌 → 𝑍 is weakly perfectly smooth if and only if for all 𝑦 ∈ 𝑌 , the
morphism f is weakly perfectly smooth of relative dimension 𝑑𝑦 at y, for some positive integer 𝑑𝑦 which
is allowed to depend on y.

Lemma 2.1.13. Let 𝑓 : 𝑌 → 𝑍 be a weakly perfectly smooth morphism of perfect algebraic spaces. If Y
is connected, then f is weakly perfectly smooth of relative dimension d for some d.

Proof. It follows from Lemma 2.1.12 that for 𝑦 ∈ 𝑌 , there exists a positive integer 𝑑𝑦 , such that f is
weakly perfectly smooth of relative dimension 𝑑𝑦 at y. Moreover, the same is true for all u in an open
neighbourhood 𝑈𝑦 of y.

Thus, if 𝑦, 𝑦′ ∈ 𝑌 with positive integers 𝑑𝑦 , 𝑑 ′𝑦 and open neighbourhoods 𝑈𝑦 ,𝑈𝑦′ , then 𝑈𝑦 ∩ 𝑈𝑦′

is nonempty because Y is connected. Therefore, there is a point 𝑢 ∈ 𝑈𝑦 ∩ 𝑈𝑦′ , such that f is weakly
perfectly smooth of relative dimensions d and 𝑑 ′ at u. By Lemma 2.1.11, it follows that 𝑑 = 𝑑 ′, and we
conclude that f is weakly perfectly smooth of relative dimension d. �
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Lemma 2.1.14. Let 𝑓 : 𝑌 → 𝑍 be a weakly perfectly smooth surjective morphism of pfp algebraic
spaces. Then Z is normal if and only if Y is normal.

Proof. This can be deduced from Lemma 2.1.7. �

2.1.15.
We follow [Sta23, Section 04XB] to define certain properties of morphisms of prestacks on Affperf

𝑘 that
are representable in morphisms of perfect algebraic spaces. For example, a morphism 𝑓 : 𝑋 → 𝑌 of
prestacks that is representable in perfect algebraic spaces is called perfectly smooth if it is representable
in perfectly smooth morphisms of perfect algebraic spaces. In other words, if for every morphism
𝑇 → 𝑌 , where T is a perfect algebraic space, the base change 𝑋𝑇 → 𝑇 is a perfectly smooth morphism
of perfect algebraic spaces.

A pfp algebraic stack is a stack Y on Affperf
𝑘 for the étale topology with diagonal representable in pfp

algebraic spaces that admits a perfectly smooth surjective6 map 𝑓 : 𝑈 → 𝑌 from a pfp algebraic space.
The main example that we will be interested in is the quotient stack7 [𝑋/𝐺] of a pfp algebraic space X
by a pfp group scheme G. This is a pfp algebraic stack because 𝑋 → [𝑋/𝐺] is perfectly smooth since
G is perfectly smooth over Spec 𝑘 (see Example 2.1.4). We will also need a notion of weak perfect
smoothness for morphisms of pfp algebraic stacks that are not necessarily representable.

Definition 2.1.16. A morphism 𝑓 : 𝑌 → 𝑍 of pfp algebraic stacks is called weakly perfectly smooth if
there is a perfectly smooth surjective morphism 𝑔 : 𝑋 → 𝑌 from a pfp algebraic space X, such that the
composition 𝑓 ◦ 𝑔 is perfectly smooth.

As before, this property is preserved under base change and composition. If 𝑓 : 𝑌 → 𝑍 is repre-
sentable, then this is (per definition) equivalent to asking that 𝑓 : 𝑌 → 𝑍 is representable in weakly
perfectly smooth morphisms of perfect algebraic spaces.

Example 2.1.17. Let G be a pfp group scheme over Spec 𝑘 , which is perfectly smooth over Spec 𝑘 by
Example 2.1.4. This implies that the natural map Spec 𝑘 → [Spec 𝑘/𝐺] is perfectly smooth, and thus
[Spec 𝑘/𝐺] → Spec 𝑘 is weakly perfectly smooth.

Example 2.1.18. Recall that an étale G-gerbe over a pfp algebraic stack Y is a morphism 𝑓 : 𝑋 → 𝑌 of
pfp algebraic stacks that is étale locally (on Y) of the form 𝑌 × [Spec 𝑘/𝐺] → 𝑌 . Since [Spec 𝑘/𝐺] →
Spec 𝑘 is weakly perfectly smooth, it follows that 𝑓 : 𝑋 → 𝑌 is weakly perfectly smooth because this
can be checked étale locally on Y.

Remark 2.1.19. In [XZ17, Definition A.1.13], a morphism of pfp algebraic stacks satisfying the property
in Definition 2.1.16 is called a perfectly smooth morphism. However, it is not clear to us why a morphism
𝑓 : 𝑌 → 𝑍 of pfp algebraic spaces satisfying the property in Definition 2.1.16 is perfectly smooth (in the
sense defined in the beginning of Section 2.1), rather than just weakly perfectly smooth. (This result
should be true, but we were not able to find a proof.)

Lemma 2.1.20. Suppose that X is a pfp algebraic space that is equidimensional of dimension d with
an action of a pfp group scheme G, and let Y be a pfp algebraic space together with a weakly perfectly
smooth morphism

𝑓 : 𝑌 → [𝑋/𝐺] .

Then Y is equidimensional if and only if f is weakly perfectly smooth of relative dimension n, where
Dim𝑌 = 𝑑 + 𝑛 − Dim𝐺.

6This means, per definition, that f is representable in perfectly smooth surjections of perfect algebraic spaces.
7We always take quotient stacks in the étale topology unless otherwise specified.
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Proof. Consider the fibre product diagram

𝑌 𝑋

𝑌 [𝑋/𝐺] .

𝑓

𝑓

The lemma is now a straightforward consequence of Lemma 2.1.11. �

2.2. Affine flag varieties, moduli stacks of shtukas and forgetful maps

2.2.1.
Let 𝑘 = F𝑝 , and let Z̆𝑝 = 𝑊 (𝑘) and Q̆𝑝 = Z̆𝑝 [1/𝑝], which come equipped with an automorphism 𝜎
coming from the absolute Frobenius on k. Let G be a connected reductive group overQ𝑝 and let 𝐵(𝐺,Q𝑝)

(respectively, 𝐵(𝐺, Q̆𝑝)) denote the (extended) Bruhat–Tits building of G over Q𝑝 (respectively, Q̆𝑝).
For a nonempty bounded subset Ξ ⊂ 𝐵(𝐺,Q𝑝) which is contained in an apartment, we let 𝐺 (Q𝑝)Ξ
(respectively, 𝐺 (Q̆𝑝)Ξ) denote the subgroup of 𝐺 (Q𝑝) (respectively, 𝐺 (Q̆𝑝)) which fixes Ξ pointwise.
By the main result of [BT84], there exists a smooth affine group scheme G̃Ξ over Z𝑝 with generic fibre
G which is uniquely characterised by the property G̃Ξ(Z̆𝑝) = 𝐺 (Q̆𝑝)Ξ. We call such a group scheme
the Bruhat–Tits stabiliser group scheme associated to Ξ. If Ξ = {𝑥} is a point, we write 𝐺 (Q𝑝)𝑥
(respectively, G̃𝑥) for 𝐺 (Q𝑝){𝑥 } (respectively, G̃{𝑥 }).

For Ξ ⊂ 𝐵(𝐺,Q𝑝) as above, we let GΞ denote the ‘connected stabiliser’ (cf. [BT84, Section 4]). We
are mainly interested in the case that Ξ is a point or an open facet 𝔣. In this case, G𝔣 (respectively, G𝑥) is
the parahoric group scheme associated to 𝔣 (respectively, x).

We may also consider the corresponding objects over Q̆𝑝 , and we use the same notation in this case.
When it is understood which point of 𝐵(𝐺,Q𝑝) or 𝐵(𝐺, Q̆𝑝) we are referring to, we simply write G̃ and
G for the corresponding group schemes.

An important case that we need for applications is when G̃𝑥 = G𝑥 , that is, when the parahoric is
equal to the Bruhat–Tits stabiliser. When this happens, we necessarily have G̃𝔣 = G̃𝑥 , where 𝔣 is the facet
containing x, and 𝑥 ∈ 𝔣 is a point ‘in general position’. A parahoric group scheme G overZ𝑝 (respectively,
Z̆𝑝) is called a connected parahoric if there exists 𝑥 ∈ 𝐵(𝐺,Q𝑝) (respectively, 𝑥 ∈ 𝐵(𝐺, Q̆𝑝)), such
that G = G𝑥 = G̃𝑥 .

Let 𝜋1 (𝐺) be the algebraic fundamental group of 𝐺 ⊗ Q𝑝 , equipped with its action of Gal(Q𝑝/Q𝑝)

(see the Introduction of [Bor98]), and let 𝐼 ⊂ Gal(Q𝑝/Q𝑝) be the inertia group.

Lemma 2.2.2. If 𝜋(𝐺)𝐼 is torsion free, then G̃𝑥 = G𝑥 for all x. In other words, all parahoric group
schemes are connected parahoric group schemes.

Proof. This follows from [PR08, Remark 11 of the appendix]. �

2.2.3.
Let 𝑆 ⊂ 𝐺Q̆𝑝 be a maximal Q̆𝑝-split torus defined over Q𝑝 which exists by [KP23, Axiom 4.1.27.UR2],
and let T be its centraliser. Then T is a maximal torus of G because 𝐺Q̆𝑝 is quasi-split by a theorem of
Steinberg (see [KP23, Theorem 2.3.3]). Choose a 𝜎-invariant alcove 𝔞 in the apartment of 𝐵(𝐺, Q̆𝑝)

associated to S. Let N be the normaliser of T in 𝐺Q̆𝑝 . We define the relative Weyl group as

𝑊0 := 𝑁 (Q̆𝑝)/𝑇 (Q̆𝑝)

and the Iwahori–Weyl group (or extended affine Weyl group) as

�̃� := 𝑁 (Q̆𝑝)/T (Z̆𝑝),
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where T over Z̆𝑝 is the connected Néron model of T. There is a short exact sequence (see [PR08,
Definition 7 of the Appendix])

0→ 𝑋∗(𝑇)𝐼 → �̃� → 𝑊0 → 0,

where I is the inertia group and 𝑋∗(𝑇)𝐼 denotes the inertia coinvariants of the cocharacter lattice 𝑋∗(𝑇)
of T. The map 𝑋∗(𝑇)𝐼 → �̃� is denoted on elements by 𝜆 ↦→ 𝑡𝜆. Let S ⊂ �̃� denote the set of simple
reflections in the walls of 𝔞, and let �̃�𝑎 be the subgroup of �̃� generated by S, which we will call the
affine Weyl group.

Parahoric subgroups K of 𝐺 (Q̆𝑝) that contain the Iwahori subgroup corresponding to 𝔞 are called
standard parahoric subgroups; they correspond to subsets 𝐾 ⊂ S, such that the subgroup𝑊𝐾 generated
by K is finite; we will call such subsets types. This identification is Frobenius equivariant in the sense
that 𝜎(K) corresponds to 𝜎(𝐾). In particular, a subset 𝐾 ⊂ S corresponds to a parahoric subgroup of G
if and only if 𝜎(𝐾) = 𝐾; note that our fixed Iwahori subgroup corresponds to ∅ ⊂ S. There are parahoric
group schemes G𝐾 over Z̆𝑝 associated to types K as above, and we have identifications 𝜎∗G𝐾 � G𝜎 (𝐾 ) .
In particular, if K is stable under 𝜎, then G𝐾 is defined over Z𝑝 . The maximal reductive quotient (G𝐾 )

red

of the special fibre G𝐾 of G𝐾 is a split reductive group over the residue field k of Q̆𝑝 , and the image of G∅
in (G𝐾 )

red is a Borel subgroup. The set of simple roots of (G𝐾 )
red with respect to this Borel subgroup

can be identified with K. The following lemma should be compared with [KP18, Remark 4.2.14.b)].
Lemma 2.2.4. Let 𝐽 ⊂ 𝐾 ⊂ S, and suppose that G𝐾 is a connected parahoric, then G𝐽 is a connected
parahoric.
Proof. Let 𝑥𝐾 , 𝑥𝐽 ∈ 𝐵(𝐺,Q𝑝), such that G𝐾 = G𝑥𝐾 and G𝐽 = G𝑥𝐽 . We assume that 𝑥𝐽 and 𝑥𝐾 are in
general position in their respective facets. Then we have G𝑥𝐾 = G̃𝑥𝐾 since G is a connected parahoric,
and we have G̃𝑥𝐽 = G̃𝔣𝐽 , where 𝔣𝐽 is the facet corresponding to J.

Since 𝑥𝐾 lies in the closure of 𝔣𝐽 since 𝐾 ⊃ 𝐽, it follows that G̃𝑥𝐽 (Z̆𝑝) ⊂ G̃𝑥𝐾 (Z̆𝑝) = G𝑥𝐾 (Z̆𝑝). But
G𝑥𝐾 (Z̆𝑝) is contained in the kernel of the Kottwitz map 𝜅 : 𝐺 (Q̆𝑝) → 𝜋1 (𝐺)𝐼 . Therefore, we have
G̃𝑥𝐽 (Z̆𝑝) ⊂ ker(𝜅), and hence, we deduce as in Lemma 2.2.2 that G̃𝑥𝐽 = G𝑥𝐽 . �

2.2.5.
A type 𝐾 ⊂ S is called very special if 𝑊𝐾 ⊂ �̃� maps isomorphically onto 𝑊0. Very special types
correspond to very special vertices in 𝔞, see [KP23, Lemma 1.3.42, Proposition 1.3.43], where they are
called extra special vertices. If K is 𝜎-stable, then the parahoric subgroup G𝐾 (Z𝑝) associated to a very
special type is called a very special parahoric subgroup. A fact that will be crucial for us is that there
exists a 𝜎-stable very special type K if G is quasi-split (see [KP23, Proposition 10.2.1]). Thus, if G is
quasi-split, then the standard Iwahori subgroup G∅ (Z𝑝) contains a very special parahoric subgroup.

2.2.6.
There is a split short exact sequence (our choice of 𝔞 provides a splitting, see [PR08, Lemma 14 of the
appendix])

0→ �̃�𝑎 → �̃� → 𝜋1 (𝐺)𝐼 → 0. (2.2.1)

The affine Weyl group �̃�𝑎 has the structure of a Coxeter group, and we will use this to define a Bruhat
order (denoted by ≤) and a notion of length on �̃� , by splitting (2.2.1) and regarding 𝜋1 (𝐺)𝐼 ⊂ �̃� as
the subset of length zero elements. We will write ℓ(𝑤) for the length of an element of �̃� . Similarly, we
define a partial order ≤ and a length function on 𝑊𝐾 \�̃�/𝑊𝐾 by taking minimal length representatives
of double cosets.

2.2.7.
In this section, we will recall some definitions from [Zhu17, XZ17, SYZ21] and state some results. Let
the notation be as in Sections 2.2.1 and 2.2.3, so, in particular, G denotes a connected reductive group
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over Q𝑝 . Let G𝐾 be a parahoric group scheme over Z̆𝑝 corresponding to a 𝜎-stable type 𝐾 ⊂ S. For an
object R of Affperf

𝑘 , we set

𝐷𝑅 = Spec𝑊 (𝑅), 𝐷∗𝑅 = Spec𝑊 (𝑅) [1/𝑝],

where𝑊 (𝑅) denotes the ring of p-typical Witt vectors of R. We define group-valued functors on Affperf
𝑘

sending an object R to

𝐿𝐺 (𝑅) := 𝐺 (𝐷∗𝑅)
𝐿+G𝐾 (𝑅) := G𝐾 (𝐷𝑅)

𝐿𝑚G𝐾 (𝑅) := G𝐾 (𝑊 (𝑅)/𝑝𝑚𝑊 (𝑅)) ,

which we call the loop group, respectively, the positive loop group, respectively, the m-truncated
loop group. It follows from [Zhu17, Section 1.1] that 𝐿𝑚G𝐾 and 𝐿+G𝐾 are representable in perfect
schemes over k and that 𝐿+G𝐾 = lim

←−−𝑚
𝐿𝑚G𝐾 . Moreover, [Zhu17, Proposition 1.1] tells us that 𝐿𝐺 is

representable by an ind-(perfect scheme), which means that it is isomorphic to an inductive limit of
perfect schemes along closed immersions. By [Zhu17, Lemma 1.2. (i)], the natural map 𝐿+G𝐾 → 𝐿𝐺
is a closed immersion.

2.2.8.
Fix an algebraic closure F𝑝 of F𝑝 , and set 𝑘 = F𝑝 . Let R be a perfect k-algebra, and let E and F be
G𝐾 -torsors on 𝐷𝑅.8 Recall from [XZ17, Section 3.1.3] that a modification 𝛽 : E � F is an isomorphism
of G-torsors

𝛽 : E
��
𝐷∗𝑅
→ F

��
𝐷∗𝑅
.

It follows from the proof of [Zhu17, Lemma 1.3] that there is an étale cover Spec 𝑅′ → Spec 𝑅, such
that E is trivial after pullback along Spec𝐷𝑅′ → Spec𝐷𝑅. Therefore, we can also think of G𝐾 -torsors
over 𝐷𝑅 as étale 𝐿+G𝐾 -torsors over Spec 𝑅.

We define the (partial) affine flag variety Gr𝐾 to be the functor on Affperf
𝑘 sending R to the set of

isomorphism classes of modifications

𝛼 : E � E0,

where E is a G𝐾 -torsor over 𝐷𝑅 and where E0 is the trivial G𝐾 -torsor over 𝐷𝑅. There is a natural action
of 𝐿𝐺, thought of as the functor

𝑅 ↦→ Aut( E0��
𝐷∗𝑅
)

on Gr𝐾 , by postcomposing 𝛼 with an automorphism of the restriction to 𝐷∗𝑅 of E0, and the orbit of the
k-point of Gr𝐾 given by the identity modification E0 → E0 induces a map 𝑂 : 𝐿𝐺 → Gr𝐾 . The map O
induces an identification (that we will implicitly use from now on)

Gr𝐾 (𝑘) � 𝐺 (Q̆𝑝)/G𝐾 (Z̆𝑝).

It is a result of [Zhu17, BS17] that Gr𝐾 is representable by an inductive limit of perfections of projective
k-schemes, with closed immersions as transition maps. In short, Gr𝐾 is ind-perfectly projective. We
also define the Hecke stack Hk𝐾 to be the presheaf in groupoids on Affperf

𝑘 sending R to the groupoid
of modifications 𝛽 : E � F . The natural map Gr𝐾 → Hk𝐾 is an 𝐿+G𝐾 -torsor for the étale topology,
where 𝐿+G𝐾 acts on Gr𝐾 via the closed immersion 𝐿+G𝐾 ⊂ 𝐿𝐺.

8Here, we mean torsor in the étale topology on 𝐷𝑅 = Spec𝑊 (𝑅) in the usual way.
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2.2.9.
Recall from [SYZ21, Definition 4.1.3] that a (local) G𝐾 -shtuka over a perfect k-algebra R is a pair (E , 𝛽),
where E is a G𝐾 -torsor over 𝐷𝑅 and where 𝛽 is a modification 𝛽 : 𝜎∗E � E . Here, 𝜎 : 𝐷𝑅 → 𝐷𝑅

denotes the Frobenius morphism induced from the absolute Frobenius on R, and we consider the
restriction of 𝜎∗E to 𝐷∗𝑅 as a G-torsor via the isomorphism 𝜎 : 𝜎∗𝐺 → 𝐺, coming from the fact that
G is defined over Q𝑝 . A morphism of shtukas (E , 𝛽) → (E ′, 𝛽′) is an isomorphism 𝑓 : E → E ′ of
G𝐾 -torsors, such that the following diagram commutes

𝜎∗E E

𝜎∗E ′ E ′.

𝛽

𝜎∗ 𝑓 𝑓

𝛽′

We will write Sht𝐺,𝐾 (𝑅) for the groupoid ofG𝐾 -shtukas over R and Sht𝐺,𝐾 for the presheaf in groupoids
on Affperf

𝑘 sending R to Sht𝐺,𝐾 (𝑅).

Example 2.2.10. Our main examples of shtukas come from p-divisible groups. More precisely, for
G𝐾 = GL𝑛,Z𝑝 , a G𝐾 -shtuka over a perfect ring R is a projective module M of rank n over𝑊 (𝑅) together
with an isomorphism

𝛽 : 𝜎∗𝑀 [1/𝑝] → 𝑀 [1/𝑝] .

If the map 𝛽 satisfies 𝑝𝑀 ⊂ 𝛽(𝜎∗𝑀) ⊂ 𝑀 , then the pair (𝑀, 𝛽) is a (contravariant) Dieudonné
module. By a result of Gabber, see [Lau18], there is a p-divisible group over Spec 𝑅 with contravariant
Dieudonné module (𝑀, 𝛽).

2.2.11.
For an inclusion of types 𝐽 ⊂ 𝐾 , there is a natural morphism of parahoric group schemes G𝐽 → G𝐾 . The
induced morphism on loop groups 𝐿+G𝐽 ⊂ 𝐿+G𝐾 is a closed immersion, since this induced morphism
commutes with the natural closed immersions of source and target to 𝐿𝐺 (see [Zhu17, Lemma 1.2. (i)]).9

If J and K are 𝜎-stable, then pushing out torsors along 𝐿+G𝐽 → 𝐿+G𝐾 induces a forgetful map

Sht𝐺,𝐽 → Sht𝐺,𝐾 .

In this section, we will show that these forgetful maps are representable in perfectly proper algebraic
spaces, which is an analogue of [PR08, Proposition 8.7].

Let (G𝐾 )
red be the maximal reductive quotient of the 1-truncated loop group 𝐿1G𝐾 = G𝐾 , and let

𝐻𝐽 be the image of G𝐽 in (G𝐾 )
red; it is a standard parabolic subgroup of type 𝐽 ⊂ 𝐾 (recall that K can

be identified with the set of simple roots of (G𝐾 )
red with respect to the Borel B that is the image of

G∅ → (G𝐾 )
red). Recall that for a perfect group scheme H, we write B𝐻 for the classifying stack of H;

in other words, B𝐻 is the groupoid valued functor that sends an object R of Affperf
𝑘 to the groupoid of H

torsors (in the étale topology) over Spec 𝑅. There is a natural morphism Spec 𝑘 → B𝐻 corresponding
to the trivial H-torsor over Spec 𝑘 , which induces an isomorphism [Spec 𝑘/𝐻] → B𝐻.

Lemma 2.2.12. The forgetful map B𝐿+G𝐽 → B𝐿+G𝐾 is a (G𝐾 )
red/𝐻𝐽 -fibration10 for the étale topology,

in particular, it is representable in perfectly proper algebraic spaces.

Proof. Let R be a perfect k-algebra, and let X be an 𝐿+G𝐾 torsor over Spec 𝑅 represented by a map
Spec 𝑅 → B𝐿+G𝐾 . It follows from the definition of quotient stacks that both squares in the following
diagram of stacks are Cartesian

9Here, we are using the cancellation theorem for closed immersions (see, e.g. [Vak24, Theorem 11.1.1]).
10This means that the basechange along Spec 𝑅 → B𝐿+G𝐾 for𝑅 ∈ Affperf

𝑘
is étale locally isomorphic to Spec 𝑅×(G𝐾 ) red/𝐻𝐽 .
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𝑋 Spec 𝑘

[𝑋/𝐿+G𝐽 ] B𝐿+G𝐽

Spec 𝑅 B𝐿+G𝐾 .

By [Zhu17, Lemma 1.3], there is an étale cover 𝑇 → Spec 𝑅, such that 𝑋𝑇 is isomorphic to the trivial
𝐿+G𝐾 torsor over T, hence [𝑋/𝐿+G𝐽 ] is étale locally isomorphic to Spec 𝑅× [𝐿+G𝐾 /𝐿+G𝐽 ]. Therefore,
it suffices to show that [𝐿+G𝐾 /𝐿+G𝐽 ] is representable in a perfectly proper scheme.11 We will argue as
in the proof of [PR08, Proposition 8.7] that there is an isomorphism

[𝐿+G𝐾 /𝐿+G𝐽 ] � [(G𝐾 )
red/𝐻𝐽 ],

and the latter is representable in a perfectly proper scheme because it is the perfection of a partial
flag variety for (G𝐾 )

red. By Lemma 2.3.5 below, the following commutative diagram of perfect group
schemes is Cartesian

𝐿+G𝐽 𝐻𝐽

𝐿+G𝐾 (G𝐾 )
red.

𝜑

It now follows formally that [𝐿+G𝐾 /𝐿+G𝐽 ] � [(G𝐾 )
red/𝐻𝐽 ]. �

Corollary 2.2.13. The map Sht𝐺,𝐽 → Sht𝐺,𝐾 is a (G𝐾 )
red/𝐻𝐽 -fibration for the étale topology, in

particular, it is representable in perfectly proper algebraic spaces.
Proof. This follows because the following diagram is Cartesian

Sht𝐺,𝐽 Sht𝐺,𝐾

B𝐿+G𝐽 B𝐿+G𝐾 .

(2.2.2)

Indeed, this is a straightforward consequence of the definitions (a G𝐽 -shtuka is the same thing as a G𝐾 -
shtuka (E , 𝛽) together with an 𝐿+G𝐽 -torsor E ′ and an isomorphism 𝛼 : E ′ ×𝐿+G𝐽 𝐿+G𝐾 � E , because
the natural map G𝐽 → G𝐾 is an isomorphism over Q𝑝). �

2.2.14. Relative position
It follows from the discussion in [HZ20, Section 3.6] that there is an 𝐿+G𝐾 -equivariant stratification

Gr𝐾 =
⋃

𝑤 ∈𝑊𝐾 \�̃� /𝑊𝐾

Gr𝐾 (𝑤),

where each Gr𝐾 (𝑤) is a locally closed subscheme of Gr𝐾 , such that on k-points, we recover the Bruhat–
Tits decomposition

Gr𝐾 (𝑘) = 𝐺 (Q̆𝑝)/G𝐾 (Z̆𝑝) =
⋃

𝑤 ∈𝑊𝐾 \�̃� /𝑊𝐾

G𝐾 (Z̆𝑝) �𝑤G𝐾 (Z̆𝑝)/G𝐾 (Z̆𝑝)

11Note that the property of a morphism of pfp algebraic spaces being perfectly proper is étale local on the target. This follows
from the fact that properness is étale local on the target, see [Sta23, Lemma 02L1], in combination with the topological invariance
of the étale site and [Zhu17, Lemma A.19].
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(see [PR08, Proposition 8 of the appendix]). We deduce from this that we get a decomposition[
𝐿+G𝐾 \Gr𝐾

]
=: Hk𝐾 =

⋃
𝑤 ∈𝑊𝐾 \�̃� /𝑊𝐾

Hk𝐾 (𝑤),

where Hk𝐾 (𝑤) = [𝐿+G𝐾 \Gr𝐾 (𝑤)]. It follows, moreover, from [HZ20, Section 3.6] that the closure of
Gr𝐾 (𝑤) is equal to

Gr𝐾 (≤𝑤) :=
⋃
𝑤′ ≤𝑤

Gr𝐾 (𝑤′).

Furthermore, when𝐾 = ∅, the Schubert cell Gr𝐾 (𝑤) is equidimensional of dimension equal to the length
ℓ(𝑤) of w. This latter statement is proved for a certain Demazure resolution 𝐷𝑤 → Gr𝐾 (≤𝑤) in [HZ20,
Proposition 3.4], and follows for Gr𝐾 (≤ 𝑤) (and hence Gr𝐾 (𝑤)) since the map 𝐷𝑤 → Gr𝐾 (≤ 𝑤) is
birational as explained in the proof of [HZ20, Proposition 3.7].

2.2.15.
Let {𝜇} be a 𝐺 (Q𝑝)-conjugacy class of cocharacters of 𝐺

Q𝑝
. Recall that we fixed a maximal torus T

of G in Section 2.2.3. Choose a Borel B of 𝐺Q̆𝑝 containing 𝑇Q̆𝑝 , and let 𝜇 be the image in 𝑋∗(𝑇)𝐼 of a
B-dominant representative of {𝜇}. The set of {𝜇}-admissible elements is defined as

Adm({𝜇}) = {𝑤 ∈ �̃� : 𝑤 ≤ 𝑡𝑥 (𝜇) for some 𝑥 ∈ 𝑊0}.

There is a unique element 𝜏 = 𝜏𝜇 ∈ Adm({𝜇}) of length zero and, in fact, Adm({𝜇}) ⊂ �̃�𝑎𝜏. For K
a 𝜎-stable type, we define Adm({𝜇})𝐾 as the image of Adm({𝜇}) under �̃� → 𝑊𝐾 \�̃�/𝑊𝐾 . We write
𝐾Adm({𝜇}) for Adm({𝜇}) ∩𝐾�̃� , where𝐾�̃� ⊂ �̃� denotes the subset of elements that are of minimal
length in their left 𝑊𝐾 -coset.

If {𝜇} is minuscule and K is a 𝜎-stable type, then we define the perfect local model attached to {𝜇}
and K to be the perfectly projective closed subscheme of Gr𝐾 given by

Mloc
𝐾, {𝜇} :=

⋃
𝑤 ∈Adm( {𝜇})𝐾

Gr𝐾 (𝑤).

This definition is motivated by the discussion in [SYZ21, Section 2.1.7] and, in particular, [SYZ21,
Corollary 2.1.11]. It follows from the discussion in [SYZ21, Section 2.1.7] that the scheme Mloc

𝐾, {𝜇}
is

equidimensional of dimension 𝑑 = 〈2𝜌, 𝜇〉, which is precisely the dimension of the flag variety for G
associated to 𝜇.

2.2.16.
Let {𝜇} be a conjugacy class of cocharacters of 𝐺

Q𝑝
as above, and let Adm({𝜇})𝐾 be the 𝜇-admissible

set. Recall that the stack Hk𝐾 is the moduli stack of modifications E � F of 𝐿+G𝐾 -torsors. We define
a map Rel : Sht𝐺,𝐾 → Hk𝐾 sending (E , 𝛽) to 𝛽 : 𝜎∗E � E . For 𝑤 ∈ 𝑊𝐾 \�̃�/𝑊𝐾 , we have the locally
closed substack Hk𝐾 (𝑤) ⊂ Hk𝐾 from Section 2.2.14, and its pullback along Rel defines a locally closed
substack

Sht𝐺,𝐾 (𝑤) ⊂ Sht𝐺,𝐾 .

Following [SYZ21, Definition 4.1.3], we define the stack of shtukas of level G𝐾 and type 𝜇 to be

Sht𝐺,𝐾 , {𝜇} :=
⋃

𝑤 ∈Adm( {𝜇})𝐾

Sht𝐺,𝐾 (𝑤);

it is a closed substack of Sht𝐺,𝐾 by the discussion in Section 2.2.14. If 𝐽 ⊂ 𝐾 is another 𝜎-stable type,
then the following diagram commutes by definition of Adm({𝜇})𝐽 and Adm({𝜇})𝐾 (but it is generally
not Cartesian)
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Sht𝐺,𝐽 , {𝜇} Sht𝐺,𝐽

Sht𝐺,𝐾 , {𝜇} Sht𝐺,𝐾 .

Proposition 2.2.17. The forgetful morphism Sht𝐺,𝐽 , {𝜇} → Sht𝐺,𝐾 , {𝜇} is representable in perfectly
proper algebraic spaces.
Proof. We know that Sht𝐺,𝐽 , {𝜇} → Sht𝐺,𝐽 is representable in perfectly proper algebraic spaces because
it is a closed immersion, and the map Sht𝐺,𝐽 → Sht𝐺,𝐾 is representable in perfectly proper algebraic
spaces by Corollary 2.2.13. The composition is thus representable in perfectly proper algebraic spaces
and factors over Sht𝐺,𝐾 , {𝜇}, which proves the result. �

2.3. Restricted local shtukas and forgetful maps

We will recall some results from [SYZ21, Section 4.2]. Fix a geometric conjugacy class of minuscule
cocharacters {𝜇} of 𝐺

Q𝑝
for the rest of this section, and let Adm({𝜇})𝐾 be the 𝜇-admissible set. Recall

from [SYZ21, Lemma 4.1.4] that Sht𝐺,𝐾 has the following quotient description: Let𝜎 : 𝐿+G𝐾 → 𝐿+G𝐾
be the relative Frobenius morphism, and let 𝐿+G𝐾 act on 𝐿𝐺 via ℎ · 𝑔 = (ℎ−1𝑔𝜎(ℎ)), we denote this
action by Ad𝜎 . With this notation, there is an isomorphism12

Sht𝐺,𝐾 �

[
𝐿𝐺

Ad𝜎 𝐿+G𝐾

]
.

The map Λ : 𝐿𝐺 → Sht𝐺,𝐾 constructed this way corresponds to a shtuka over 𝐿𝐺: It is the modification
𝛽 : E0

𝐿𝐺 � 𝜎
∗E0

𝐿𝐺 � E0
𝐿𝐺 given by the tautological element in 𝐿𝐺. Moreover, the map 𝐿𝐺 → Sht𝐺,𝐾

is precisely the universal 𝐿+G𝐾 -torsor over Sht𝐺,𝐾 .
Consider the following commutative diagram

𝐿𝐺 Gr𝐾

Sht𝐺,𝐾 Hk𝐾 .

Λ

𝑂

Rel

There is a closed subscheme Mloc,∞
𝐾, {𝜇}

⊂ 𝐿𝐺 defined to be the inverse image of Mloc
𝐾, {𝜇}

⊂ Gr𝐾 under
𝑂 : 𝐿𝐺 → Gr𝐾 . Since Mloc

𝐾, {𝜇}
⊂ Gr𝐾 is stable under the action of 𝐿+G𝐾 , it follows that Mloc,∞

𝐾, {𝜇}
⊂ 𝐿𝐺

is stable under the Ad𝜎-action of 𝐿+G𝐾 . The discussion in the previous paragraph, along with the
commutative diagram, tells us that there is a natural identification

Sht𝐺,𝐾 , {𝜇} �

⎡⎢⎢⎢⎢⎣
Mloc,∞

𝐾, {𝜇}

Ad𝜎 𝐿+G𝐾

⎤⎥⎥⎥⎥⎦ .
For 𝐽 ⊂ 𝐾 a 𝜎-stable subset, there is a closed immersion Mloc,∞

𝐽 , {𝜇}
⊂ Mloc,∞

𝐾, {𝜇}
which identifies

Mloc,∞
𝐾, {𝜇}

𝐿+G𝐽
⊂ Gr𝐽

with the preimage of Mloc
𝐾, {𝜇}

under Gr𝐽 → Gr𝐾 .

12Here, we are taking quotient stacks in the étale topology. Note that this shows that Sht𝐺,𝐾 is a stack in the étale topology.
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2.3.1.
Let 𝛽𝐾 : 𝐿+G𝐾 → (G𝐾 )

red be the natural map, where (G𝐾 )
red is the maximal reductive quotient of

G𝐾 = 𝐿1G𝐾 . Define Mloc,1−red
𝐾, {𝜇}

:= ker 𝛽𝐾 \Mloc,∞
𝐾, {𝜇}

; it is a (G𝐾 )
red-torsor over Mloc

𝐾, {𝜇}
. We then define

Sht(∞,1)
𝐺,𝐾 , {𝜇}

:=
⎡⎢⎢⎢⎢⎣

Mloc,1−red
𝐾, {𝜇}

Ad𝜎 𝐿+G𝐾

⎤⎥⎥⎥⎥⎦ .
It follows from Lemma 2.1.1 that the twisted conjugation action of 𝐿+G𝐾 on Mloc,1−red

𝐾, {𝜇}
factors through

the action of 𝐿𝑚G𝐾 for 𝑚 � 0. Indeed, this follows by applying the lemma to the inverse system
{𝐿𝑚G𝐾 × Mloc,1−red

𝐾, {𝜇}
}𝑚∈Z and the action map 𝐿+G𝐾 × Mloc,1−red

𝐾, {𝜇}
→ Mloc,1−red

𝐾, {𝜇}
from the inverse limit

to the pfp algebraic space Mloc,1−red
𝐾, {𝜇}

. For such m, we define the stack of (𝑚)-restricted shtukas of type
{𝜇} by

Sht(𝑚,1)
𝐺,𝐾 , {𝜇}

:=
⎡⎢⎢⎢⎢⎣

Mloc,1−red
𝐾, {𝜇}

Ad𝜎 𝐿𝑚G𝐾

⎤⎥⎥⎥⎥⎦ .
Note that there are natural morphisms

Sht𝐺,𝐾 , {𝜇} =

⎡⎢⎢⎢⎢⎣
Mloc,∞

𝐾, {𝜇}

Ad𝜎 𝐿+G𝐾

⎤⎥⎥⎥⎥⎦ →
⎡⎢⎢⎢⎢⎣

Mloc,1−red
𝐾, {𝜇}

Ad𝜎 𝐿+G𝐾

⎤⎥⎥⎥⎥⎦ →
⎡⎢⎢⎢⎢⎣

Mloc,1−red
𝐾, {𝜇}

Ad𝜎 𝐿𝑚G𝐾

⎤⎥⎥⎥⎥⎦ = Sht(𝑚,1)
𝐺,𝐾 , {𝜇}

(2.3.1)

induced by the natural map Mloc,∞
𝐾, {𝜇}

→ Mloc,1−red
𝐾, {𝜇}

and the natural map 𝐿+G𝐾 → 𝐿𝑚G𝐾 .

Remark 2.3.2. There is a ‘local model diagram’

Mloc,1−red
𝐾, {𝜇}

Sht(𝑚,1)
𝐺,𝐾 , {𝜇}

Mloc
𝐾, {𝜇}

.

The left-hand map is an 𝐿𝑚G𝐾 -torsor while the right-hand map is a (G𝐾 )
red-torsor. In particular, the stack

Sht(𝑚,1)
𝐺,𝐾 , {𝜇}

is an equidimensional pfp algebraic stack.13 Indeed, Mloc
𝐾, {𝜇}

is pfp and equidimensional, and
since the right-hand map is perfectly smooth of relative dimension Dim(G𝐾 )

red, we find that Mloc,1−red
𝐾, {𝜇}

is pfp and equidimensional by Lemma 2.1.10.

2.3.3.
The goal of this section is to compare Sht(𝑚,1)

𝐺,𝐾 , {𝜇}
and Sht(𝑚

′,1)
𝐺,∅, {𝜇}

. Unfortunately, there is no natural
map between them when 𝐾 ≠ ∅. However, we will be able to construct a correspondence between them
instead, and study its properties (see Proposition 2.3.4, Lemma 2.3.9 and Section 2.3.10).

Consider the closed immersion 𝐿+G∅ ⊂ 𝐿+G𝐾 , which induces a closed immersion 𝐵 ⊂ (G𝐾 )
red,

where B is the image of 𝐿1G∅ in (G𝐾 )
red; let 𝛾 : 𝐿+G∅ → 𝐵 be the natural surjection. By Lemma 2.1.1,

we can choose 𝑚 � 0, such that the action Ad𝜎 𝐿+G𝐾 on ker 𝛾\Mloc,∞
𝐾, {𝜇}

factors through 𝐿𝑚G𝐾 . As in
equation (2.3.1), the natural maps

Mloc,∞
𝐾, {𝜇}

→ ker 𝛾\Mloc,∞
𝐾, {𝜇}

𝐿+G𝐾 → 𝐿𝑚G𝐾

13A quotient stack [𝑋/𝐺 ], where G is a pfp group scheme over k and X is a pfp algebraic space, is defined to be equidimensional
if X is equidimensional. The dimension of [𝑋/𝐺 ] is defined to be Dim𝑋 −DimG; this is well-defined in view of Lemma 2.1.20.
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induce a natural map

Sht𝐺,𝐾 , {𝜇} =

⎡⎢⎢⎢⎢⎣
Mloc,∞

𝐾, {𝜇}

Ad𝜎 𝐿+G𝐾

⎤⎥⎥⎥⎥⎦ →
⎡⎢⎢⎢⎢⎣
ker 𝛾\Mloc,∞

𝐾, {𝜇}

Ad𝜎 𝐿𝑚G𝐾

⎤⎥⎥⎥⎥⎦ .
For m as above, let 𝐻𝑚 be the image of 𝐿+G∅ in 𝐿𝑚G𝐾 . Since Mloc,∞

∅, {𝜇}
⊂ Mloc,∞

𝐾, {𝜇}
, it follows that the

action of 𝐿+G∅ ⊂ 𝐿+G𝐾 on ker 𝛾\Mloc,∞
∅, {𝜇}

factors through 𝐻𝑚. Therefore, there is a natural map

Sht𝐺,∅, {𝜇} =

⎡⎢⎢⎢⎢⎣
Mloc,∞
∅, {𝜇}

Ad𝜎 𝐿+G∅

⎤⎥⎥⎥⎥⎦ →
⎡⎢⎢⎢⎢⎣
ker 𝛾\Mloc,∞

∅, {𝜇}

Ad𝜎 𝐻𝑚

⎤⎥⎥⎥⎥⎦
induced by Mloc,∞

∅, {𝜇}
→ ker 𝛾\Mloc,∞

∅, {𝜇}
and 𝐿+G∅ → 𝐻𝑚.

Proposition 2.3.4. If m is an integer, such that the action Ad𝜎 𝐿+G𝐾 on ker 𝛾\Mloc,∞
𝐾, {𝜇}

factors through
𝐿𝑚G𝐾 , then the diagram

Sht𝐺,∅, {𝜇}

[
ker 𝛾\Mloc,∞

∅,{𝜇}

Ad𝜎 𝐻𝑚

]

Sht𝐺,𝐾 , {𝜇}

[
ker 𝛾\Mloc,∞

𝐾,{𝜇}

Ad𝜎 𝐿𝑚G𝐾

]
,

where the right vertical map is induced by the closed immersions Mloc,∞
∅, {𝜇}

↩−→ Mloc,∞
𝐾, {𝜇}

and 𝐻𝑚 ↩−→ 𝐿𝑚G𝐾
is Cartesian.

We start by proving a lemma.
Lemma 2.3.5. Both squares in the following diagram of perfect group schemes are Cartesian.

𝐿+G∅ 𝐻𝑚 𝐵

𝐿+G𝐾 𝐿𝑚G𝐾 (G𝐾 )
red.

(2.3.2)

Proof. We first check that the outer square is Cartesian: It is enough to check this on 𝑘 ′-points for all
algebraically closed fields 𝑘 ′ because 𝐿+G∅ → 𝐿+G𝐾 is a closed immersion by [Zhu17, Lemma 1.2.
(i)] and perfect schemes are reduced. The result on the level of 𝑘 ′-points is [BT84, Theorem 4.6.33].

The left square is Cartesian by definition of 𝐻𝑚, and it, therefore, follows from general properties of
Cartesian squares that the right square is also Cartesian. �

Lemma 2.3.6. The stacks ⎡⎢⎢⎢⎢⎣
ker 𝛾\Mloc,∞

∅, {𝜇}

Ad𝜎 𝐻𝑚

⎤⎥⎥⎥⎥⎦ and
⎡⎢⎢⎢⎢⎣
ker 𝛾\Mloc,∞

𝐾, {𝜇}

Ad𝜎 𝐿𝑚G𝐾

⎤⎥⎥⎥⎥⎦
are equidimensional of the same dimension.
Proof. To compute the dimensions, we note that it follows from the right Cartesian square in
Lemma 2.3.5 that

Dim𝐻𝑚 = Dim 𝐿𝑚G𝐾 − (Dim(G𝐾 )
red − Dim 𝐵),

https://doi.org/10.1017/fmp.2024.22 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.22


20 P. van Hoften

and thus it suffices to show that

Dim
(
ker 𝛾\Mloc,∞

∅, {𝜇}

)
= Dim

(
ker 𝛾\Mloc,∞

𝐾, {𝜇}

)
− Dim(G𝐾 )

red + Dim 𝐵.

The map ker 𝛾\Mloc,∞
∅, {𝜇}

→ Mloc
∅, {𝜇}

is a B-torsor by construction and ker 𝛾\Mloc,∞
𝐾, {𝜇}

→ Mloc
𝐾, {𝜇}

is a
(G𝐾 )

red-torsor by construction (see (2.3.2)). Therefore, the equality above is equivalent to the equality

Dim Mloc
𝐾, {𝜇} = Dim Mloc

∅, {𝜇},

which is true (see Section 2.2.15). �

Proof of Proposition 2.3.4. Consider the following diagram, where the maps are defined as in (2.3.1)

Sht𝐺,∅, {𝜇}

[
Mloc,∞
∅,{𝜇}

Ad𝜎 𝐿+G∅

] [
ker 𝛾\Mloc,∞

∅,{𝜇}

Ad𝜎 𝐿+G∅

] [
ker 𝛾\Mloc,∞

∅,{𝜇}

Ad𝜎 𝐻𝑚

]

Sht𝐺,𝐾 , {𝜇}

[
Mloc,∞
𝐾,{𝜇}

Ad𝜎 𝐿+G𝐾

] [
ker 𝛾\Mloc,∞

𝐾,{𝜇}

Ad𝜎 𝐿+G𝐾

] [
ker 𝛾\Mloc,∞

𝐾,{𝜇}

Ad𝜎 𝐿𝑚G𝐾

]
.

It follows from Lemma 2.3.5 that 𝑃𝑚 := Ker (𝐿+G𝐾 → 𝐿𝑚G𝐾 ) is contained in 𝐿+G∅ and that 𝑃𝑚 is
also equal to the kernel of 𝐿+G∅ → 𝐻𝑚.

We deduce that the right horizontal maps are both 𝑃𝑚 gerbes. Therefore, the map from the top-left
term of the right-most square to the fibre product is a morphism of 𝑃𝑚-gerbes, and thus an isomorphism.
Similarly, the middle horizontal maps are both ker 𝛾-torsors. Therefore, the map from the top-left term
of the middle square to the fibre product is a morphism of ker 𝛾-torsors and thus an isomorphism. We
deduce that the outer square of the diagram is Cartesian. �

2.3.7.
In this section, we record two more lemmas.

Lemma 2.3.8. For each integer 𝑚′ ≥ 1, there is an integer 𝑚 � 𝑚′, such that there is an inclusion
ker (𝐿+G∅ → 𝐻𝑚) ⊂ ker

(
𝐿+G∅ → 𝐿𝑚

′G∅
)

of closed subschemes of 𝐿+G∅.

Proof. Fix 𝑚′. Recall that

𝐿+G𝐾 � lim
←−−
𝑚

𝐿𝑚G𝐾

𝐿+G∅ � lim
←−−
𝑚

𝐿𝑚G∅,

and the first of these equalities, moreover, implies that 𝐿+G∅ � lim
←−−𝑚

𝐻𝑚. The lemma now follows from
Lemma 2.1.1. �

It follows from Lemma 2.3.8 that for each 𝑚′, there is an 𝑚 � 𝑚′, such that the natural map
𝐿+G∅ → 𝐿𝑚

′G∅ factors through the natural map 𝐿+G∅ → 𝐻𝑚 via a surjection 𝐻𝑚 → 𝐿𝑚
′G∅. Note,

moreover, that 𝐿+G∅ → 𝐿1G∅ = G ∅ → (G ∅)red factors through 𝐿+G∅ → 𝐿1G∅ → 𝐵 because the
maximal reductive quotient of G ∅ is isomorphic to the maximal reductive quotient of B. Thus, there is a
natural map ker 𝛾 → ker(𝐿+G∅ → (G ∅)red) which induces a map ker 𝛾\Mloc,∞

∅, {𝜇}
→ Mloc,1−red

∅, {𝜇}
. Recall,

moreover, that for 𝑚 � 0, the action Ad𝜎 𝐿+G∅ on Mloc,1−red
∅, {𝜇}

factors through an action of 𝐿𝑚′G∅.
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Lemma 2.3.9. Let 𝑚′ � 0 be a positive integer, and let 𝑚 � 𝑚′ satisfy the conclusion of Lemma 2.3.8.
Then the map (induced by ker 𝛾\Mloc,∞

∅, {𝜇}
→ Mloc,1−red

∅, {𝜇}
and 𝐻𝑚 → 𝐿𝑚

′G∅)

⎡⎢⎢⎢⎢⎣
ker 𝛾\Mloc,∞

∅, {𝜇}

Ad𝜎 𝐻𝑚

⎤⎥⎥⎥⎥⎦ →
⎡⎢⎢⎢⎢⎣

Mloc,1−red
∅, {𝜇}

Ad𝜎 𝐿𝑚′G∅

⎤⎥⎥⎥⎥⎦ = Sht(𝑚
′,1)

𝐺,∅, {𝜇}

is weakly perfectly smooth.

Proof. The natural map

⎡⎢⎢⎢⎢⎣
ker 𝛾\Mloc,∞

∅, {𝜇}

Ad𝜎 𝐻𝑚

⎤⎥⎥⎥⎥⎦ →
⎡⎢⎢⎢⎢⎣
Mloc,1−red
∅, {𝜇}

Ad𝜎 𝐻𝑚

⎤⎥⎥⎥⎥⎦ = Sht(𝑚
′,1)

𝐺,∅, {𝜇}

is a torsor for ker(𝐵→ (G ∅)red), and hence weakly perfectly smooth. The natural map

⎡⎢⎢⎢⎢⎣
Mloc,1−red
∅, {𝜇}

Ad𝜎 𝐻𝑚

⎤⎥⎥⎥⎥⎦ →
⎡⎢⎢⎢⎢⎣

Mloc,1−red
∅, {𝜇}

Ad𝜎 𝐿𝑚′G∅

⎤⎥⎥⎥⎥⎦
is a gerbe for ker(𝐻𝑚 → 𝐿𝑚

′G∅) and is thus weakly perfectly smooth. It follows that the composition
is weakly perfectly smooth, and the lemma is proved. �

2.3.10.
The stack

[
ker 𝛾\Mloc,∞

𝐾,{𝜇}

Ad𝜎 𝐿𝑚G𝐾

]
is not a stack of restricted shtukas in the sense of Shen–Yu–Zhang [SYZ21].

However, it is closely related to the more general stacks of restricted shtukas introduced in [XZ17,
Section 5.3]. We define for 𝑛 ≥ 2 the quotient

Mloc,n
𝐾, {𝜇}

:= ker
(
𝐿+G𝐾 → 𝐿𝑛G𝐾

)
\Mloc,∞

𝐾, {𝜇}
.

Then, by Lemma 2.1.1, for 𝑚 � 𝑛, the action Ad𝜎 𝐿+G𝐾 on Mloc,n
𝐾, {𝜇}

will factor through 𝐿𝑚G𝐾 , and we
define

Sht(𝑚,𝑛) ,loc
𝐺,𝐾 , {𝜇}

:=
⎡⎢⎢⎢⎢⎣

Mloc,n
𝐾, {𝜇}

Ad𝜎 𝐿𝑚G𝐾

⎤⎥⎥⎥⎥⎦ .
We have added the ‘loc’ in the superscript and the condition that 𝑛 ≥ 2 so that these are not confused
with the previously introduced stacks of restricted shtukas (since the notation is not compatible).

The proof of Lemma 2.3.8 shows that for 𝑛 � 0, we have an inclusion ker (𝐿+G𝐾 → 𝐿𝑛G𝐾 ) ⊂ ker 𝛾
and thus a natural map

Mloc,n
𝐾, {𝜇}

→ ker 𝛾\Mloc,∞
𝐾, {𝜇}

.

This induces a morphism (for 𝑚 � 𝑛 as before)

Sht(𝑚,𝑛) ,loc
𝐺,𝐾 , {𝜇}

=

⎡⎢⎢⎢⎢⎣
Mloc,n

𝐾, {𝜇}

Ad𝜎 𝐿𝑚G𝐾

⎤⎥⎥⎥⎥⎦ →
⎡⎢⎢⎢⎢⎣
ker 𝛾\Mloc,∞

𝐾, {𝜇}

Ad𝜎 𝐿𝑚G𝐾

⎤⎥⎥⎥⎥⎦ ,
which is a torsor for the image of ker 𝛾 in 𝐿𝑛G𝐾 and thus perfectly smooth.
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2.3.11. The EKOR stratification
Recall that 𝐾Adm({𝜇}) is the intersection of Adm({𝜇}) with 𝐾�̃� , where 𝐾�̃� ⊂ �̃� denotes the subset
of elements that are of minimal length in their left𝑊𝐾 -coset. By [SYZ21, Lemma 4.2.4], the underlying
topological space of Sht(𝑚,1)

𝐺,𝐾 , {𝜇}
is isomorphic to 𝐾Adm({𝜇}) equipped with the partial order topology

(for the partial order � on 𝐾Adm({𝜇}) introduced in [SYZ21, page 3123]). They use this to define
locally closed substacks Sht(𝑚,1)

𝐺,𝐾 , {𝜇}
{𝑤} for 𝑤 ∈ 𝐾Adm({𝜇}), such that the locally closed substack

Sht(𝑚,1)
𝐺,𝐾 , {𝜇}

{� 𝑤} :=
⋃
𝑤′ �𝑤

Sht(𝑚,1)
𝐺,𝐾 , {𝜇}

{𝑤′}

is closed. This allows us to define the Ekedahl–Kottwitz–Oort–Rapoport (EKOR) stratification on any
stack mapping to Sht(𝑚,1)

𝐺,𝐾 , {𝜇}
; for example, on Sht𝐺,𝐾 , {𝜇} via (2.3.1) and later on Shimura varieties of

Hodge type. Note that if 𝐾 = ∅, then the EKOR stratification agrees with the Kottwitz–Rapoport (KR)
stratification from Section 2.2.15 and � agrees with ≤. This follows from [SYZ21, Section 1.3.2] and
the discussion preceding [SYZ21, Proposition 4.2.5].

2.4. Affine Deligne–Lusztig varieties

Recall from [RR96, Section 2.3] that there is a partial order on the set 𝐵(𝐺) of 𝜎-conjugacy classes in
𝐺 (Q̆𝑝). Let {𝜇} be a 𝐺 (Q𝑝)-conjugacy class of cocharacters of 𝐺

Q𝑝
, and let 𝐵(𝐺, {𝜇}) ⊂ 𝐵(𝐺) be

the set of neutral acceptable 𝜎-conjugacy classes with respect to {𝜇} (see [RV14, Definition 2.5]).

2.4.1.
Let E be an 𝐿𝐺-torsor over 𝑘 ′, with 𝑘 ′ an algebraically closed field of characteristic p, and let
𝛽 : 𝜎∗E → E be an isomorphism, where 𝜎 is the absolute Frobenius. After choosing a trivialisa-
tion of E , we see that 𝛽 can be represented by an element 𝑏𝛽 ∈ 𝐺 (𝑊 (𝑘 ′) [1/𝑝]) well-defined up to
𝜎-conjugacy. Since the set of 𝜎-conjugacy classes in 𝐺 (𝑊 (𝑘 ′) [1/𝑝]) does not depend on the choice
of algebraically closed field 𝑘 ′, it thus gives us an element [𝑏𝛽] ∈ 𝐵(𝐺).

Let R be a perfect k-algebra, let E be an 𝐿𝐺-torsor over R and let 𝛽 : 𝜎∗E → E be an isomorphism.
If 𝑥 ∈ Spec 𝑅 and K is an algebraic closure of the residue field 𝑘 (𝑥), then we will write [𝑏𝛽 (𝑥)] ∈ 𝐵(𝐺)
for the 𝜎-conjugacy class of the pullback of (E , 𝛽) along Spec𝐾 → Spec 𝑅. Then for [𝑏] ∈ 𝐵(𝐺), the
subset (using the partial order introduced above)

(Spec 𝑅)≤[𝑏] := {𝑥 ∈ Spec 𝑅 : [𝑏𝛽 (𝑥)] ≤ [𝑏]}

is closed in Spec 𝑅 by [RR96, Theorem 3.6.(ii)] and

(Spec 𝑅)[𝑏] := {𝑥 ∈ Spec 𝑅 : [𝑏𝛽 (𝑥)] = [𝑏]}

is locally closed.

2.4.2.
Given Spec 𝑅 → Sht𝐺,𝐾 corresponding to a G𝐾 -shtuka (E ′, 𝛽), we can set E to be the pushout of E ′
along 𝐿+G𝐾 → 𝐿𝐺 to obtain a pair (E , 𝛽) as above. Then we may form the locally closed subsets
(Spec 𝑅)[𝑏] ⊂ Spec 𝑅 as above. This allows us to define a stratification

Sht𝐺,𝐾 :=
⋃

[𝑏] ∈𝐵 (𝐺)

Sht𝐺,𝐾 , [𝑏] ,

where Sht𝐺,𝐾 , [𝑏] denotes the locally closed substack of Sht𝐺,𝐾 whose R-points are given by the full
subgroupoid

Sht𝐺,𝐾 , [𝑏] (𝑅) ⊂ Sht𝐺,𝐾 (𝑅)
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of maps Spec 𝑅 → Sht𝐺,𝐾 , such that (Spec 𝑅)[𝑏] = Spec 𝑅. We will write Sht𝐺,𝐾 , {𝜇}, [𝑏] for the
intersection (fibre product over Sht𝐺,𝐾 ) of Sht𝐺,𝐾 , {𝜇} and Sht𝐺,𝐾 , [𝑏] ; we will see in Corollary 2.4.7
that this is nonempty if and only if [𝑏] ∈ 𝐵(𝐺, {𝜇}).

2.4.3.
Let 𝐾 ⊂ S be a 𝜎-stable type, and let 𝑏 ∈ 𝐺 (Q̆𝑝). Then we define the affine Deligne–Lusztig set

𝑋 (𝜇, 𝑏)𝐾 = {𝑔 ∈ 𝐺 (Q̆𝑝)/G𝐾 (Z̆𝑝) | 𝑔−1𝑏𝜎(𝑔) ∈
⋃

𝑤 ∈Adm( {𝜇})𝐾

G𝐾 (Z̆𝑝) �𝑤G𝐾 (Z̆𝑝)/G𝐾 (Z̆𝑝)}.

Let 𝐽𝑏 be the algebraic group over Q𝑝 whose R-points are given by

𝐽𝑏 (𝑅) = {𝑔 ∈ 𝐺 (Q̆𝑝 ⊗Q𝑝 𝑅) | 𝑔
−1𝑏𝜎(𝑔) = 𝑏}.

Then 𝐽𝑏 (Q𝑝) ⊂ 𝐺 (Q̆𝑝) acts on 𝑋 (𝜇, 𝑏)𝐾 via left multiplication. By [He16, Theorem 1.1], the set
𝑋 (𝜇, 𝑏)𝐾 is nonempty if and only if [𝑏] ∈ 𝐵(𝐺, {𝜇}). Moreover, [He16, Theorem 1.1] says that for
𝐽 ⊂ 𝐾 another 𝜎-stable type, the natural projection 𝐺 (Q̆𝑝)/G𝐽 (Z̆𝑝) → 𝐺 (Q̆𝑝)/G𝐾 (Z̆𝑝) induces a
𝐽𝑏 (Q𝑝)-equivariant surjection

𝑋 (𝜇, 𝑏)𝐽 → 𝑋 (𝜇, 𝑏)𝐾 .

We will soon see that 𝑋 (𝜇, 𝑏)𝐾 can be identified with the set of k-points of a perfect scheme over k,
which we will also denote by 𝑋 (𝜇, 𝑏)𝐾 .

2.4.4.
Let K be a 𝜎-stable type, let 𝑏 ∈ 𝐺 (Q̆𝑝) and consider the functor 𝑋 (𝜇, 𝑏)′𝐾 on Affperf

𝑘 sending R to the
set of isomorphism classes of commutative diagrams of modifications of G𝐾 -torsors on 𝐷𝑅

𝜎∗E1 E1

𝜎∗E0 E0,

𝛽1

𝜎∗𝛽0 𝛽0

𝑏

(2.4.1)

such that 𝛽1 : 𝜎∗E1 � E1, considered as an element of Hk𝐾 (𝑅), lies in
(⋃

𝑤 ∈Adm( {𝜇})𝐾 Hk𝐾 (𝑤)
)
(𝑅).

Here, b is the modification of the trivial 𝐺𝐾 -torsor 𝜎∗E0 � E0 given by multiplication by b. We will
sometimes refer to 𝛽0 as a quasi-isogeny of shtukas from (E1, 𝛽1) → (E0, 𝑏).

Lemma 2.4.5. The morphism 𝑋 (𝜇, 𝑏)′𝐾 → Gr𝐾 that sends a diagram, as in (2.4.1) to 𝛽0 : E1 � E0, is
a closed immersion. Moreover, it identifies

𝑋 (𝜇, 𝑏)′𝐾 (𝑘) ⊂ Gr𝐾 (𝑘) = 𝐺 (Q̆𝑝)/G𝐾 (Z̆𝑝)

with the affine Deligne–Lusztig set 𝑋 (𝜇, 𝑏)𝐾 from Section 2.4.3.

Proof. Consider the functor 𝑋 (𝑏) sending R to the set of isomorphism classes of commutative diagrams
of modifications of G𝐾 -torsors on 𝐷𝑅

𝜎∗E1 E1

𝜎∗E0 E0

𝛽1

𝜎∗𝛽0 𝛽0

𝑏

(2.4.2)
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as before but now without the condition that 𝛽1 ∈
(⋃

𝑤 ∈Adm( {𝜇})𝐾 Hk𝐾 (𝑤)
)
(𝑅). As before, [HZ20,

the discussion after Remark 3.5] tells us that 𝑋 (𝜇, 𝑏)′𝐾 is a closed subfunctor of 𝑋 (𝑏), and the lemma
would follow if we could show that the map

𝑓 : 𝑋 (𝑏) → Gr𝐾

sending a diagram as in (2.4.2) to 𝛽0 : E1 � E0 is an isomorphism. The map f is an isomorphism
because the map 𝑔 : Gr𝐾 → 𝑋 (𝑏) sending 𝛽0 : E1 � E0 to the diagram

𝜎∗E1 E1

𝜎∗E0 E0

𝛽1

𝜎∗𝛽0 𝛽0

𝑏

with 𝛽1 = 𝛽−1
0 𝑏𝜎∗𝛽0 is an inverse to f. We see that 𝑋 (𝜇, 𝑏)′𝐾 (𝑘) is cut out from 𝑋 (𝑏) (𝑘) =

𝐺 (Q̆𝑝)/G𝐾 (Z̆𝑝) by the condition that 𝛽1 ∈
⋃

𝑤 ∈Adm( {𝜇})𝐾 Hk𝐾 (𝑤) (𝑘), in other words, that

𝛽−1
0 𝑏𝜎∗𝛽0 ∈

⋃
𝑤 ∈Adm( {𝜇})

G𝐾 (Z̆𝑝) �𝑤G𝐾 (Z̆𝑝)/G𝐾 (Z̆𝑝).

This is precisely the condition cutting out 𝑋 (𝜇, 𝑏)𝐾 ⊂ 𝐺 (Q̆𝑝)/G𝐾 (Z̆𝑝), and so we are done. �

From now on, we will write 𝑋 (𝜇, 𝑏)𝐾 for 𝑋 (𝜇, 𝑏)′𝐾 by abuse of notation. It follows from [HV18,
Lemma 1.1] and [ZZ20, Corollary 2.5.3] that 𝑋 (𝜇, 𝑏)𝐾 is actually a perfect scheme that is perfectly
locally of finite type.

If 𝑏′ is 𝜎-conjugate to b, that is, if 𝑏′ = 𝑔−1𝑏𝜎(𝑔) with 𝑔 ∈ 𝐺 (Q̆𝑝), then 𝑋 (𝜇, 𝑏)𝐾 � 𝑋 (𝜇, 𝑏′)𝐾 via
the map

𝜎∗E1 E1

𝜎∗E0 E0.

𝛽1

𝜎∗𝛽0 𝛽0

𝑏

↦→

𝜎∗E1 E1

𝜎∗E0 E0.

𝛽1

𝜎 (𝑔)𝜎∗𝛽0 𝑔𝛽0

𝑏′

We note that this map is nothing more than the action of 𝑔 ∈ 𝐿𝐺 (𝑘) on 𝑋 (𝜇, 𝑏)𝐾 ⊂ Gr𝐾 via the natural
left action of 𝐿𝐺 on Gr𝐾 . For 𝑏′ = 𝑏, this induces an action of the closed subgroup 𝐹𝑏 ⊂ 𝐿𝐺 on
𝑋 (𝜇, 𝑏)𝐾 , where 𝐹𝑏 is defined as the subfunctor of 𝐿𝐺 sending a perfect F𝑝-algebra R to the group

𝐹𝑏 (𝑅) = {𝑔 ∈ 𝐿𝐺 (𝑅) | 𝑔
−1𝑏𝜎(𝑔) = 𝑏}.

The k-points of 𝐹𝑏 are in bijection with 𝐽𝑏 (Q𝑝), where 𝐽𝑏 is the algebraic group over Q𝑝 introduced in
Section 2.4.3. Recall the notion of a pro-étale cover of a scheme (see [BS15, Definition 1.2]).
Lemma 2.4.6. Consider the morphism Θ𝑏 : 𝑋 (𝜇, 𝑏)𝐾 → Sht𝐺,𝐾 , {𝜇}, [𝑏] , which sends a diagram as in
(2.4.1) to (E1, 𝛽1). This morphism is 𝐹𝑏-invariant for the trivial action on the target and induces an
isomorphism of groupoids

Sht𝐺,𝐾 , {𝜇}, [𝑏] � [𝐹𝑏\𝑋 (𝜇, 𝑏)𝐾 ] ,

where the quotient stack is taken in the pro-étale topology. Moreover, 𝐹𝑏 is isomorphic to the locally
profinite group scheme 𝐽𝑏 (Q𝑝) associated to the topological group 𝐽𝑏 (Q𝑝).14

14For a topological group B, we define 𝐵 as the functor on Affperf
𝑘

sending R to the group of continuous functions | Spec 𝑅 | → 𝐵,
where | Spec 𝑅 | is the underlying topological space of Spec 𝑅. When B is profinite, this is representable in an affine group scheme,

https://doi.org/10.1017/fmp.2024.22 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.22


Forum of Mathematics, Pi 25

Proof. The morphism Θ𝑏 is 𝐹𝑏-invariant, since the action of 𝐹𝑏 on 𝑋 (𝜇, 𝑏)𝐾 does not change (E1, 𝛽1).
For a scheme 𝑇 ↦→ Sht𝐺,𝐾 , {𝜇}, [𝑏] , the set 𝑋 (𝜇, 𝑏)𝐾 (𝑇) is the set of quasi-isogenies from (E1, 𝛽1) to
(E0

𝑇 , 𝑏𝑇 ), which is either empty or has a simply transitive action of the group 𝐹𝑏 (𝑇) of self quasi-
isogenies of (E0

𝑇 , 𝑏𝑇 ). In other words, we have shown that Θ𝑏 is a pseudo-torsor for 𝐹𝑏 . By [FS21,
Theorem I.2.1], for any G𝐾 -shtuka (E1, 𝛽1) ∈ Sht𝐺,𝐾 , [𝑏] (𝑇), the pseudo-torsor of quasi-isogenies to
(E0

𝑇 , 𝑏𝑇 ) has a section pro-étale locally on T. Thus, we find that map Θ𝑏 is a pro-étale torsor for 𝐹𝑏 . In
other words, there is an isomorphism

Sht𝐺,𝐾 , {𝜇}, [𝑏] � [𝐹𝑏\𝑋 (𝜇, 𝑏)𝐾 ] .

It also follows from [FS21, Theorem I.2.1] that 𝐹𝑏 is isomorphic to the locally profinite group scheme
𝐽𝑏 (Q𝑝) associated to 𝐽𝑏 (Q𝑝). �

Corollary 2.4.7. The stack Sht𝐺,𝐾 , {𝜇}, [𝑏] is nonempty if and only if [𝑏] ∈ 𝐵(𝐺, {𝜇}).

Proof. This is a direct consequence of Lemma 2.4.6 in combination with the analogous result for
𝑋 (𝜇, 𝑏)𝐾 (F𝑝), which is [He16, Theorem 1.1]. �

3. Uniformisation of isogeny classes

In this section, we will recall the construction of the Kisin–Pappas integral models of Shimura varieties
of Hodge type with parahoric level structure and recall the construction of Hamacher–Kim [HK19]
of shtukas on the perfections of their special fibres. We also discuss the change-of-parahoric maps
constructed by Zhou in [Zho20], and show that the shtukas of Hamacher–Kim are compatible with these
maps using results of [PR21].

We then recall the results from Appendix A about the existence of CM lifts for Shimura varieties with
very special parahoric level and use that to deduce the existence of CM lifts for arbitrary parahorics.
Next, we study how uniformisation ‘lifts’ along the change-of-parahoric maps. Concretely, we will show
that uniformisation of isogeny classes at Iwahori level follows from uniformisation at a very special
level if a certain diagram of stacks on Affperf

𝑘 is Cartesian.

3.1. Integral models of Shimura varieties

We recall the construction of the integral models of Shimura varieties of Hodge type in [KP18]. Let
(𝐺, 𝑋) be a Shimura datum with reflex field E, and let {𝜇ℎ} be the𝐺 (C)-conjugacy class of cocharacters
of 𝐺C defined in [Zho20, Section 6]. Let A 𝑓 denote the ring of finite adeles and A𝑝

𝑓 the subring of
A 𝑓 with trivial p-component. Let 𝑈𝑝 ⊂ 𝐺 (Q𝑝) and 𝑈 𝑝 ⊂ 𝐺 (A𝑝

𝑓 ) be compact open subgroups, write
𝑈 = 𝑈 𝑝𝑈𝑝 . Then for𝑈 𝑝 sufficiently small

𝐺 (Q)\𝑋 × 𝐺 (A 𝑓 )/𝑈

has the structure of an algebraic variety over C, which has a canonical model Sh𝑈 (𝐺, 𝑋) over the reflex
field E of (𝐺, 𝑋). We will also consider the projective limits (which exist by [Sta23, Tag 01YX] since
the transition maps are finite étale and the schemes are qcqs)

Sh𝑈𝑝 (𝐺, 𝑋) := lim
←−−
𝑈 𝑝

Sh𝑈 𝑝𝑈𝑝 (𝐺, 𝑋)

Sh(𝐺, 𝑋) := lim
←−−
𝑈

Sh𝑈 (𝐺, 𝑋).

and thus when B is locally profinite, it is representable in a group scheme.
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3.1.1.
Let V be a vector space over Q of dimension 2𝑔 equipped with a perfect alternating bilinear form 𝜓.
For a Q-algebra R, we write 𝑉𝑅 = 𝑉 ⊗Q 𝑅. Let 𝐺𝑉 denote the corresponding group of symplectic
similitudes, and let H𝑉 denote the set of homomorphisms ℎ : S → 𝐺𝑉 ,R corresponding to the Siegel
upper and lower half space, where S := ResC/R G𝑚 is the Deligne torus. For the rest of this section, we
fix an embedding of Shimura data 𝜄 : (𝐺, 𝑋) → (𝐺𝑉 ,H𝑉 ). We sometimes write G for 𝐺Q𝑝 when there
is no risk of confusion. We will also assume for the rest of this section that the following conditions hold

𝐺 splits over a tamely ramified extension of Q𝑝 and 𝑝 � |𝜋1 (𝐺
der) |.

Let G be a connected parahoric subgroup of G, that is, G = G𝑥 = G◦𝑥 for some 𝑥 ∈ 𝐵(𝐺,Q𝑝) (see Section
2.2.1). We will follow the notation of Section 2 to write G = G𝐾 for some 𝜎-stable type 𝐾 ⊂ S. By
[KP18, Section 2.3.15], after replacing 𝜄 by another symplectic embedding, there is a closed immersion
G𝐾 → P , where P is a parahoric group scheme of 𝐺𝑉 corresponding to the stabiliser of a lattice
𝑉Z𝑝 ⊂ 𝑉 . Upon scaling 𝑉Z𝑝 , we may assume 𝑉∨

Z𝑝
⊂ 𝑉Z𝑝 . This induces a closed immersion (see [KP18,

Proposition 2.3.7]) of local models

𝑀 loc
G𝐾 ,𝑋 → 𝑀 loc

P ,H𝑉
⊗ O𝐸,𝑣

for every place v of E above p. Here, the local models are as introduced in [KP18, Section 2.1].

3.1.2.
Let 𝑈 𝑝

𝑉 ⊂ 𝐺𝑉 (A
𝑝
𝑓 ) be a sufficiently small compact open subgroup. Let 𝑉Z(𝑝) = 𝑉Z𝑝 ∩ 𝑉 and write

𝐺Z(𝑝) for the Zariski closure of G in 𝐺𝐿(𝑉Z(𝑝) ), then 𝐺Z(𝑝) ⊗Z(𝑝) Z𝑝 � G𝐾 . The choice of 𝑉Z(𝑝) gives
rise to a compact open subgroup 𝑈𝑉 ,𝑝 ⊂ 𝐺𝑉 (Q𝑝) which gives the Shimura variety Sh𝑈𝑉 (𝐺𝑉 ,H𝑉 )

of level 𝑈𝑉 = 𝑈 𝑝
𝑉𝑈𝑉 ,𝑝 an interpretation as a moduli space of (weakly polarised) abelian varieties up

to prime-to-p isogeny, and hence an integral model 𝒮𝑈𝑉 (𝐺𝑉 ,H𝑉 ) over Z(𝑝) , which is described in
[Zho20, Section 6.3].

3.1.3.
For the rest of this paper, we fix an algebraic closure Q of E, and for each place v of Q, an algebraic
closure Q𝑣 together with an embedding Q→ Q𝑣 . Using these embeddings, we get a 𝐺 (Q𝑝)-conjugacy
class of cocharacter {𝜇ℎ} induced from the Hodge cocharacter associated to X.

By [Kis10, Lemma 2.1.2], we can choose 𝑈 𝑝
𝑉 , such that 𝜄 induces a closed immersion

Sh𝑈 (𝐺, 𝑋) ↩→ Sh𝑈𝑉 (𝐺𝑉 ,H𝑉 )𝐸

defined over E. The choice of embedding 𝐸 → Q𝑝 determines a place v of E. Write O𝐸, (𝑣) for the
localisation of O𝐸 at v, let 𝐸𝑣 be the completion of E at v and O𝐸,𝑣 the ring of integers of 𝐸𝑣 . We
assume the residue field has 𝑞 = 𝑝𝑟 elements and, as before, k will denote an algebraic closure of F𝑞 .
We define 𝒮𝑈 (𝐺, 𝑋)− to be the Zariski closure of Sh𝑈 (𝐺, 𝑋) inside 𝒮𝑈𝑉 (𝐺𝑉 ,H𝑉 ) ⊗Z(𝑝) O𝐸, (𝑣) , and
𝒮𝑈 (𝐺, 𝑋) to be its normalisation. By construction, for 𝑈 𝑝

1 ⊂ 𝑈
𝑝
2 compact open subgroups of 𝐺 (A𝑝

𝑓 ),
there are finite étale transition maps 𝒮𝑈 𝑝

1 𝑈𝑝 (𝐺, 𝑋) → 𝒮𝑈 𝑝
2 𝑈𝑝 (𝐺, 𝑋), and we write 𝒮𝑈𝑝 (𝐺, 𝑋) :=

lim
←−−𝑈 𝑝

𝒮𝑈 𝑝𝑈𝑝 (𝐺, 𝑋). Under these assumptions, we have the following result:

Theorem 3.1.4 ([KP18] Theorems 4.2.2, 4.2.7). The O𝐸, (𝑣) scheme 𝒮𝑈𝑝 (𝐺, 𝑋) is a flat 𝐺 (A𝑝
𝑓 )-

equivariant extension of Sh𝑈𝑝 (𝐺, 𝑋). Moreover, 𝒮𝑈 (𝐺, 𝑋)O𝐸,𝑣 fits in a local model diagram

𝒮𝑈 (𝐺, 𝑋)O𝐸,𝑣

𝜋

����
���

���
��

𝑞
�����

���
���

���
�

𝒮𝑈 (𝐺, 𝑋)O𝐸,𝑣 𝑀 loc
G𝐾 ,𝑋

,

where q is a G𝐾 -torsor and 𝜋 is smooth of relative dimension Dim𝐺.
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Note that the main result of [Pap22] tells us that the integral model 𝒮𝑈 (𝐺, 𝑋) does not depend on
the choice of Hodge embedding.

3.1.5.
By [Kis10, Proposition 1.3.2], the subgroup𝐺Z(𝑝) is the stabiliser of a collection of tensors 𝑠𝛼 ∈ 𝑉 ⊗Z(𝑝) for
𝛼 ∈ 𝒜. Let ℎ : A→ 𝒮𝑈 (𝐺, 𝑋) denote the pullback of the universal abelian variety on 𝒮𝑈𝑉 (𝐺𝑉 ,H𝑉 ),
and let 𝑉𝐵 := 𝑅1ℎan∗Z(𝑝) , where ℎan is the map of complex analytic spaces associated to h. We also let
V = 𝑅1ℎ∗Ω• be the relative de Rham cohomology of A. Using the de Rham isomorphism, the tensors
𝑠𝛼 give rise to a collection of Hodge cycles 𝑠𝛼,𝑑𝑅 ∈ V ⊗C , where VC is the complex analytic vector bundle
associated to V . By [Kis10, Section 2.2], these tensors are defined over E, and, in fact, over O𝐸, (𝑣) by
[KP18, Proposition 4.2.6].

Similarly, for a finite prime ℓ ≠ 𝑝, we let Vℓ = 𝑅1ℎ�́�𝑡∗Qℓ and V𝑝 = 𝑅1ℎ𝜂,�́�𝑡∗Z𝑝 , where ℎ𝜂 is the
generic fibre of h. Using the étale-Betti comparison isomorphism, we obtain tensors 𝑠𝛼,ℓ ∈ V ⊗ℓ and
𝑠𝛼,𝑝 ∈ V ⊗𝑝 . For ∗ = 𝐵, 𝑑𝑅, ℓ and 𝑥 ∈ 𝒮𝑈 𝑝𝑈𝑝 (𝐺, 𝑋) (𝑇) for someO𝐸, (𝑣) -scheme T, we write 𝑠𝛼,∗,𝑥 for the
pullback of 𝑠𝛼,∗ to T via x. Similarly, the image of x under𝒮𝑈 𝑝𝑈𝑝 (𝐺, 𝑋) → 𝒮𝑈𝑉 (𝐺𝑉 ,H𝑉 ) ⊗Z(𝑝)O𝐸, (𝑣)

gives us a weakly polarised abelian variety up to prime-to-p isogeny (A𝑥 , 𝜆). Over 𝒮𝑈𝑝 (𝐺, 𝑋), there is
a canonical isomorphism of pro-étale A𝑝

𝑓 -local systems

𝜂 : V 𝑝 ∼−→ 𝑉 ⊗ A𝑝
𝑓 , (3.1.1)

which takes 𝑡𝛼,A𝑝
𝑓

to 𝑡𝛼 ⊗ 1 for all 𝛼 ∈ 𝒜 (see [KSZ21, Lemma 5.1.9]).

3.1.6.
Recall that F𝑝 is an algebraic closure of F𝑞 and Q̆𝑝 = 𝑊 (F𝑝) [1/𝑝]. Let 𝑥 ∈ 𝒮𝑈 (𝐺, 𝑋) (F𝑝) and
𝑥 ∈ 𝒮𝑈 (𝐺, 𝑋) (O𝐿) a point lifting 𝑥, where 𝐿/Q̆𝑝 is a finite extension. Let us write 𝜑 for the Frobenius
on Q̆𝑝 and Z̆𝑝 .

Let 𝒢𝑥 denote the p-divisible group associated to A𝑥 and 𝒢𝑥,0 its special fibre. Then 𝑇𝑝𝒢
∨
𝑥 is

identified with 𝐻1
�́�𝑡 (A𝑥 ,Z𝑝), and we obtain Γ𝐾 -invariant tensors 𝑠𝛼,�́�𝑡 ,𝑥 ∈ 𝑇𝑝𝒢∨⊗, whose stabiliser

can be identified with G𝐾 . Let D𝑥 := D(𝒢𝑥,0) be the contravariant Dieudonné module associated to
the p-divisible group 𝒢𝑥,0. We may apply the constructions of [Zho20, Section 3] to obtain 𝜑-invariant
tensors 𝑠𝛼,0,𝑥 ∈ D𝑥 , whose stabiliser group can be identified with G𝐾 ⊗Z𝑝 Z̆𝑝 .

This means that we can upgrade the Dieudonné module of 𝐴𝑥 to a G𝐾 -shtuka over F𝑝 , and this gives
a map (see [Zho20, Proof of Axiom 4 in Section 8])

𝒮𝑈 (𝐺, 𝑋) (F𝑝) → Sht𝐺,𝐾 , {𝜇} (F𝑝), (3.1.2)

where {𝜇} = {𝜎(𝜇−1
ℎ )}. It is a result of Hamacher–Kim ([HK19, Proposition 1], see [SYZ21,

Proposition 4.4.1]) that there is a morphism Sh𝐺,𝐾 ,𝑈 𝑝 → Sht𝐺,𝐾 , {𝜇} inducing (3.1.2) on F𝑝-points,
where Sh𝐺,𝐾 ,𝑈 𝑝 is the perfection of the basechange to k of 𝒮𝑈 (𝐺, 𝑋).15 It follows from [PR21,
Theorem 1.3.4]16 that this morphism does not depend on the choice of Hodge embedding and, more-
over, can be upgraded to a 𝐺 (A𝑝

𝑓 )-equivariant morphism

Sh𝐺,𝐾 := lim
←−−
𝑈 𝑝

Sh𝐺,𝐾 ,𝑈 𝑝 → Sht𝐺,𝐾 , {𝜇},

where 𝐺 (A𝑝
𝑓 ) acts trivially on Sht𝐺,𝐾 , {𝜇}.

15The subscript K is used to signify the choice of 𝜎-stable type 𝐾 ⊂ S corresponding to the parahoric subgroup𝑈𝑝 .
16Pappas and Rapoport construct a local shtuka bounded by {𝜇} over the diamond associated to the formal completion of

𝒮𝑈 (𝐺, 𝑋 ) and prove uniqueness and functoriality for this object. By [PR21, Example 2.4.9], this induces a G𝐾 -shtuka over the
perfect special fibre of 𝒮𝑈 (𝐺, 𝑋 ) , which is of type {𝜇} by the discussion in [PR21, Section 2.4.3] (cf. [DvHKZ24, Lemma
3.1.7]). The G𝐾 -shtuka constructed this way, moreover, agrees with the one constructed by [SYZ21], this is spelled out in
[DvHKZ24, Section 5.3].
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It follows from [SYZ21, the discussion after Theorem 4.4.3] that the perfection of the special fibre of
𝑀 loc

G𝐾 ,𝑋 can be identified with the closed subscheme Mloc
𝐾, {𝜇}

of the affine flag variety for G𝐾 introduced
in Section 2.2.15. Under this isomorphism, the right action of 𝐿+G𝐾 on Mloc

𝐾, {𝜇}
, which factors through

G𝐾 , is identified with the G𝐾 action17 on the perfection of 𝑀 loc
𝐺,𝐾 ,𝜇. Thus, the local model diagram of

Theorem 3.1.4 gives us a (perfectly smooth) morphism

𝜆𝐾 : Sh𝐺,𝐾 ,𝑈 𝑝 → [Mloc
𝐾, {𝜇}/G𝐾 ] .

3.1.7.
Fix 𝑛 ≥ 2, and choose 𝑚 � 0, such that the action Ad𝜎 𝐿+G𝐾 on Mloc,n

𝐾, {𝜇}
factors through 𝐿𝑚G𝐾

and such that m satisfies the assumptions of Proposition 2.3.4. Let Sht(𝑚,1)
𝐺,𝐾 , {𝜇}

be the stack of
(𝑚)-restricted shtukas of type {𝜇} from Section 2.3 and also consider the stack Sht(𝑚,𝑛) ,loc

𝐺,𝐾 , {𝜇}
from

Section 2.3.10. If we compose the morphism Sh𝐺,𝐾 ,𝑈 𝑝 → Sht𝐺,𝐾 , {𝜇} constructed above with the
natural map Sht𝐺,𝐾 , {𝜇} → Sht(𝑚,1)

𝐺,𝐾 , {𝜇}
, we obtain a morphism

Sh𝐺,𝐾 ,𝑈 𝑝 → Sht(𝑚,1)
𝐺,𝐾 , {𝜇}

.

By [SYZ21, Theorem 4.4.3], the perfectly smooth map 𝜆𝐾 : Sh𝐺,𝐾 ,𝑈 𝑝 → [Mloc
𝐾, {𝜇}

/G𝐾 ] induced from
the local model diagram fits in a commutative diagram

Sh𝐺,𝐾 ,𝑈 𝑝 Sht(𝑚,1)
𝐺,𝐾 , {𝜇}

[Mloc
𝐾, {𝜇}

/G𝐾 ],

𝜆𝐾

where Sht(𝑚,1)
𝐺,𝐾 , {𝜇}

→ [Mloc
𝐾, {𝜇}

/G𝐾 ] comes from the diagram in Remark 2.3.2. The map Sh𝐺,𝐾 ,𝑈 𝑝 →

Sht(𝑚,1)
𝐺,𝐾 , {𝜇}

is perfectly smooth by [Hof23, Corollary 2.57]. Recall, moreover, that there is a natural map
Sht𝐺,𝐾 , {𝜇} → Sht(𝑚,𝑛) ,loc

𝐺,𝐾 , {𝜇}
which induces a map Sh𝐺,𝐾 ,𝑈 𝑝 → Sht(𝑚,𝑛) ,loc

𝐺,𝐾 , {𝜇}
, this is also perfectly smooth

by [Hof23, Corollary 2.57].

Remark 3.1.8. The perfect smoothness results discussed above are also claimed in [SYZ21, Theorem
4.4.3] and [XZ17, Proposition 7.2.4] (the latter in the hyperspecial case). It has been pointed out to
us by Hoff and Zhu that the proof of [XZ17, Proposition 7.2.4] is not correct as written; the square in
[XZ17, top of page 113] does not commute. The same error seems to be present in the proof of [SYZ21,
Theorem 4.4.3] (see also the erratum [SYZ24], where a different fix is presented).

We can use the perfectly smooth map Sh𝐺,𝐾 ,𝑈 𝑝 → Sht(𝑚,1)
𝐺,𝐾 , {𝜇}

to define the EKOR stratification
on Sh𝐺,𝐾 ,𝑈 𝑝 (see Section 2.3.11). In particular, for 𝑤 ∈ 𝐾Adm({𝜇}), we will write Sh𝐺,𝐾 ,𝑈 𝑝 {𝑤} for
the locally closed EKOR stratum of Sh𝐺,𝐾 ,𝑈 𝑝 . Since Sh𝐺,𝐾 ,𝑈 𝑝 → Sht(𝑚,1)

𝐺,𝐾 , {𝜇}
is perfectly smooth and

thus open, we find that the closure of Sh𝐺,𝐾 ,𝑈 𝑝 {𝑤} is given by

Sh𝐺,𝐾 ,𝑈 𝑝 {� 𝑤} :=
⋃
𝑤′ �𝑤

Sh𝐺,𝐾 ,𝑈 𝑝 {𝑤′}

because the closure relations hold on Sht(𝑚,1)
𝐺,𝐾 , {𝜇}

.

17Here, we are writing G𝐾 for the perfection of the special fibre of G𝐾 , by abuse of notation.
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3.1.9. Isogeny classes
Let 𝑥 ∈ Sh𝐺,𝐾 ,𝑈 𝑝 (F𝑝), then attached to x is an abelian variety A𝑥 over F𝑝 . We write D𝑥 for the
contravariant Dieudonné module associated to the p-divisible group 𝒢𝑥 of A𝑥 ; then D𝑥 is equipped
with a corresponding set of tensors 𝑠𝛼,0,𝑥 (see Section 3.1.6). Similarly, for ℓ ≠ 𝑝, the rational ℓ-adic
Tate module 𝑉ℓA𝑥 is equipped with tensors 𝑠𝛼,ℓ,𝑥 .

Two points 𝑥, 𝑥 ′ ∈ Sh𝐺,𝐾 (F𝑝) are said to lie in the same isogeny class if there exists a quasi-isogeny
A𝑥 → A𝑥′ , such that the induced maps D𝑥 [1/𝑝] → D𝑥′ [1/𝑝] and 𝑉ℓA𝑥 → 𝑉ℓA𝑥′⊗ send 𝑠𝛼,0,𝑥′ to
𝑠𝛼,0,𝑥 and 𝑠𝛼,ℓ,𝑥 to 𝑠𝛼,ℓ,𝑥′ for all ℓ ≠ 𝑝. We write ℐ𝑥 ⊂ Sh𝐺,𝐾 (F𝑝) for the isogeny class of x.

For 𝑥 ∈ Sh𝐺,𝐾 (F𝑝), we let 𝐼𝑥 denote the reductive Q-group associated to x as in [Zho20, Section
9.2]; it is a subgroup of the algebraic group of self quasi-isogenies of the abelian variety 𝐴𝑥 . It comes
equipped with a natural map 𝐼𝑥,A𝑝

𝑓
→ 𝐺A𝑝

𝑓
coming from the tautological basis of the prime-to-p adelic

Tate-module of 𝐴𝑥 given by (3.1.1). If we choose an isomorphism 𝛼 : D𝑥 � 𝑉Z𝑝 ⊗Z𝑝 Z̆𝑝 sending 𝑠𝛼,0,𝑥
to 𝑠𝛼 ⊗ 1, under which the Frobenius of D𝑥 corresponds to 𝑏 ∈ 𝐺 (Q̆𝑝), then there is also an induced
map 𝐼𝑥,Q𝑝 → 𝐽𝑏 . Note that an isomorphism 𝛼 as above always exists, by [Zho20, Section 5.6].

3.1.10. Change of parahoric
Now let 𝐽 ⊂ 𝐾 be another 𝜎-stable type, let G𝐽 (Z𝑝) =: 𝑈 ′𝑝 ⊂ 𝑈𝑝 and let 𝑈 ′ = 𝑈 𝑝𝑈 ′𝑝 . Note that G𝐽 is
a connected parahoric since G𝐾 is (see Lemma 2.2.4). We will use Sh𝐺,𝐽 ,𝑈 𝑝 to denote the perfection
of the special fibre of 𝒮𝑈 ′ (𝐺, 𝑋). By [Zho20, Theorem 7.1], there is a (necessarily unique) proper
morphism 𝜋𝐽 ,𝐾 : 𝒮𝑈 ′ (𝐺, 𝑋) → 𝒮𝑈 (𝐺, 𝑋) which induces the obvious forgetful morphism on generic
fibres and induces a 𝐺 (A𝑝

𝑓 )-equivariant map

lim
←−−
𝑈 𝑝

𝒮𝑈 ′ (𝐺, 𝑋) → lim
←−−
𝑈 𝑝

𝒮𝑈 (𝐺, 𝑋).

We now recall some aspects of the construction of the forgetful map from [Zho20, Section 7.2], which
we will need to compare isogeny classes in the source and target. There are facets 𝔣, 𝔣′ of the extended
Bruhat–Tits building 𝐵(𝐺,Q𝑝) of𝐺Q𝑝 , such that𝑈𝑝 is the stabiliser of 𝔣 and such that𝑈 ′𝑝 is the stabiliser
of 𝔣′. Fix a choice of embedding 𝜃 : 𝐵(𝐺,Q𝑝) → 𝐵(𝐺𝑉 ,Q𝑝) as in [KP18, Section 1.2], compatible
with 𝐺 → 𝐺𝑉 . Choose facets 𝔤, 𝔤′ containing 𝜃 (𝔣) and 𝜃 (𝔣′), respectively, and we let 𝑀𝑝 ⊂ 𝐺𝑉 (Q𝑝)

be the stabiliser of 𝔤 and 𝑀 ′𝑝 ⊂ 𝐺𝑉 (Q𝑝) be the stabiliser of 𝔤′. As in [Zho20, Section 8.1], the facets
𝔤, 𝔤′ correspond to lattice chains L and L′ in 𝑉Q𝑝 , respectively, with L′ a refinement18 of L; note that
[Zho20] writes L′ for what we call L and vice versa.

Then for sufficiently small 𝑀 𝑝 ⊂ 𝐺𝑉 (A
𝑝
𝑓 ), there are moduli-theoretic integral models

𝒮𝑀 𝑝𝑀 ′𝑝 (𝐺𝑉 ,H𝑉 ) and 𝒮𝑀 𝑝𝑀𝑝 (𝐺𝑉 ,H𝑉 ) over Z(𝑝) . The former is a moduli space of L′-chains of
(weakly polarised) abelian varieties up to prime-to-p isogeny with 𝑀 𝑝 level structure, as explained
in [Zho20, Proof of Axiom 1 in Section 8], and the latter is a moduli space of L-chains of (weakly
polarised) abelian varieties up to prime-to-p isogeny with 𝑀 𝑝 level structure. There is a natural proper
forgetful map

𝜋L′,L : 𝒮𝑀 𝑝𝑀 ′𝑝 (𝐺𝑉 ,H𝑉 ) → 𝒮𝑀 𝑝𝑀𝑝 (𝐺𝑉 ,H𝑉 ),

which sends an L′-chain of abelian varieties to the underlying L-chain of abelian varieties.
Taking the direct sum of the lattices in the lattice chain L (respectively, L′), we get a symplectic

space 𝑉L (respectively, 𝑉L′) and a lattice 𝑉L,Z𝑝 (respectively, 𝑉L′,Z𝑝 ) in 𝑉L,Q𝑝 (respectively, 𝑉L′,Q𝑝 ).
Let us denote the stabiliser of 𝑉L,Z𝑝 (respectively, 𝑉L′,Z𝑝 ) in 𝐺𝑉L (Q𝑝) (respectively, 𝐺𝑉L′ (Q𝑝)) by 𝐽𝑝
(respectively, 𝐽 ′𝑝).

18This means that L and L′ are chains of lattices in 𝑉Q𝑝 and that every lattice in L is also contained in L′.
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Then there are Hodge embeddings (𝐺𝑉 ,H𝑉 ) → (𝐺𝑉L ,H𝑉L ) and (𝐺𝑉 ,H𝑉 ) → (𝐺𝑉L′H𝑉L′ ),
which take 𝑀𝑝 to 𝐽𝑝 and 𝑀 ′𝑝 to 𝐽 ′𝑝 , respectively. These induce finite maps

𝒮𝑀 𝑝𝑀 ′𝑝 (𝐺𝑉 ,H𝑉 ) → 𝒮𝐽
′𝑝 𝐽 ′𝑝
(𝐺𝑉L′ ,H𝑉L′ ), 𝒮𝑀 𝑝𝑀𝑝 (𝐺𝑉 ,H𝑉 ) → 𝒮𝐽 𝑝 𝐽𝑝 (𝐺𝑉L ,H𝑉L )

for some 𝐽 𝑝 ⊂ 𝐺𝑉L (A
𝑝
𝑓 ) and 𝐽′𝑝 ⊂ 𝐺𝑉L′ (A

𝑝
𝑓 ) sufficiently small, which take an L′-set (respectively,

L-set) of abelian varieties to the product of all the abelian varieties in the L′-set (respectively, the L-set),
equipped with the product polarisation and level structure. It is explained in [Zho20, Equation 8.1 of
Section 8] that our forgetful maps fit in a commutative diagram where all the horizontal maps are finite

𝒮𝑈 ′ (𝐺, 𝑋) 𝒮𝑀 𝑝𝑀 ′𝑝 (𝐺𝑉 ,H𝑉 ) ⊗ O𝐸, (𝑣) 𝒮𝐽
′𝑝 𝐽 ′𝑝
(𝐺𝑉L′H𝑉L′ ) ⊗ O𝐸, (𝑣)

𝒮𝑈 (𝐺, 𝑋) 𝒮𝑀 𝑝𝑀𝑝 (𝐺𝑉 ,H𝑉 ) ⊗ O𝐸, (𝑣) 𝒮𝐽 𝑝 𝐽𝑝 (𝐺𝑉L ,H𝑉L ) ⊗ O𝐸, (𝑣) .

𝜋𝐽,𝐾 𝜋L′,L (3.1.3)

3.1.11. Change of parahoric and isogeny classes
We set Sh𝐺,𝐽 := lim

←−−𝑈 𝑝
Sh𝐺,𝐽 ,𝑈 𝑝 , and we let 𝜋 : Sh𝐺,𝐽 → Sh𝐺,𝐾 denote the 𝐺 (A𝑝

𝑓 )-equivariant
map induced by 𝜋𝐽 ,𝐾 . We now define19 isogeny classes in Sh𝐺,𝐽 (F𝑝) using the Hodge embedding
(𝐺, 𝑋) → (𝐺𝑉L′H𝑉L′ ), as in Section 3.1.9. Similarly, we define isogeny classes in Sh𝐺,𝐾 (F𝑝) using
the Hodge embedding (𝐺, 𝑋) → (𝐺𝑉L ,H𝑉L ). For this, we choose tensors 𝑠𝛽 ∈ 𝑉 ⊗L′, (𝑝) cutting out
G𝐽 ,Z(𝑝) and tensors 𝑠𝛼 ∈ 𝑉 ⊗L, (𝑝) cutting out G𝐾,Z(𝑝) .

By [Zho20, Proposition 7.7], the forgetful map is compatible with isogeny classes in the sense that
for 𝑥 ∈ Sh𝐺,𝐽 (F𝑝), we have 𝜋 (ℐ𝑥) ⊂ ℐ𝜋 (𝑥) . We will need the following (straightforward) refinement.

Proposition 3.1.12. Let 𝑧, 𝑦 ∈ Sh𝐺,𝐽 (F𝑝) with the same image 𝑥 ∈ Sh𝐺,𝐾 (F𝑝). Then z and y lie in the
same isogeny class. In particular, ℐ𝑧 = 𝜋−1 (ℐ𝑥).
Proof. The points 𝑧, 𝑦 correspond to L′-sets of abelian varieties

((𝐴1, 𝜆1, 𝜂1) → (𝐴2, 𝜆2, 𝜂2) → · · · → (𝐴𝑟 , 𝜆𝑟 , 𝜂𝑟 ))

((𝐵1, 𝜆1, 𝜂1) → (𝐵2, 𝜆2, 𝜂2) → · · · → (𝐵𝑟 , 𝜆𝑟 , 𝜂𝑟 )),

such that the induced chains

((𝐴𝑖1 , 𝜆𝑖1 , 𝜂𝑖1) → (𝐴𝑖2 , 𝜆𝑖2 , 𝜂𝑖2) → · · · → (𝐴𝑖𝑠 , 𝜆𝑖𝑠 , 𝜂𝑖𝑠 ))

((𝐵𝑖1 , 𝜆𝑖1 , 𝜂𝑖1) → (𝐵𝑖2 , 𝜆𝑖2 , 𝜂𝑖2) → · · · → (𝐵𝑖𝑠 , 𝜆𝑖𝑠 , 𝜂𝑖𝑠 ))

are isomorphic. There are unique quasi-isogenies 𝐴𝑖 → 𝐵𝑖 for all 𝑖 = 1, · · · , 𝑟 that extend the given
isomorphisms 𝐴𝑠 𝑗 � 𝐵𝑠 𝑗 for 𝑗 = 1, · · · , 𝑠, and we would like to argue that the resulting quasi-isogeny

𝑔 :
𝑟∏
𝑖=1

𝐴𝑖 →
𝑟∏
𝑖=1

𝐵𝑖

is tensor preserving. By the discussion in Section 5.6 of [Zho20], we can choose isomorphisms(
𝑟⊕
𝑖=1

Λ𝑖

)
⊗ Z̆𝑝 �

𝑟⊕
𝑖=1
D(𝐴𝑖 [𝑝

∞])(
𝑟⊕
𝑖=1

Λ𝑖

)
⊗ Z̆𝑝 �

𝑟⊕
𝑖=1
D(𝐵𝑖 [𝑝

∞])

19This definition depends on the choice of Hodge embedding, at least a priori.
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taking 𝑡𝛽 ⊗ 1 to 𝑡𝛽,0,𝑧 and 𝑡𝛽,0,𝑦 , respectively. There are induced isomorphisms(
𝑠⊕
𝑖=1

Λ𝑠𝑖

)
⊗ Z̆𝑝 �

𝑠⊕
𝑖=1
D(𝐴𝑖 [𝑝

∞]) (3.1.4)(
𝑠⊕
𝑖=1

Λ𝑠𝑖

)
⊗ Z̆𝑝 �

𝑠⊕
𝑖=1
D(𝐵𝑖 [𝑝

∞])

taking 𝑠𝛼 ⊗ 1 to 𝑠𝛼,0,𝑥 . The isomorphism 𝑓 :
∏𝑠

𝑖=1 𝐴𝑠𝑖 →
∏𝑠

𝑖=1 𝐵𝑠𝑖 coming from the equality
𝜋(𝑧) = 𝑥 = 𝜋(𝑦) is clearly tensor preserving. If we use the bases from (3.1.4), then this means that the
induced automorphism

D( 𝑓 ) ∈ GL

(
𝑠⊕
𝑖=1

Λ𝑠𝑖,𝑝

)

lies in 𝐺Z𝑝 (Z̆𝑝). This observation in combination with the following commutative diagram

𝐺 ′
Z𝑝

GL
(⊕𝑟

𝑖=1 Λ𝑖, 𝑝
)

𝐺Z𝑝 GL
(⊕𝑠

𝑖=1 Λ𝑠𝑖,𝑝

)
shows that the automorphism induced by g lands in 𝐺Z𝑝 (Z̆𝑝). But this means that D(𝑔) ∈ 𝐺 ′

Z𝑝
(Q̆𝑝) =

𝐺Z𝑝 (Q̆𝑝), and, therefore, g is tensor preserving. A similar argument shows that g preserves the tensors
for ℓ ≠ 𝑝. �

We will also need the following lemma.
Lemma 3.1.13. The following diagram commutes:

Sh𝐺,𝐽 ,𝑈 𝑝 Sht𝐺,𝐽 , {𝜇}

Sh𝐺,𝐾 ,𝑈 𝑝 Sht𝐺,𝐾 , {𝜇} .

Proof. This is a consequence of [PR21, Corollary 4.3.2] (see Footnote 16). �

3.2. CM Lifts

In this section, we will prove a corollary of Theorem A.4.5, which is a slight generalisation of Theorem 1.

3.2.1.
Recall that a special point datum for (𝐺, 𝑋) is a triple (𝑇, ℎ, 𝑖), where (𝑇, ℎ) is a Shimura datum with T a
torus, and where 𝑖 : (𝑇, ℎ) → (𝐺, 𝑋) is an embedding of Shimura data, such that 𝑖(𝑇) is a maximal torus.
Associated to a special point datum 𝔰 = (𝑇, ℎ, 𝑖) is a Q𝑝-point 𝑥𝔰 of Sh(𝐺, 𝑋) (see [KSZ21, Section
5.7.1]). It is explained in loc. cit. that for any parahoric𝑈𝑝 ⊂ 𝐺 (Q𝑝), its projection to Sh𝑈𝑝 (𝐺, 𝑋) (Q𝑝)

extends to a Z𝑝 point of 𝒮𝑈𝑝 (𝐺, 𝑋). A special point of Sh(𝐺, 𝑋) (Q𝑝) is a point that lies in the 𝐺 (A 𝑓 )-
orbit of 𝑥𝔰 for some special point datum 𝔰. For any choice of parahoric𝑈𝑝 ⊂ 𝐺 (Q𝑝), the projection of a
special point to Sh𝑈𝑝 (𝐺, 𝑋) (Q𝑝) extends (uniquely) to a Z𝑝 point of 𝒮𝑈𝑝 (𝐺, 𝑋). The mod p reductions
of these extensions define points of Sh𝐺,𝐾 (F𝑝) that we call reductions of special points.
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3.2.2.
Recall the notion of a very special parahoric from Section 2.2.5.
Corollary 3.2.3. Let 𝑈 ′𝑝 ⊂ 𝐺 (Q𝑝) be an arbitrary connected parahoric, and suppose that there is a
connected Iwahori subgroup𝑈 ′′𝑝 contained in𝑈 ′𝑝 and a connected very special parahoric subgroup𝑈𝑝

containing𝑈 ′′𝑝 . Then each isogeny class of 𝒮𝑈 ′𝑝 (𝐺, 𝑋) (F𝑝) contains a point x which is the reduction of
a special point.
Proof. Choose a connected Iwahori subgroup 𝑈 ′′𝑝 ⊂ 𝑈 ′𝑝 and a connected very special parahoric sub-
group 𝑈𝑝 ⊃ 𝑈

′′
𝑝 as in the assumptions of the theorem. We first prove the theorem for 𝒮𝑈 ′′𝑝 (𝐺, 𝑋).

Let 𝑧 ∈ 𝒮𝑈 ′′𝑝 (𝐺, 𝑋) (F𝑝), and let x be its image in 𝒮𝑈𝑝 (𝐺, 𝑋) (F𝑝). Then the isogeny class ℐ𝑥

contains the reduction of a special point 𝑃 ∈ 𝒮𝑈𝑝 (𝐺, 𝑋) (Q𝑝) by Theorem A.4.5. By definition, any lift
𝑃′′ ∈ 𝒮𝑈 ′′𝑝 (𝐺, 𝑋) (Q𝑝) is also special. Thus, we find that the inverse image of ℐ𝑥 under

𝒮𝑈 ′′𝑝 (𝐺, 𝑋) (F𝑝) → 𝒮𝑈𝑝 (𝐺, 𝑋) (F𝑝)

contains the reduction of a special point. But by Proposition 3.1.12, this inverse image is equal toℐ𝑧 , and
so every isogeny class in 𝒮𝑈 ′′𝑝 (𝐺, 𝑋) (F𝑝) contains the reduction of a special point. A similar argument
shows that every isogeny class in 𝒮𝑈 ′𝑝 (𝐺, 𝑋) (F𝑝) contains the reduction of a special point. �

3.3. Lifting uniformisation

From now on, we let 𝐾 ⊂ S be a 𝜎-stable type corresponding to a connected very special parahoric. We
let 𝑈𝑝 = G𝐾 (Z𝑝) and 𝑈 ′𝑝 = G∅ (Z𝑝); note that 𝑈 ′𝑝 is a connected parahoric subgroup by Lemma 2.2.4.
In this case, the commutative diagram from Lemma 3.1.13 is

Sh𝐺,∅,𝑈 𝑝 Sht𝐺,∅, {𝜇}

Sh𝐺,𝐾 ,𝑈 𝑝 Sht𝐺,𝐾 , {𝜇} .

(3.3.1)

The goal of this section is to prove the following result. Let 𝑥 ∈ Sh𝐺,∅ (F𝑝), and choose an isomorphism
D𝑥 � 𝑉Z𝑝 ⊗Z𝑝 Z̆𝑝 sending 𝑠𝛼,0,𝑥 to 𝑠𝛼 ⊗ 1. Let 𝑏 ∈ 𝐺 (Q̆𝑝) be the element corresponding to the
Frobenius of D𝑥 under this isomorphism.
Theorem 3.3.1. If for every sufficiently small compact open subgroup 𝑈 𝑝 the diagram (3.3.1) is
Cartesian, then for 𝑧 ∈ 𝒮𝑈 ′𝑝 (𝐺, 𝑋) (F𝑝) with associated element 𝑏 ∈ 𝐺 (Q̆𝑝), there is a 𝐺 (A𝑝

𝑓 )-
equivariant bijection

𝐼𝑧 (Q)\𝑋 (𝜇, 𝑏)∅ (F𝑝) × 𝐺 (A
𝑝
𝑓 ) → ℐ𝑧 .

3.3.2.
Let 𝑧 ∈ 𝒮𝑈 ′𝑝 (𝐺, 𝑋) (F𝑝) with image 𝑥 ∈ 𝒮𝑈𝑝 (𝐺, 𝑋) (F𝑝), and let 𝑏 ∈ 𝐺 (Q̆𝑝) be as in the statement of
Theorem A.4.5. Then Theorem A.4.5 gives us a map of sets

𝐺 (A𝑝
𝑓 ) × 𝑋 (𝜇, 𝑏)𝐾 (F𝑝) → ℐ𝑥 ,

and Lemma 2.4.6 gives us a map of stacks Θ𝑏 : 𝑋 (𝜇, 𝑏)𝐾 → Sht𝐺,𝐾 , {𝜇}, [𝑏] .
Lemma 3.3.3. The following diagram of groupoids commutes

𝐺 (A𝑝
𝑓 ) × 𝑋 (𝜇, 𝑏)𝐾 (F𝑝) 𝑋 (𝜇, 𝑏)𝐾 (F𝑝)

ℐ𝑥 Sht𝐺,𝐾 , {𝜇}, [𝑏] (F𝑝).

𝑝𝑟2

Θ𝑏
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Proof. This follows from the compatibility of the uniformisation map with the ‘joint stratification’
Sh𝐺,𝐾 ,𝑈 𝑝 (F𝑝) → Sht𝐺,𝐾 , {𝜇} (F𝑝) (as discussed in the proof of Axiom 4(b) in Section 8 of [Zho20]). �

We have the following corollary of Lemma 3.3.3.

Corollary 3.3.4. Let ℒ𝑥 be the inverse image in Sh𝐺,∅ (F𝑝) of ℐ𝑥 ⊂ Sh𝐺,𝐾 (F𝑝). If the assumption of
Theorem 3.3.1 holds, then there is a 𝐺 (A𝑝

𝑓 )-equivariant bijection

ℒ𝑥 � 𝐼𝑥 (Q)\𝑋 (𝜇, 𝑏)∅ (F𝑝) × 𝐺 (A
𝑝
𝑓 ).

Proof. Taking the inverse limit over 𝑈 𝑝 of the Cartesian diagram of (3.3.1), we get the following
𝐺 (A𝑝

𝑓 )-equivariant Cartesian diagram of groupoids

ℒ𝑥 Sht𝐺,∅, {𝜇} (F𝑝)

ℐ𝑥 Sht𝐺,𝐾 , {𝜇} (F𝑝).

(3.3.2)

Theorem A.4.5 gives us a bijection 𝐼𝑥 (Q)\𝑋 (𝜇, 𝑏)𝐾 (F𝑝) ×𝐺 (A𝑝
𝑓 ) → ℐ𝑥 . Lemmas 2.4.6 and 3.3.3 tell

us that we can identify (3.3.2) with

ℒ𝑥

[
𝑋 (𝜇,𝑏)∅ (F𝑝)

𝐽𝑏 (Q𝑝)

]

𝐼𝑥 (Q)\𝑋 (𝜇, 𝑏)𝐾 (F𝑝) × 𝐺 (A
𝑝
𝑓 )

[
𝑋 (𝜇,𝑏)𝐾 (F𝑝)

𝐽𝑏 (Q𝑝)

]
,

such that the bottom map is induced by the projection map 𝑋 (𝜇, 𝑏)𝐾 (F𝑝) × 𝐺 (A𝑝
𝑓 ) → 𝑋 (𝜇, 𝑏)𝐾 (F𝑝)

and the right vertical map is induced by the natural map 𝑋 (𝜇, 𝑏)∅ (F𝑝) → 𝑋 (𝜇, 𝑏)𝐾 (F𝑝). But now it is
clear that there is a 𝐺 (A𝑝

𝑓 )-equivariant bijection

ℒ𝑥 � 𝐼𝑥 (Q)\𝑋 (𝜇, 𝑏)∅ (F𝑝) × 𝐺 (A
𝑝
𝑓 ). �

Proof of Theorem 3.3.1. The theorem is a direct consequence of Corollary 3.3.4, which proves uni-
formisation for ℒ𝑥 , and Proposition 3.1.12, which proves that ℒ𝑥 = ℐ𝑧 . �

3.4. Uniformisation and connected components

Define 𝐺 (Q)+ = 𝐺 (Q) ∩ 𝐺 (R)+, with 𝐺 (R)+ the inverse image of the identity component (in the real
topology) of 𝐺ad(R) under the natural map 𝐺 (R) → 𝐺ad(R). Let 𝜌 : 𝐺sc → 𝐺der be the simply
connected cover of the derived subgroup of G; we will sometimes conflate groups like 𝐺sc(Q) and
𝐺sc (A

𝑝
𝑓 ) with their images under 𝜌 by abuse of notation. Consider the profinite topological space

𝜋(𝐺) := lim
←−−
𝑈 𝑝

𝐺 (Q)+\𝐺 (A 𝑓 )/𝑈
𝑝𝑈𝑝 .

We have 𝜌(𝐺sc(Q)) ⊂ 𝐺 (Q)+ since 𝐺sc (R) is connected, and strong approximation for 𝐺sc away from
∞, see [PR94, Theorem 7.12], tells us that the closure of 𝜌(𝐺sc (Q)) in 𝐺 (A 𝑓 ) contains 𝜌(𝐺sc (A 𝑓 )).
Moreover, the subset𝐺 (Q)+𝜌(𝐺sc (A 𝑓 )) is closed in𝐺 (A 𝑓 ) since (𝐺, 𝑋) is of Hodge type (see [Del79,
Section 2.0.15]). This means that 𝐺 (Q)+\𝐺 (A 𝑓 )/𝜌(𝐺

sc(A 𝑓 )) is Hausdorff. Thus, the natural action
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of 𝑈𝑝 on it has compact stabilisers and compact orbits, since 𝑈𝑝 is compact. We can therefore deduce
from [Mil05, Lemma 4.20] that the natural map

𝐺 (Q)+\
𝐺 (A 𝑓 )

𝜌(𝐺sc(A 𝑓 ))
/𝑈𝑝 → 𝜋(𝐺)

is a homeomorphism. We see that 𝜋(𝐺) is an abelian group, since 𝐺 (A 𝑓 )

𝜌(𝐺sc (A 𝑓 ))
is.

3.4.1.
By Lemma 3.4.2 below, we may make the identification

𝜋(𝐺) = 𝐺 (Q)+\

(
𝜋1 (𝐺)

𝜎
𝐼 ×

𝐺 (A𝑝
𝑓 )

𝜌(𝐺sc (A
𝑝
𝑓 ))

)
.

In particular, there is a natural surjective group homomorphism 𝜋1 (𝐺)
𝜎
𝐼 × 𝐺 (A

𝑝
𝑓 ) → 𝜋(𝐺).

Lemma 3.4.2. LetG be a connected reductive group overQ𝑝 that splits over a tamely ramified extension,
and let G be a parahoric group scheme for G. Then there is a natural isomorphism

G(Q𝑝)

𝜌(Gsc (Q𝑝)) · G (Z𝑝)
� 𝜋1 (G)

𝜎
𝐼 .

Proof. Recall that we have the surjective Kottwitz homomorphism �̃�G : G(Q̆𝑝) → 𝜋1 (G)𝐼 with kernel
given by 𝜌(Gsc(Q̆𝑝)) · T (Z̆𝑝) = 𝜌(Gsc (Q̆𝑝)) · G (Z̆𝑝) (see [PR08, Lemma 17 of the appendix]), where
T is the connected Néron model of a standard torus T of G. Recall, moreover, that �̃�G restricts to a
surjective map 𝜅G,0 : G(Q𝑝) → 𝜋1 (G)

𝜎
𝐼 by [Kot97, Section 7.7]. Thus, when G = 𝑇 is a torus, we have

a short exact sequence

0→ T (Z̆𝑝) → 𝑇 (Q̆𝑝) → 𝜋1 (𝐺)𝐼 → 0,

that remains exact upon taking 𝜎-invariants, proving the lemma for tori. If Gder is simply connected,
then there is a canonical identification 𝜋1 (G) = 𝜋1 (G

ab), where Gab is the maximal abelian quotient of
G. We can consider the morphism of short exact sequences

1 Gder (Q𝑝) G(Q𝑝) Gab (Q𝑝) 1

1 𝜋1 (G)
𝜎
𝐼 𝜋1 (G

ab)𝜎𝐼 1.

The lemma now follows from the well-known fact (see, e.g.[VanHX24, Proposition 2.6.2]) that the
image of G (Z𝑝) in Gab(Q𝑝) is equal to D(Z𝑝), where D is the connected Néron model of Gab.

For general G, choose a z-extension 1 → 𝑍 → G̃ → G → 1 in the sense of [KP23, Section 11.4].
Then it follows from [KP23, Proposition 11.5.3] that ker 𝜅G̃,0 → 𝜅G,0 is surjective. Choosing a parahoric
model G̃ of G̃ together with a morphism G̃ → G, see [KP18, Section 1.1.3], we see that it suffices to
show that G̃ (Z𝑝) → G (Z𝑝) is surjective. For this, we note that by [KP18, Proposition 1.1.4], there is a
short exact sequence of group schemes over Z𝑝 (here, we use the tameness assumption)

1→ Z → G̃ → G → 1,

where Z has smooth connected special fibre. The surjectivity of G̃ (Z𝑝) → G (Z𝑝) now follows from
Lang’s lemma. �
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3.4.3.
Define (cf. [Del79, Section 2.1.3])

𝜋(𝐺, 𝑋) := lim
←−−
𝑈 𝑝

𝜋0 (Sh𝑈 (𝐺, 𝑋)C) = lim
←−−
𝑈 𝑝

𝐺 (Q)\
(
𝜋0 (𝑋) × 𝐺 (A 𝑓 )/𝑈

𝑝𝑈𝑝
)
.

This is a quotient (where now the inverse limit runs over all compact open subgroups𝑈 ⊂ 𝐺 (A 𝑓 ))

lim
←−−
𝑈

𝐺 (Q)\
(
𝜋0 (𝑋) × 𝐺 (A 𝑓 )/𝑈

)
,

on which 𝐺 (A 𝑓 ) acts through the abelian group 𝐺 (A 𝑓 )/𝜌(𝐺
sc(A 𝑓 )), again by strong approximation

for 𝐺sc away from infinity. By the discussion above, this induces an action of 𝐺 (A𝑝
𝑓 ) × 𝜋1 (𝐺)

𝜎
𝐼 on

𝜋(𝐺, 𝑋), which makes it into a torsor for 𝜋(𝐺) (see [KSZ21, Section 5.5.4]).
Recall that 𝑈𝑝 is a very special parahoric, which implies that the integral model 𝒮𝑈 𝑝𝑈𝑝 (𝐺, 𝑋) has

normal special fibre (see [KP18, Corollary 4.6.26]). Then [MP19, Corollary 4.1.11] tells us that for all
choices of 𝑈 𝑝 , for each finite extension F of the reflex field E and any place w of F extending v, the
natural maps

𝜋0 (Sh𝑈 𝑝𝑈𝑝 (𝐺, 𝑋) ⊗𝐸 𝐹) → 𝜋0 (𝒮𝑈 𝑝𝑈𝑝 (𝐺, 𝑋) ⊗O𝐸, (𝑣 ) O𝐹, (𝑤) ) ← 𝜋0 (Sh𝐺,𝐾 ,𝑈 𝑝 ⊗𝑘 (𝑤))

are isomorphisms. Thus, there is a natural 𝐺 (A𝑝
𝑓 )-equivariant isomorphism 𝜋0 (Sh𝐺,𝐾 ) → 𝜋(𝐺, 𝑋),

which turns 𝜋0 (Sh𝐺,𝐾 ) into a torsor for 𝜋(𝐺) and equips it with an action of 𝐺 (A𝑝
𝑓 ) × 𝜋1 (𝐺)

𝜎
𝐼 .

3.4.4.
As before G𝐾 denotes a connected very special parahoric group scheme. Let 𝑥 ∈ Sh𝐺,𝐾 (F𝑝) and
𝑏 ∈ 𝐺 (Q̆𝑝) be the associated element that is well-defined up to G𝐾 (Z̆𝑝)-conjugacy. The Kottwitz
homomorphism induces a natural map of perfect schemes

𝜅 : 𝑋 (𝜇, 𝑏)𝐾 → Gr𝐾 → 𝜋0 (Gr𝐾 ) � 𝜋1 (𝐺)𝐼 ,

with image 𝑐 [𝑏],𝜇 + 𝜋1 (𝐺)
𝜎
𝐼 ⊂ 𝜋1 (𝐺)𝐼 (see [HZ20, Lemma 6.1]). As in [Zho20, Section 6.7], we have

1 ∈ 𝑋 (𝜇, 𝑏)𝐾 (F𝑝), which implies that the coset 𝑐 [𝑏],𝜇 +𝜋1 (𝐺)
𝜎
𝐼 contains 1 and is thus equal to 𝜋1 (𝐺)

𝜎
𝐼 .

In particular, the map 𝜅 takes values in 𝜋1 (𝐺)
𝜎
𝐼 . Theorem A.4.5 gives us a 𝐺 (A𝑝

𝑓 )-equivariant map of
sets

𝑖𝑥 : 𝑋 (𝜇, 𝑏)𝐾 (F𝑝) × 𝐺 (A𝑝
𝑓 ) → Sh𝐺,𝐾 (F𝑝),

sending (1, 1) to x.

Proposition 3.4.5. Consider the composition 𝑋 (𝜇, 𝑏)𝐾 (F𝑝) ×𝐺 (A𝑝
𝑓 ) → Sh𝐺,𝐾 (F𝑝) → 𝜋0 (Sh𝐺,𝐾 ) =

𝜋(𝐺, 𝑋), and let 𝑥 be the image of x in 𝜋(𝐺, 𝑋). Then the image of (𝑦, 𝑔𝑝) in 𝜋(𝐺, 𝑋) is given by

(𝜅(𝑦), 𝑔𝑝) · 𝑥,

where · denotes the natural action of 𝜋1 (𝐺)
𝜎
𝐼 × 𝐺 (A

𝑝
𝑓 ) on 𝜋(𝐺, 𝑋) constructed above.

Proof. By the 𝐺 (A𝑝
𝑓 )-equivariance of the map 𝑖𝑥 , it suffices to prove the theorem for 𝑔𝑝 = 1 or for

the map 𝑋 (𝜇, 𝑏)𝐾 (F𝑝) → Sh𝐺,𝐾 (F𝑝). The map 𝑋 (𝜇, 𝑏)𝐾 (F𝑝) → Sh𝐺,𝐾 (F𝑝) upgrades to a map of
perfect schemes 𝑋 (𝜇, 𝑏)𝐾 → Sh𝐺,𝐾 by the proof of [HZZ21, Proposition 5.2.2]. Therefore, the image
of 𝑦 ∈ 𝑋 (𝜇, 𝑏)𝐾 (F𝑝) in 𝜋(𝐺, 𝑋) only depends on the connected component that y lies in. Thus, the
result is true for a union of connected components 𝑋 (𝜇, 𝑏)◦𝐾 of 𝑋 (𝜇, 𝑏)𝐾 . Moreover, the result is clearly
true for 𝑦 = 1.
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Now we follow the proof of Proposition A.4.3 and freely use the notation from that proof: Let
𝑀 ⊂ 𝐺Q𝑝 be the standard Levi subgroup given by the centraliser of the Newton cocharacter 𝜈𝑏 . By
Theorem A.1.3, there exists 𝜆 ∈ 𝐼𝜇,𝑏,𝑀 and an element

𝑔 ∈ 𝑋 (𝜇, 𝑏)◦𝐾 ∩ 𝑋
𝑀 (𝜆, 𝑏)𝑀 .

We may then replace x by 𝑖𝑥 (𝑔) to assume that 𝑏 ∈ 𝑀 (Q̆𝑝) and, furthermore, that 𝑏 = �𝜏𝜆, where
𝜏𝜆 ∈ Ω𝑀 corresponds to 𝜅𝑀 (𝑏) ∈ 𝜋1 (𝑀)𝐼 .

Arguing as in the proof of A.4.3, we can find a finite extension L of Q̆𝑝 and choose an (𝑀, 𝜇𝑦)-adapted
lifting �̃�/O𝐿 of 𝒢𝑥 (cf. [Zho20, Definition 4.6]), which corresponds to a point 𝑥 ∈ 𝒮𝑈𝑝 (𝐺, 𝑋) (O𝐿).
The construction in [Zho20, Proposition 5.14] gives us a map

𝜄 : 𝑀 (Q𝑝)/M(Z𝑝) → 𝑋𝑀 (𝜆, 𝑏)𝐾𝑀 ,

whose composition with 𝑋𝑀 (𝜆, 𝑏)𝐾𝑀 → 𝑋 (𝜇, 𝑏)𝐾 fits into the following commutative diagram

𝑀 (Q𝑝) 𝑋 (𝜇, 𝑏)𝐾 (F𝑝)

𝜋1 (𝐺)
𝜎
𝐼 ,

𝜅

where the left diagonal map is the composition 𝑀 (Q𝑝) → 𝐺 (Q𝑝) → 𝜋1 (𝐺)
𝜎
𝐼 . Choose a lift of 𝑥 to

a point 𝑧 ∈ Sh(𝐺, 𝑋) (𝐶), where C is an algebraic closure of Q̆𝑝 . Then, by construction, the map 𝜄 fits
into the following diagram (compare with the diagram in [Kis17, Corollary 1.4.12])

𝑀 (Q𝑝) 𝒮𝑈𝑝 (𝐺, 𝑋) (O𝐶 )

𝑋 (𝜇, 𝑏)𝐾 (F𝑝) Sh𝐺,𝐾 (F𝑝).

Here, the top horizontal map is given by the (Hecke) action of 𝑀 (Q𝑝) ⊂ 𝐺 (Q𝑝) on 𝑧 ∈ Sh(𝐺, 𝑋) (𝐶)
followed by projection back to 𝒮𝑈𝑝 (𝐶), extending to 𝒮𝑈𝑝 (𝐺, 𝑋) (O𝐶 ) and reducing mod p. We see
that elements 𝑔 ∈ 𝑋 (𝜇, 𝑏)𝐾 (F𝑝) in the image of 𝑀 (Q𝑝) → 𝑋 (𝜇, 𝑏)𝐾 (F𝑝) satisfy the conclusion of
the proposition. Moreover, this means that the result holds for all points 𝑔 ∈ 𝑋 (𝜇, 𝑏)𝐾 (F𝑝) lying in a
connected component of 𝑋 (𝜇, 𝑏)𝐾 intersecting the image of the map 𝑀 (Q𝑝) → 𝑋 (𝜇, 𝑏)𝐾 (F𝑝). But
the map

𝑀 (Q𝑝)/M(Z𝑝) → 𝜋0 (𝑋
𝑀 (𝜆, 𝑏)𝐾𝑀 )

is surjective by [Zho20, Proposition 5.19], and, moreover

𝜋0 (𝑋
𝑀 (𝜆, 𝑏)𝐾𝑀 ) → 𝜋0 (𝑋 (𝜇, 𝑏)𝐾 )

is surjective by Theorem A.1.3. Thus, every connected component of 𝑋 (𝜇, 𝑏)𝐾 contains a point in the
image of 𝑀 (Q𝑝) → 𝑋 (𝜇, 𝑏)𝐾 (F𝑝), and so we are done. �

Corollary 3.4.6. Let 𝜏 ∈ Adm({𝜇}) be the unique element of length zero. Then

Sh𝐺,∅,𝑈 𝑝 (𝜏) → 𝜋0 (Sh𝐺,𝐾 ,𝑈 𝑝 )

is surjective.
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Proof. It suffices to prove this for the analogous map Sh𝐺,∅ (𝜏) → 𝜋0 (Sh𝐺,𝐾 ). Since Sh𝐺,∅ (𝜏) is
contained in the basic locus, we can use [Zho20, Proposition 6.5(i)] to produce for 𝑥 ∈ Sh𝐺,∅ (𝜏) a
uniformisation map

𝑋 (𝜇, 𝑏)∅ (F𝑝) × 𝐺 (A
𝑝
𝑓 ) → Sh𝐺,∅,

which, as in [Zho20, proof of Axiom 5], restricts to a map

𝑖𝑥 : 𝑋 (𝜇, 𝑏)∅ (𝜏) (F𝑝) × 𝐺 (A𝑝
𝑓 ) → Sh𝐺,∅ (𝜏) (F𝑝).

Moreover, the following diagram commutes (by construction, see [Zho20, Proposition 7.8])

𝑋 (𝜇, 𝑏)∅ (𝜏) (F𝑝) × 𝐺 (A
𝑝
𝑓 ) Sh𝐺,∅ (𝜏) (F𝑝)

𝑋 (𝜇, 𝑏)𝐾 (F𝑝) × 𝐺 (A
𝑝
𝑓 ) Sh𝐺,𝐾 (F𝑝),

𝑖𝑥

𝑖𝑧

where z is the image in Sh𝐺,𝐾 of x. Since 𝑋 (𝜇, 𝑏)∅ (𝜏) (F𝑝) ⊂ 𝑋 (𝜇, 𝑏)∅ (F𝑝) is 𝐽𝑏 (Q𝑝)-stable, it follows
that its image in 𝑋 (𝜇, 𝑏)𝐾 (F𝑝) is 𝐽𝑏 (Q𝑝)-stable. Thus, its image via 𝜅 in 𝜋1 (𝐺)

𝜎
𝐼 is 𝐽𝑏 (Q𝑝)-stable.

Now since b is basic, there is a 𝐽𝑏 (Q𝑝)-equivariant isomorphism 𝜋1 (𝐺)
𝜎
𝐼 = 𝜋1 (𝐽𝑏)

𝜎
𝐼 , and, therefore,

by Lemma 3.4.2, we see that 𝑋 (𝜇, 𝑏)∅ (𝜏) (F𝑝) surjects onto 𝜋1 (𝐺)
𝜎
𝐼 . The result now follows from

Proposition 3.4.5 and the fact that 𝜋1 (𝐺)
𝜎
𝐼 × 𝐺 (A

𝑝
𝑓 ) acts transitively on 𝜋0 (Sh𝐺,𝐾 ). �

Corollary 3.4.7. For 𝑤 ∈ Adm({𝜇}), the map

Sh𝐺,∅,𝑈 𝑝 (𝑤) → 𝜋0 (Sh𝐺,𝐾 ,𝑈 𝑝 )

is surjective.

Proof. By [HR17, Theorem 4.1], this follows from Corollary 3.4.6. �

4. The Cartesian diagram

Let the notation be as in Section 3, in particular, G𝐾 is a connected very special parahoric group scheme.
Define a sheaf Ŝh𝐺,∅,𝑈 𝑝 via the following fibre product diagram

Ŝh𝐺,∅,𝑈 𝑝 Sht𝐺,∅, {𝜇}

Sh𝐺,𝐾 ,𝑈 𝑝 Sht𝐺,𝐾 , {𝜇} .

(4.0.1)

In particular, Ŝh𝐺,∅,𝑈 𝑝 is Sh𝐺,𝑈 ′,★ from the Introduction. Proposition 2.2.17 tells us that Ŝh𝐺,∅,𝑈 𝑝 is
(representable by) a perfect algebraic space which is perfectly proper over Sh𝐺,𝐾 ,𝑈 𝑝 . The universal
property of the fibre product gives us a morphism 𝜄 : Sh𝐺,∅,𝑈 𝑝 → Ŝh𝐺,∅,𝑈 𝑝 , and the goal of this section
is to show that 𝜄 is an isomorphism, under some hypotheses.

In Section 4.1, we will show that 𝜄 is a closed immersion. In Section 4.2, we will show that Ŝh𝐺,∅,𝑈 𝑝 is
equidimensional of the same dimension as Sh𝐺,𝐾 ,𝑈 𝑝 . In Section 4.3, we will show that each irreducible
component of Ŝh𝐺,∅,𝑈 𝑝 can be moved into Sh𝐺,∅,𝑈 𝑝 using prime-to-p Hecke operators. We prove this
by degenerating to the zero-dimensional KR stratum, which we describe explicitly using Rapoport–Zink
uniformisation of the basic locus.
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4.1. The natural map is a closed immersion

Because the morphism Sh𝐺,𝐾 → Sht𝐺,𝐾 , {𝜇} is 𝐺 (A𝑝
𝑓 )-equivariant, see [PR21, Theorem 1.3.4], we

can form Ŝh𝐺,∅,𝑈 𝑝 for every choice of prime-to-p level subgroup𝑈 𝑝 . Then there is an induced action of
𝐺 (A𝑝

𝑓 ) on Ŝh𝐺,∅ := lim
←−−𝑈 𝑝

Ŝh𝐺,∅,𝑈 𝑝 , such that the natural maps Sh𝐺,∅ → Ŝh𝐺,∅ and Ŝh𝐺,∅ → Sh𝐺,𝐾

are 𝐺 (A𝑝
𝑓 )-equivariant.

4.1.1.
Let P ,P ′ be the parahoric group schemes with P (Z𝑝) = 𝑀𝑝 and P ′(Z𝑝) = 𝑀 ′𝑝 (see Section 3.1.10).
Let Sh𝐺𝑉 ,P′,𝑀 𝑝 and Sh𝐺𝑉 ,P ,𝑀 𝑝 be the perfections of the geometric special fibres of the schemes
(introduced in Section 3.1.10)

𝒮𝑀 𝑝𝑀 ′𝑝 (𝐺𝑉 ,H𝑉 ) ⊗Z(𝑝) O𝐸,𝑣 and 𝒮𝑀 𝑝𝑀𝑝 (𝐺𝑉 ,H𝑉 ) ⊗Z(𝑝) O𝐸,𝑣 ,

respectively. Now consider the following commutative diagram deduced from (3.1.3) (which is com-
mutative by [PR21, Theorem 4.3.1], see Footnote 16)

Sh𝐺,∅,𝑈 𝑝 Ŝh𝐺,∅,𝑈 𝑝 Sht𝐺,∅, {𝜇}

Sh𝐺𝑉 ,P′,𝑀 𝑝 Sht𝐺𝑉 ,P′, {𝜇}

Sh𝐺,𝐾 ,𝑈 𝑝 Sht𝐺,𝐾 , {𝜇}

Sh𝐺𝑉 ,P ,𝑀 𝑝 Sht𝐺𝑉 ,P , {𝜇} .

(4.1.1)

Lemma 4.1.2. The front face of the cube, that is, the square involving Sh𝐺𝑉 ,P′,𝑀 𝑝 , Sht𝐺𝑉 ,P′, {𝜇},
Sh𝐺𝑉 ,P ,𝑀 𝑝 and Sht𝐺𝑉 ,P , {𝜇} is Cartesian.

Proof. The stack Sht𝐺𝑉 ,P′, {𝜇} is20 a moduli stack of L′-chains of (polarised) p-divisible groups, and
the stack Sht𝐺𝑉 ,P , {𝜇} is a moduli stack of L-chains of polarised p-divisible groups. The natural map
Sh𝐺𝑉 ,P′,𝑀 𝑝 → Sht𝐺𝑉 ,P′, {𝜇} sends an L′-chain of abelian varieties to the corresponding L′-chain of
p-divisible groups. The map Sh𝐺𝑉 ,P ,𝑀 𝑝 → Sht𝐺𝑉 ,P , {𝜇} has a similar description. Moreover, the map
Sht𝐺𝑉 ,P′, {𝜇} → Sht𝐺𝑉 ,P , {𝜇} sends an L′-chain of (polarised) p-divisible groups to the underlying
L-chain of (polarised) p-divisible groups.

The statement of the lemma now comes down to the following claim: Given anL-chain 𝐴L of (weakly
polarised) abelian varieties, an L′-chain 𝑋L′ of (polarised) p-divisible groups and an isomorphism from
𝐴[𝑝∞]L to the underlying L-chain of 𝑋L, then there is a unique L′-chain of abelian varieties 𝐴L′
with underlying L-chain given by 𝐴L and with p-divisible group 𝐴[𝑝∞]L′ = 𝑋L′ . This claim follows
from the following simpler claim: Given an abelian variety A and a quasi-isogeny of p-divisible groups
𝑓 : 𝐴[𝑝∞] � 𝑋 , there is a unique triple (𝐵, 𝛼, 𝑔) where B is an abelian variety, where 𝛼 : 𝐵[𝑝∞] → 𝑋
is an isomorphism and 𝑔 : 𝐴 � 𝐵 is a p-power quasi-isogeny, such that 𝛼 ◦ 𝑔 = 𝑓 . The proof of this
simpler claim is explained in [RZ96, Section 6.13]. �

20To be precise, the stack Sht𝐺𝑉 ,P′,{𝜇} is a stack of L′-chains of polarised Dieudonné modules. By [Lau18, Theorem 1.2],
for a perfect ring R, there is an equivalence of categories between L′-chains of polarised Dieudonné modules over 𝑊 (𝑅) and
L′-chains of polarised p-divisible groups over Spec 𝑅, which gives the desired description of Sht𝐺𝑉 ,P′,{𝜇} (𝑅) .
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Lemma 4.1.3. The dotted arrow in (4.1.1) exists.
Proof. This is an immediate consequence of Lemma 4.1.2 and the universal property of the fibre
product. �

Proposition 4.1.4. The morphism 𝜄 : Sh𝐺,∅,𝑈 𝑝 → Ŝh𝐺,∅,𝑈 𝑝 induced by the universal property of
Ŝh𝐺,∅,𝑈 𝑝 is a closed immersion.

We start by recalling a lemma.
Lemma 4.1.5. If 𝑓 : 𝑋 → 𝑌 is a perfectly proper morphism between pfp algebraic spaces over F𝑝 that
is injective on F𝑝-points, then f is a closed immersion.

Proof. The proof immediately reduces to the case that X and Y are pfp schemes over F𝑝 . Then the image
𝑓 (𝑋) ⊂ 𝑌 is closed, and we can consider it as a subscheme with the reduced induced structure. The
natural map 𝑓 : 𝑋 → 𝑓 (𝑋) is a bijection on F𝑝-points and thus an isomorphism by [BS17, Corollary
6.10]; the result follows. �

Proof of Proposition 4.1.4. The map 𝜄 is a morphism of perfect algebraic spaces that are perfectly proper
over Sh𝐺,𝐾 ,𝑈 𝑝 , and 𝜄 is, therefore, perfectly proper.21 By Lemma 4.1.5, it thus suffices to prove that 𝜄
induces an injective map on F𝑝-points.

Now [Zho20, Corollary 6.3] tells us that a point 𝑥 ∈ Sh𝐺,∅,𝑈 𝑝 (F𝑝) is determined by its image
in Sh𝐺𝑉 ,P′,𝑀 𝑝 (F𝑝) and the tensors in the Dieudonné module of its p-divisible group. The tensors
are determined by the image of x in Sht𝐺,∅, {𝜇} (F𝑝). By Lemma 4.1.3, the morphism Sh𝐺,∅,𝑈 𝑝 →

Sh𝐺𝑉 ,P′,𝑀 𝑝 factors through Ŝh𝐺,∅,𝑈 𝑝 and so the image of x in Ŝh𝐺,∅,𝑈 𝑝 (F𝑝) remembers both the
image of x in Sh𝐺𝑉 ,P′,𝑀 𝑝 (F𝑝) and the image of x in Sht𝐺,∅, {𝜇} (F𝑝); the lemma is proved. �

Lemma 4.1.6. The morphism 𝑓 : Ŝh𝐺,∅,𝑈 𝑝 → Sh𝐺𝑉 ,P′,𝑀 𝑝 constructed in Lemma 4.1.3 is finite.
Proof. By the proof of Proposition 4.1.4, there is a commutative diagram

Ŝh𝐺,∅,𝑈 𝑝 Sh𝐺𝑉 ,P′,𝑀 𝑝

Sh𝐺,𝐾 ,𝑈 𝑝 Sh𝐺𝑉 ,P ,𝑀 𝑝

𝜉

𝑓

𝜒

𝑓 ′

(4.1.2)

with 𝑓 ′ finite. It suffices to show that f is quasi-finite, since its source and target are perfectly proper
over Sh𝐺𝑉 ,P ,𝑀 𝑝 .22 It suffices, moreover, to prove that f has finite fibres on F𝑝-points, by choosing a
finite type deperfection using [XZ17, Proposition A.1.8.(3)] and applying the usual argument to the
deperfection.
Claim 4.1.7. For 𝑥 ∈ Sh𝐺,𝐾 ,𝑈 𝑝 (F𝑝) with image 𝑦 = 𝑓 ′(𝑥), the map

𝑓 : 𝜉−1(𝑥) → 𝜒−1(𝑦)

is injective.
Granting the claim for now, we will finish the proof: To show that 𝑓 ′ has finite fibres, we choose

𝑦′ ∈ Sh𝐺𝑉 ,P′,𝑀 𝑝 (F𝑝) and set 𝜒(𝑦′) = 𝑦 with inverse images 𝑥1, · · · , 𝑥𝑛 ∈ Sh𝐺,𝐾 ,𝑈 𝑝 (F𝑝) under f. Then
each element of 𝑓 −1(𝑦′) maps to 𝑥𝑖 for some i, which gives

𝑓 −1(𝑦′) =
𝑛∐
𝑖=1

𝑓 −1(𝑦′)𝑖 .

21Here, we are using the cancellation theorem for proper morphisms (see, e.g. [Vak24, Theorem 11.1.1].)
22Indeed, take a deperfection ℎ : 𝑍1 → 𝑍2 of f with 𝑍𝑖 finite type algebraic spaces, which exists by [XZ17, Proposition

A.1.8.(3)]. Then h is proper and quasi-finite, and hence finite, which implies that f is finite.
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But the natural maps 𝑓 −1(𝑦′)𝑖 → 𝜒−1(𝑦) are injective by Claim 4.1.7, and so each 𝑓 −1(𝑦′)𝑖 contains at
most one element. This implies that the cardinality of 𝑓 −1(𝑦′) is bounded by n. �

Proof of Claim 4.1.7. To prove this injectivity on fibres, we return to the commutative cube from
Section 4.1.1 (see equation 4.1.1). The square involving the four objects with subscript G is Cartesian by
construction, and the square involving the four objects with subscript 𝐺𝑉 is Cartesian by Lemma 4.1.2.
To prove the claim, we will make use of the following fact: Given a Cartesian diagram (of presheaves
of groupoids on any category)

𝐴 𝐴′

𝐴′′ 𝐴′′′,

ℎ1

ℎ2

then for any map 𝑥 : 𝐵→ 𝐴′′, the natural map 𝐵 ×𝐴′′′ 𝐴′ → 𝐵 ×𝐴′′ 𝐴 is an equivalence. In other words,
Cartesian squares induce isomorphisms on fibres of maps. Using this fact, the injectivity of the map on
fibres in (4.1.2) can instead be proved for the square

Sht𝐺,∅, {𝜇} Sht𝐺𝑉 ,P′, {𝜇}

Sht𝐺,𝐾 , {𝜇} Sht𝐺𝑉 ,P , {𝜇} .

Moreover, since the spaces of shtukas of type {𝜇} sit inside the spaces of all shtukas, we can reduce to
showing the injectivity of the map on fibres for

Sht𝐺,∅ Sht𝐺𝑉 ,P′

Sht𝐺,𝐾 Sht𝐺𝑉 ,P .

Recall from the proof of Corollary 2.2.13 the Cartesian diagrams (equation (2.2.2))

Sht𝐺,∅ Sht𝐺,𝐾

B𝐿+G∅ B𝐿+G𝐾 ,

Sht𝐺𝑉 ,P′ Sht𝐺𝑉 ,P

B𝐿+P ′ B𝐿+P

that fit into a commutative cube that we will not draw. This reduces the problem to showing the injectivity
statement for the map on fibres in the diagram

B𝐿+G∅ B𝐿+P ′

B𝐿+G𝐾 B𝐿+P ,

which comes down to showing injectivity of the map of partial flag varieties
𝐿+G𝐾
𝐿+G∅

→
𝐿+P
𝐿+P ′ .

This last statement follows from the fact that the intersection of 𝐿+P ′ with 𝐿+G𝐾 is equal to 𝐿+G∅. This
is true by construction of P ,P ′ and the fact that G𝐾 and G∅ are connected parahoric subgroups (the first
by assumption, the second by Lemma 2.2.4). �
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4.2. A perfect local model diagram

Consider the composition �̂� (the last arrow comes from the diagram in Remark 2.3.2)

Ŝh𝐺,∅,𝑈 𝑝 −→ Sht𝐺,∅, {𝜇} → Sht(𝑚,1)
𝐺,∅, {𝜇}

→
[
Mloc
∅, {𝜇}/G ∅

]
.

We will think of this as a local model diagram for Ŝh𝐺,∅,𝑈 𝑝 .

Proposition 4.2.1. The morphism Ŝh𝐺,∅,𝑈 𝑝 →
[
Mloc
∅, {𝜇}
/G ∅

]
is weakly perfectly smooth and Ŝh𝐺,∅,𝑈 𝑝

is equidimensional of the same dimension as Sh𝐺,∅,𝑈 𝑝 .

Proof. We will use the results of Section 2.3. Fix 𝑛 ≥ 2, and choose 𝑚 � 0, such that the action
Ad𝜎 𝐿+G𝐾 on Mloc,n

𝐾, {𝜇}
factors through 𝐿𝑚G𝐾 and such that m satisfies the assumption of Proposi-

tion 2.3.4. As explained in Section 3.1.7, the natural morphism

Sh𝐺,𝐾 ,𝑈 𝑝 → Sht(𝑚,𝑛) ,loc
𝐺,𝐾 , {𝜇}

is perfectly smooth. Combining this with the discussion in Section 2.3.10, we find that (after possibly
increasing n) the composition with the natural map

Sht(𝑚,𝑛) ,loc
𝐺,𝐾 , {𝜇}

→

⎡⎢⎢⎢⎢⎣
ker 𝛾\Mloc,∞

𝐾, {𝜇}

Ad𝜎 𝐿𝑚G𝐾

⎤⎥⎥⎥⎥⎦
is weakly perfectly smooth. Proposition 2.3.4 implies that the right square in the following diagram is
Cartesian

Ŝh𝐺,∅,𝑈 𝑝 Sht𝐺,∅, {𝜇}

[
ker 𝛾\Mloc,∞

∅,{𝜇}

Ad𝜎 𝐻𝑚

]

Sh𝐺,𝐾 ,𝑈 𝑝 Sht𝐺,𝐾 , {𝜇}

[
ker 𝛾\Mloc,∞

𝐾,{𝜇}

Ad𝜎 𝐿𝑚G𝐾

]
.

(4.2.1)

Since the left square is Cartesian by construction, it follows that the outer square is also Cartesian.
Moreover, Lemma 2.3.6 tells us that the stack in the bottom right corner of (4.2.1) is equidimensional.
We know that Sh𝐺,𝐾 ,𝑈 𝑝 is also equidimensional and that the map

Sh𝐺,𝐾 ,𝑈 𝑝 →

⎡⎢⎢⎢⎢⎣
ker 𝛾\Mloc,∞

𝐾, {𝜇}

Ad𝜎 𝐿𝑚G𝐾

⎤⎥⎥⎥⎥⎦
is weakly perfectly smooth. Thus, by Lemma 2.1.20, this map must be weakly perfectly smooth of
constant relative dimension M. Because the diagram in (4.2.1) is Cartesian, it follows that the natural
map

Ŝh𝐺,∅,𝑈 𝑝 →

⎡⎢⎢⎢⎢⎣
ker 𝛾\Mloc,∞

∅, {𝜇}

Ad𝜎 𝐻𝑚

⎤⎥⎥⎥⎥⎦
is also weakly perfectly smooth of constant relative dimension M. By Lemma 2.3.6, both stacks in the
rightmost column of (4.2.1) are equidimensional of the same dimension. We deduce from Lemma 2.1.20
that Ŝh𝐺,∅,𝑈 𝑝 is equidimensional of the same dimension as Sh𝐺,𝐾 ,𝑈 𝑝 and thus equidimensional of the
same dimension as Sh𝐺,∅,𝑈 𝑝 .
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After possibly increasing m, we may choose 0 � 𝑚′ � 𝑚 and invoke Lemma 2.3.9, which tells us
that the natural map

⎡⎢⎢⎢⎢⎣
ker 𝛾\Mloc,∞

∅, {𝜇}

Ad𝜎 𝐻𝑚

⎤⎥⎥⎥⎥⎦ → Sht(𝑚
′,1)

𝐺,∅, {𝜇}

is weakly perfectly smooth. It follows from [SYZ21, Proposition 4.2.5] that the natural map

Sht(𝑚
′,1)

𝐺,∅, {𝜇}
→

[
Mloc
∅, {𝜇}/G ∅

]
is weakly perfectly smooth. Therefore, the map �̂� : Ŝh𝐺,∅,𝑈 𝑝 →

[
Mloc
∅, {𝜇}
/G ∅

]
is a composition of

weakly perfectly smooth maps, and hence weakly perfectly smooth. �

4.2.2.
For 𝑤 ∈ Adm({𝜇}), we define the KR stratum Ŝh𝐺,∅,𝑈 𝑝 (𝑤) to be the inverse image of the locally closed
substack [

Mloc
∅, {𝜇} (𝑤)/G ∅

]
⊂

[
Mloc
∅, {𝜇}/G ∅

]
under the weakly perfectly smooth map �̂� : Ŝh𝐺,∅,𝑈 𝑝 →

[
Mloc
∅, {𝜇}
/G ∅

]
. Similarly, we define

Ŝh𝐺,∅,𝑈 𝑝 (≤𝑤) :=
⋃
𝑤′ ≤𝑤

Ŝh𝐺,∅,𝑈 𝑝 (𝑤′), (4.2.2)

which is the same as the closure of Ŝh𝐺,∅,𝑈 𝑝 (𝑤) because �̂� is open and since the closure relations hold
on Mloc

∅, {𝜇}
(see Section 2.2.14).

Corollary 4.2.3. For 𝑤 ∈ Adm({𝜇}), the closure Ŝh𝐺,∅,𝑈 𝑝 (≤𝑤) has dimension ℓ(𝑤) and is normal.

Proof. Let 𝑑 = Dim Sh𝐺,∅,𝑈 𝑝 = Dim Mloc
∅, {𝜇}

. Then the local model Mloc
∅, {𝜇}

is the union of Mloc
∅, {𝜇}
(≤𝑤)

for 𝑤 ∈ Adm({𝜇}) of length d, and for such w, the KR stratum Mloc
∅, {𝜇}
(≤ 𝑤) is equidimensional of

dimension d and stable under the action of G ∅. Using �̂�, we see that

Ŝh𝐺,∅,𝑈 𝑝 =
⋃

𝑤 ∈Adm( {𝜇})
ℓ (𝑤)=𝑑

Ŝh𝐺,∅,𝑈 𝑝 (≤𝑤),

and since Ŝh𝐺,∅,𝑈 𝑝 is equidimensional of dimension d, it follows that for w with ℓ(𝑤) = 𝑑, we have that
Ŝh𝐺,∅,𝑈 𝑝 (≤𝑤) is equidimensional of dimension 𝑑 = ℓ(𝑤). We can now apply Lemma 2.1.20 to deduce
that �̂� is weakly perfectly smooth of relative dimension 0. We can apply Lemma 2.1.20 again to deduce
the dimension results for Ŝh𝐺,∅,𝑈 𝑝 (≤ 𝑤) for arbitrary w, from the dimension results for Mloc

∅, {𝜇}
(≤ 𝑤)

from Section 2.2.14.
The morphism Ŝh𝐺,∅,𝑈 𝑝 →

[
Mloc
∅, {𝜇}
/G ∅

]
is (by definition) the same as a diagram

˜̂Sh𝐺,∅,𝑈 𝑝

Ŝh𝐺,∅,𝑈 𝑝 Mloc
∅, {𝜇}

,

𝑠 𝑡
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where 𝑠 : ˜̂Sh𝐺,∅,𝑈 𝑝 → Ŝh𝐺,∅,𝑈 𝑝 is a G∅ = 𝐿1G∅-torsor. Since both s and t are surjective and weakly
perfectly smooth, the normality of Ŝh𝐺,∅,𝑈 𝑝 (≤ 𝑤) follows from the normality of Mloc

∅, {𝜇}
(≤ 𝑤) by

Lemma 2.1.14. �

We now give a corollary of Lemma 4.1.6.

Corollary 4.2.4. For 𝑤 ∈ Adm({𝜇}), the KR stratum Ŝh𝐺,∅,𝑈 𝑝 (𝑤) is quasi-affine.
Proof. Section 3.1.10 and, in particular, equation (3.1.3) shows that there is a commutative diagram
where all the horizontal maps are finite

𝒮𝑈 ′ (𝐺, 𝑋) 𝒮𝑀 𝑝𝑀 ′𝑝 (𝐺𝑉 ,H𝑉 ) ⊗ O𝐸, (𝑣) 𝒮𝐽
′𝑝 𝐽 ′𝑝
(𝐺𝑉L′H𝑉L′ ) ⊗ O𝐸, (𝑣)

𝒮𝑈 (𝐺, 𝑋) 𝒮𝑀 𝑝𝑀𝑝 (𝐺𝑉 ,H𝑉 ) ⊗ O𝐸, (𝑣) 𝒮𝐽 𝑝 𝐽𝑝 (𝐺𝑉L ,H𝑉L ) ⊗ O𝐸, (𝑣) .

𝜋∅,𝐾

Using Zarhin’s trick as in [SYZ21, Remark 2.1.4] or [Kis17, Section 1.3.3]), there is, moreover, a finite
map 𝒮𝐽

′𝑝 𝐽 ′𝑝
(𝐺𝑉L′H𝑉L′ ) → 𝒮𝑄𝑝𝑄𝑝 (𝐺𝑉 ′′ ,H𝑉 ′′ ), where 𝑉 ′′ = 𝑉 ⊕4

L′ ⊕ 𝑉
∗,⊕4
L′ and where 𝜓 ′′ is given by a

certain explicit matrix. Here, 𝑄𝑝 corresponds to the self dual lattice 𝑉 ⊕4
L′, 𝑝 ⊕𝑉

∗,⊕4
L′, 𝑝 and 𝑄𝑝 ⊂ 𝐺𝑉 ′′ (A

𝑝
𝑓 )

is sufficiently small. By Lemma 4.1.6, the pullback E of the (ample) Hodge bundle from the perfection
of 𝒮𝑄𝑝𝑄𝑝 ,F𝑝

(𝐺𝑉 ′′ ,H𝑉 ′′ ) to Ŝh𝐺,∅,𝑈 𝑝 is ample.
By construction, see Lemma 4.1.2, the left square in the following diagram commutes

Ŝh𝐺,∅,𝑈 𝑝 Sh𝐺𝑉 ,P′,𝑀 𝑝 𝒮𝑄𝑝𝑄𝑝 ,F𝑝
(𝐺𝑉 ′′ ,H𝑉 ′′ )

perf

Sht𝐺,∅, {𝜇} Sht𝐺𝑉 ,P′, {𝜇} Sht𝐺𝑉 ′′ ,𝑄𝑝 , {𝜇} .

The right square, moreover, commutes because Zarhin’s trick is given by a morphism of Shimura data,
and then we can use [PR21, Corollary 4.3.2] as in Lemma 3.1.13.

The arguments in the proof of [SYZ21, Theorem 3.5.9] now show that the restriction of E to
the KR stratum Ŝh𝐺,∅,𝑈 𝑝 (𝑤) for 𝑤 ∈ Adm({𝜇}) is a torsion ample line bundle from which it fol-
lows that Ŝh𝐺,∅,𝑈 𝑝 (𝑤) is quasi-affine. To elaborate, their arguments show that the Hodge bundle on
𝒮𝑄𝑝𝑄𝑝 ,F𝑝

(𝐺𝑉 ′′ ,H𝑉 ′′ )
perf comes via pullback from a line bundle F on Sht𝐺𝑉 ′′ ,𝑄𝑝 , {𝜇}. They then show

that if we pull back F to Sht𝐺,∅, {𝜇} and restrict to a KR stratum, that the resulting line bundle is
torsion. �

4.3. Connected components of closures of KR strata

The goal of this section is to understand, for 𝑤 ∈ Adm({𝜇}), the fibres of

𝜋0 (Ŝh𝐺,∅,𝑈 𝑝 (≤𝑤)) → 𝜋0 (Sh𝐺,𝐾 ,𝑈 𝑝 ).

Here, Ŝh𝐺,∅,𝑈 𝑝 (≤ 𝑤) is the closure of the KR stratum Ŝh𝐺,∅,𝑈 𝑝 (𝑤) (see equation (4.2.2)). We will
eventually reduce this to understanding the fibres of

Ŝh𝐺,∅,𝑈 𝑝 (𝜏) → 𝜋0 (Sh𝐺,𝐾 ,𝑈 𝑝 ),

where 𝜏 ∈ Adm({𝜇}) is the unique element of length zero. To make this reduction, we will show
that each connected component of Ŝh𝐺,∅,𝑈 𝑝 (≤ 𝑤) intersects Ŝh𝐺,∅,𝑈 𝑝 (𝜏). This will require us to
assume that either Sh𝑈 (𝐺, 𝑋) is proper or that 𝐺Q𝑝 is unramified. More generally, we require that
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Conjecture 4.3.1 below holds. Recall that there are EKOR strata Sh𝐺,𝐾 ,𝑈 𝑝 {𝑤} for 𝑤 ∈ 𝐾Adm({𝜇}),
see Sections 2.3.11 and 3.1.7, with closures Sh𝐺,𝐾 ,𝑈 𝑝 {� 𝑤}.

Conjecture 4.3.1. If V is an irreducible component of Sh𝐺,𝐾 ,𝑈 𝑝 {�𝑤} for some 𝑤 ∈ 𝐾Adm({𝜇}), then
V intersects the unique 0-dimensional EKOR stratum Sh𝐺,𝐾 ,𝑈 𝑝 {𝜏}.

Remark 4.3.2. When G𝐾 is hyperspecial, then Conjecture 4.3.1 is [WZ18, Proposition 6.20]; the
assumption made in the statement of this proposition is proved in [And21]. When 𝐺ad is Q-simple, a
proof of the conjecture will appear in the forthcoming doctoral thesis of Mao (see [Mao24]). When
Sh𝑈 (𝐺, 𝑋) is proper, we will circumvent the conjecture using Lemma 4.3.4 below. This is where the
‘either unramified or proper’ assumption in Theorems 2, 3 and 4 comes from.

4.3.3.
We start by proving a lemma, where we recall that 𝜏 ∈ Adm({𝜇}) is the unique element of length zero.

Lemma 4.3.4. Let Z be a connected component of Ŝh𝐺,∅,𝑈 𝑝 (≤ 𝑤). Suppose that there exists a KR
stratum Ŝh𝐺,∅,𝑈 𝑝 (𝑥), such that 𝑍 ∩ Ŝh𝐺,∅,𝑈 𝑝 (𝑥) is nonempty and such that Ŝh𝐺,∅,𝑈 𝑝 (≤ 𝑥) is perfectly
proper over Spec 𝑘 . Then Z intersects Ŝh𝐺,∅,𝑈 𝑝 (𝜏).

Proof. Let Ŝh𝐺,∅,𝑈 𝑝 (𝑥) be as in the statement of the lemma. Then there is an 𝑥 ′ ≤ 𝑥 of minimal length,
such that Ŝh𝐺,∅,𝑈 𝑝 (𝑥 ′) ∩ 𝑍 ≠ ∅, and it suffices to prove that this length is equal to zero. The minimality
tells us that

Ŝh𝐺,∅,𝑈 𝑝 (𝑥 ′) ∩ 𝑍 = Ŝh𝐺,∅,𝑈 𝑝 (≤ 𝑥 ′) ∩ 𝑍, (4.3.1)

since Ŝh𝐺,∅,𝑈 𝑝 (≤ 𝑥 ′) \ Ŝh𝐺,∅,𝑈 𝑝 (𝑥 ′) is a union of KR strata associated to 𝑥 ′′ ∈ Adm({𝜇}) of length
strictly smaller than 𝑥 ′. Next, we note that 𝑍 ∩ Ŝh𝐺,∅,𝑈 𝑝 (𝑥 ′) is a union of connected components of
Ŝh𝐺,∅,𝑈 𝑝 (𝑥 ′) because Ŝh𝐺,∅,𝑈 𝑝 (𝑥 ′) ⊂ Ŝh𝐺,∅,𝑈 𝑝 (≤𝑤) and so connected components of Ŝh𝐺,∅,𝑈 𝑝 (𝑥 ′)
are either disjoint from Z or contained in Z.

Since Ŝh𝐺,∅,𝑈 𝑝 (𝑥 ′) is quasi-affine by Corollary 4.2.4, we find that Ŝh𝐺,∅,𝑈 𝑝 (𝑥 ′) ∩ 𝑍 is quasi-affine.
Moreover, (4.3.1) implies that Ŝh𝐺,∅,𝑈 𝑝 (𝑥 ′) ∩𝑍 ⊂ Ŝh𝐺,∅,𝑈 𝑝 (≤ 𝑥) is closed, hence perfectly proper over
Spec 𝑘 . Therefore, Ŝh𝐺,∅,𝑈 𝑝 (𝑥 ′) ∩ 𝑍 is perfectly proper and quasi-affine, and thus zero-dimensional.
Since it is a union of connected components of Ŝh𝐺,∅,𝑈 𝑝 (𝑥 ′), it follows from Corollary 4.2.3 that 𝑥 ′ has
length zero and must, therefore, be equal to 𝜏. �

We will deduce the same result from Conjecture 4.3.1 when the Shimura variety is not proper.

Proposition 4.3.5. If Conjecture 4.3.1 holds, then for 𝑤 ∈ Adm({𝜇}), every connected component Z of
Ŝh𝐺,∅,𝑈 𝑝 (≤𝑤) intersects Ŝh𝐺,∅,𝑈 𝑝 (𝜏).

First, we prove two lemmas. Recall from [HZ20, Section 1.3] that an element 𝑤 ∈ �̃� is said to be
𝜎-straight if

𝑛ℓ(𝑤) = ℓ(𝑤𝜎(𝑤) . . . 𝜎𝑛−1 (𝑤))

for all positive integers n.

Lemma 4.3.6. Let 𝑍 ⊂ Ŝh𝐺,∅,𝑈 𝑝 (≤ 𝑤) be a connected component. If 𝑥 ∈ Adm({𝜇}) is of minimal
length with the property that 𝑍 ∩ Ŝh𝐺,∅,𝑈 𝑝 (𝑥) ≠ ∅, then x is 𝜎-straight.

Proof. Arguing as in the proof of Lemma 4.3.4 above, we see that the intersection 𝑍 ∩ Ŝh𝐺,∅,𝑈 𝑝 (𝑥) is
a union of connected components of Ŝh𝐺,∅,𝑈 𝑝 (𝑥). Let V be one of these components, then V is closed
in Ŝh𝐺,∅,𝑈 𝑝 (≤ 𝑥) as in the proof of Lemma 4.3.4. Moreover, V is actually a connected component of
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Ŝh𝐺,∅,𝑈 𝑝 (≤ 𝑥); it is an irreducible component for dimension reasons and thus a connected component
since Ŝh𝐺,∅,𝑈 𝑝 (≤ 𝑥) is normal (see Corollary 4.2.3).

Let 𝑧 ∈ 𝑉 (F𝑝) with image 𝜋(𝑧) ∈ Sh𝐺,𝐾 ,𝑈 𝑝 (F𝑝), and consider the uniformisation map

𝑖𝜋 (𝑧) : 𝑋 (𝜇, 𝑏)𝐾 (F𝑝) → Sh𝐺,𝐾 ,𝑈 𝑝 (F𝑝),

centred at 𝜋(𝑧), where b corresponds to 𝜋(𝑧). By the proof of [HZZ21, Proposition 5.2.2], we can
upgrade this to a morphism of perfect schemes 𝑖𝜋 (𝑧) : 𝑋 (𝜇, 𝑏)𝐾 → Sh𝐺,𝐾 ,𝑈 𝑝 . As in the proof of
Theorem 3.3.1, see the discussion in Section 4.3.8 below, it follows that there is an induced map

𝑖𝑧 : 𝑋 (𝜇, 𝑏)∅ → Ŝh𝐺,∅,𝑈 𝑝

whose image contains z. Indeed, this follows from the construction of 𝑖𝑧 below and the surjectivity of
Ŝh𝐺,∅,𝑈 𝑝 → Sh𝐺,𝐾 ,𝑈 𝑝 . Since the uniformisation map is compatible with the KR stratification, this
restricts to a map

𝑋 (𝜇, 𝑏)∅ (≤ 𝑥) → Ŝh𝐺,∅,𝑈 𝑝 (≤ 𝑥)

whose image contains z. This means that there is a connected component Y of 𝑋 (𝜇, 𝑏)∅ (≤ 𝑥) that maps
to V. Now, [HZ20, Theorem 4.1] tells us that there is a 𝜎-straight element 𝑥 ′ ≤ 𝑥 in Adm({𝜇}), such
that 𝑌 ∩ 𝑋 (𝜇, 𝑏)∅ (𝑥 ′) ≠ ∅. In particular, Ŝh𝐺,∅,𝑈 𝑝 (𝑥 ′) ∩ 𝑉 ≠ ∅, and so Ŝh𝐺,∅,𝑈 𝑝 (𝑥 ′) ∩ 𝑍 ≠ ∅. Since x
has been chosen to be minimal with the property that Ŝh𝐺,∅,𝑈 𝑝 (𝑥 ′) ∩ 𝑍 ≠ ∅, we see that 𝑥 = 𝑥 ′ and so
x is 𝜎-straight. �

Lemma 4.3.7. Let 𝑥 ∈ Adm({𝜇}) be 𝜎-straight. Then there is 𝑦 ∈ 𝐾Adm({𝜇}), such that the natural
map Ŝh𝐺,∅,𝑈 𝑝 (𝑥) → Sh𝐺,𝐾 ,𝑈 𝑝 factors via a finite étale map Ŝh𝐺,∅,𝑈 𝑝 (𝑥) → Sh𝐺,𝐾 ,𝑈 𝑝 {𝑦} and such
that ℓ(𝑦) = ℓ(𝑥).

Proof. By the proof of [HR17, Theorem 6.17], there is an element 𝑣 ∈ 𝑊𝐾 , such that 𝑦 := 𝑣𝑥𝜎(𝑣)−1

lies in 𝐾Adm({𝜇}) and such that ℓ(𝑦) = ℓ(𝑥). It follows from [HR17, the discussion prior to Theorem
6.10] that the image of Sht𝐺,∅, {𝜇} (𝑥) (F𝑝) in Sht𝐺,𝐾 (F𝑝) is equal to Sht𝐺,𝐾 , {𝜇}{𝑦}(F𝑝).23 Since KR
strata and EKOR strata on Ŝh𝐺,∅,𝑈 𝑝 and Sh𝐺,𝐾 ,𝑈 𝑝 respectively, are defined as the inverse images of
KR strata and EKOR strata in Sht𝐺,∅, {𝜇} and Sht𝐺,𝐾 , {𝜇}, and because these strata are determined by
their F𝑝-points, we deduce that the image of Ŝh𝐺,∅,𝑈 𝑝 (𝑥) → Sh𝐺,𝐾 ,𝑈 𝑝 is equal to Sh𝐺,𝐾 ,𝑈 𝑝 {𝑦}.

To prove that the induced map is finite étale, we may use diagram (4.0.1) to reduce to checking
finite étale-ness of Sht𝐺,∅, {𝜇} (𝑥) → Sht𝐺,𝐾 , {𝜇}{𝑦}, and then Lemma 2.4.6 to reduce to checking
this for 𝑋 (𝜇, 𝑏)∅ (𝑥) → 𝑋 (𝜇, 𝑏)𝐾 {𝑦}. By [HZ20, Proposition 4.6], the locally perfectly of finite type
perfect schemes 𝑋 (𝜇, 𝑏)∅ (𝑥) and 𝑋 (𝜇, 𝑏)𝐾 {𝑦} are zero-dimensional. Thus, they have an affine open
cover by zero-dimensional perfectly of finite type affine perfect schemes, which must be finite disjoint
unions of Spec F𝑝 (since zero-dimensional reduced finite type affine schemes over Spec F𝑝 are). This
implies that both 𝑋 (𝜇, 𝑏)∅ (𝑥) and 𝑋 (𝜇, 𝑏)𝐾 {𝑦} are disjoint unions of Spec F𝑝 , which, in particular,
implies that they are étale over Spec F𝑝 . Thus, the map 𝑋 (𝜇, 𝑏)∅ (𝑥) → 𝑋 (𝜇, 𝑏)𝐾 {𝑦} is étale, and it
suffices to show that it is finite étale, which comes down to showing it is quasi-finite. For thus, we note
that 𝐽𝑏 (Q𝑝) acts transitively on 𝑋 (𝜇, 𝑏)∅ (𝑥) (F𝑝) by [HZ20, Theorem 5.1], with stabiliser a compact
open subgroup, cf. [ZZ20, Proposition 3.1.4], and the same holds for 𝑋 (𝜇, 𝑏)𝐾 {𝑦}(F𝑝). Thus, we may
identify 𝑋 (𝜇, 𝑏)∅ (𝑥) → 𝑋 (𝜇, 𝑏)𝐾 {𝑦} with∐

𝐽𝑏 (Q𝑝)/𝑁

Spec F𝑝 →
∐

𝐽𝑏 (Q𝑝)/𝑁 ′

Spec F𝑝 ,

23Recall that for 𝑦 ∈ 𝐾Adm( {𝜇}) , we use {𝑦 } to denote the corresponding EKOR stratum (see Section 2.3.11).
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where 𝑁 ⊂ 𝑁 ′ are compact open subgroups of 𝐽𝑏 (Q𝑝). Since N has finite index in 𝑁 ′, it follows that
𝑋 (𝜇, 𝑏)∅ (𝑥) → 𝑋 (𝜇, 𝑏)𝐾 {𝑦} is finite étale. �

Proof of Proposition 4.3.5. Let 𝑥 ∈ Adm({𝜇}) be of minimal length with the property that
𝑍 ∩ Ŝh𝐺,∅,𝑈 𝑝 (𝑥) ≠ ∅, we would like to show that ℓ(𝑥) = 0. Arguing as in the proof of Lemma 4.3.4
above, we see that the intersection 𝑍 ∩ Ŝh𝐺,∅,𝑈 𝑝 (𝑥) is a union of connected components of Ŝh𝐺,∅,𝑈 𝑝 (𝑥)

and that 𝑍 ∩ Ŝh𝐺,∅,𝑈 𝑝 (𝑥) is closed in Ŝh𝐺,∅,𝑈 𝑝 (≤ 𝑥). Let V be one of these components, then V has
dimension ℓ(𝑥) and V is closed inside Ŝh𝐺,∅,𝑈 𝑝 (≤ 𝑥). Thus, V must be an irreducible component of
Ŝh𝐺,∅,𝑈 𝑝 (≤ 𝑥).

By Lemma 4.3.6, we see that x is 𝜎-straight. By Lemma 4.3.7, there exists 𝑦 ∈ 𝐾Adm({𝜇}),
such that the natural map Ŝh𝐺,∅,𝑈 𝑝 (𝑤) → Sh𝐺,𝐾 ,𝑈 𝑝 factors via a finite étale map Ŝh𝐺,∅,𝑈 𝑝 (𝑤) →
Sh𝐺,𝐾 ,𝑈 𝑝 {𝑦} and such that ℓ(𝑥) = ℓ(𝑦). We conclude that the image of V in Sh𝐺,𝐾 ,𝑈 𝑝 {𝑦} is an
irreducible component of Sh𝐺,𝐾 ,𝑈 𝑝 {𝑦}. Since V is closed in Ŝh𝐺,∅,𝑈 𝑝 (≤ 𝑥) and thus in Ŝh𝐺,∅,𝑈 𝑝 , and
since the map Ŝh𝐺,∅,𝑈 𝑝 → Sh𝐺,𝐾 ,𝑈 𝑝 is perfectly proper, it follows that 𝜋(𝑉) is closed in Sh𝐺,𝐾 ,𝑈 𝑝 .
Therefore, 𝜋(𝑉) is closed inside Sh𝐺,𝐾 ,𝑈 𝑝 {� 𝑦}, the closure of Sh𝐺,𝐾 ,𝑈 𝑝 {𝑦}, and, therefore, an
irreducible component of Sh𝐺,𝐾 ,𝑈 𝑝 {� 𝑦}.

Conjecture 4.3.1 tells us that 𝜋(𝑉) intersects the zero-dimensional EKOR stratum Sh𝐺,𝐾 ,𝑈 𝑝 {𝜏}, and
since 𝜋(𝑉) ⊂ Sh𝐺,𝐾 ,𝑈 𝑝 {𝑦}, it follows that 𝜏 = 𝑦 and so that 0 = ℓ(𝑦) = ℓ(𝑥). It follows that 𝑥 = 𝜏, and
so we are done. �

4.3.8.
We will explicitly analyse the basic KR stratum Ŝh𝐺,∅,𝑈 𝑝 (𝜏), where 𝜏 ∈ Adm({𝜇}) is the unique element
of length zero. Let 𝑥 ∈ Ŝh𝐺,∅ (𝜏) (F𝑝) with image 𝜋(𝑥) ∈ Sh𝐺,𝐾 ,𝑈 𝑝 (F𝑝), and choose an isomorphism
D𝑥 � 𝑉Z𝑝 ⊗Z𝑝 Z̆𝑝 sending 𝑠𝛼,0,𝑥 to 𝑠𝛼⊗1. Let 𝑏 ∈ 𝐺 (Q̆𝑝) be the element corresponding to the Frobenius
of D𝑥 under this isomorphism. Let 𝐼𝑥 be the algebraic group 𝐼𝜋 (𝑥) introduced in Section 3.1.9, and let

𝑗 𝑝𝑥 : 𝐼𝑥,A𝑝
𝑓
→ 𝐺A𝑝

𝑓

𝑗𝑥,𝑝 : 𝐼𝑥,Q𝑝 → 𝐽𝑏

be the maps induced by the choices made above. Then, by [HZZ21, Proposition 5.2.2], there is an iso-
morphism of perfect schemes (where Sh𝐺,𝐾 , [𝑏],𝑈 𝑝 ⊂ Sh𝐺,𝐾 ,𝑈 𝑝 denotes the Newton stratum associated
to [𝑏])

𝑖𝜋 (𝑥) : 𝐼𝑥 (Q)\
(
𝑋 (𝜇, 𝑏)𝐾 × 𝐺 (A

𝑝
𝑓 )/𝑈

𝑝 → Sh𝐺,𝐾 , [𝑏],𝑈 𝑝

)
,

where 𝐼𝑥 (Q) acts on 𝐺 (A𝑝
𝑓 ) via 𝑗 𝑝𝑥 and on 𝑋 (𝜇, 𝑏)𝐾 via 𝑗𝑥,𝑝 : 𝐼 (Q) → 𝐽𝑏 (Q𝑝) and then the natural

action of 𝐽𝑏 (Q𝑝) on 𝑋 (𝜇, 𝑏)𝐾 . Here, we consider the discrete topological space𝐺 (A𝑝
𝑓 )/𝑈

𝑝 as a discrete
scheme, and we are taking the quotient of 𝑋 (𝜇, 𝑏)𝐾 × 𝐺 (A𝑝

𝑓 )/𝑈
𝑝 by 𝐼𝑥 (Q) in the pro-étale topology.

Moreover, it follows from [HZZ21, Proposition 5.2.6] that 𝑗 𝑝𝑥 and 𝑗𝑥,𝑝 are isomorphisms and that 𝐼 (R)
is compact mod centre.

4.3.9.
Consider the Cartesian diagram

Ŝh𝐺,∅, [𝑏],𝑈 𝑝 Sht𝐺,∅,𝜇, [𝑏]

Sh𝐺,𝐾 , [𝑏],𝑈 𝑝 Sht𝐺,𝐾 , {𝜇}, [𝑏] .

(4.3.2)
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Applying Lemma 2.4.6 to Sht𝐺,∅,𝜇, [𝑏] and Sht𝐺,𝐾 , {𝜇}, [𝑏] and using 𝑖𝑥 , we can identify (4.3.2) with

Ŝh𝐺,∅, [𝑏],𝑈 𝑝

[
𝑋 (𝜇,𝑏)∅
𝐽𝑏 (Q𝑝)

]

𝐼𝑥 (Q)\𝑋 (𝜇, 𝑏)𝐾 × 𝐺 (A
𝑝
𝑓 )/𝑈

𝑝

[
𝑋 (𝜇,𝑏)𝐾
𝐽𝑏 (Q𝑝)

]
.

By Lemma 3.3.3, the map (induced by the bottom horizontal map)

𝑋 (𝜇, 𝑏)𝐾 × 𝐺 (A
𝑝
𝑓 ) →

[
𝑋 (𝜇, 𝑏)𝐾
𝐽𝑏 (Q𝑝)

]

is the natural projection map onto the first factor followed by the natural map to the quotient. As in the
proof of Theorem 3.3.1, it follows that there is an isomorphism

𝑖𝑥 : 𝐼𝑥 (Q)\𝑋 (𝜇, 𝑏)∅ × 𝐺 (A𝑝
𝑓 )/𝑈

𝑝 → Ŝh𝐺,∅, [𝑏],𝑈 𝑝 ,

such that the map (coming from the left vertical map in (4.3.2))

𝐼𝑥 (Q)\𝑋 (𝜇, 𝑏)∅ × 𝐺 (A
𝑝
𝑓 )/𝑈

𝑝 → 𝐼𝑥 (Q)\𝑋 (𝜇, 𝑏)𝐾 × 𝐺 (A
𝑝
𝑓 )/𝑈

𝑝

is induced by the natural projection 𝑋 (𝜇, 𝑏)∅ → 𝑋 (𝜇, 𝑏)𝐾 and the identity of 𝐺 (A𝑝
𝑓 ).

4.3.10.
To analyse the fibres of Ŝh𝐺,∅,𝑈 𝑝 (𝜏) → 𝜋0 (Sh𝐺,𝐾 ,𝑈 𝑝 ), we will first analyse the fibres of 𝑋 (𝜇, 𝑏)∅ (𝜏) →
𝜋1 (𝐺)

𝜎
𝐼 . Let 𝐽sc

𝑏 → 𝐽der
𝑏 be the simply connected cover of the derived group 𝐽der

𝑏 of 𝐽𝑏 .

Lemma 4.3.11. The group 𝐽sc
𝑏 (Q𝑝) acts transitively on the fibres of

𝑋 (𝜇, 𝑏)∅ (𝜏) → 𝜋1 (𝐺)
𝜎
𝐼 .

Proof. The element 𝜏 is 𝜎-straight, and so 𝐽𝑏 (Q𝑝) acts transitively on 𝑋 (𝜇, 𝑏)∅ (𝜏) by [He14, Theorem
4.8]. The stabiliser of a point is a parahoric subgroup 𝑁𝑝 ⊂ 𝐽𝑏 (Q𝑝) by [ZZ20, Proposition 3.1.4].
Therefore, our map can be identified with the natural map

𝑋 (𝜇, 𝑏)∅ (𝜏) =
𝐽𝑏 (Q𝑝)

𝑁𝑝
→

𝐽𝑏 (Q𝑝)

𝑁𝑝𝐽sc (Q𝑝)
= 𝜋1 (𝐽𝑏)

𝜎
𝐼 = 𝜋1 (𝐺)

𝜎
𝐼 ,

using Lemma 3.4.2 and the fact that b is basic in the last step, and the result follows. �

4.3.12.
The goal of this subsection is to prove an auxiliary result. Let G and H be connected reductive groups
overQ that are inner forms of each other, and such that they are isomorphic overA𝑝

𝑓 . Fix an identification
G ⊗ A

𝑝
𝑓 � H ⊗ A

𝑝
𝑓 and an inner twisting Ψ : G

Q
→ H

Q
, which induces an isomorphism of centres

𝑍 (G) → 𝑍 (H) and 𝜋1 (G)
𝜎
𝐼 � 𝜋1 (H)

𝜎
𝐼 . Recall the notation G(R)+ and G(Q)+ from Section 3.4.

Proposition 4.3.13 (Borovoi). The images of G(Q)+ and H(Q)+ in

G(A
𝑝
𝑓 )

𝜌(Gsc (A
𝑝
𝑓 ))
× 𝜋1 (G)

𝜎
𝐼

are equal (after applying our fixed identifications).
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The following arguments have been reproduced and adapted with permission from Borovoi’s Math-
Overflow answer [Bor20]; we will use [Bor98, Section 3]. We consider the crossed module (Gsc → G)
and the hypercohomology

𝐻0
ab(Q,G) := 𝐻0(Q,Gsc → G),

where G is in degree 0 (see [Bor98]). The cohomology set 𝐻0
ab(Q,G) is naturally an abelian group that

does not change under inner twisting of G. The short exact sequence

1→ (1→ G) → (Gsc → G) → (Gsc → 1) → 1

induces a hypercohomology exact sequence

Gsc (Q) → G(Q) → 𝐻0
ab(Q,G) → 𝐻1 (Q,Gsc),

where

ab0 : G(Q) → 𝐻0
ab(Q,G)

is the abelianisation map. Let Z be the centre of G, then it follows from the definition of G(R)+ and the
connectedness of Gsc (R) that

G(R)+ = 𝑍 (R) · 𝜌(Gsc (R)),

and hence

G(R)+/𝜌(G
sc (R)) = ab0 (𝑍 (R)) ⊂ ker[𝐻0

ab (R,G) → 𝐻1 (R,Gsc)] .

We see that the image of G(Q)+ in 𝐻0
ab(Q,G) can be identified with the preimage of ab0(𝑍 (R)) ⊂

𝐻0
ab (R,G) in ker[𝐻0

ab (Q,G) → 𝐻1 (Q,Gsc)] under the natural map

𝑓 : ker[𝐻0
ab(Q,G) → 𝐻1(Q,Gsc)] → ker[𝐻0

ab(R,G) → 𝐻1(R,Gsc)] .

Lemma 4.3.14. The preimage of ab0(𝑍 (R)) ⊂ 𝐻0
ab(R,G) in ker[𝐻0

ab(Q,G) → 𝐻1(Q,Gsc)] under f
coincides with the preimage of ab0 (𝑍 (R)) in 𝐻0

ab(Q,G).

Proof. Let 𝜉 ∈ 𝐻0
ab (Q,G) lie in the preimage of

ab0 (𝑍 (R)) ⊂ ker[𝐻0
ab (R,G) → 𝐻1 (R,Gsc)] .

Then the image of 𝜉 in 𝐻1(R,Gsc) is trivial, and, therefore, the image of 𝜉 in 𝐻1 (Q,Gsc) lies in the
kernel of the localisation map

𝐻1 (Q,Gsc) → 𝐻1(R,Gsc).

By the Hasse principle for simply connected groups ([PR94, Theorem 6.6]), this kernel is trivial.
Thus, the image of 𝜉 in 𝐻1 (Q,Gsc) is trivial, and hence 𝜉 lies in the preimage of ab0(𝑍 (R)) in
ker[𝐻0

ab (Q,G) → 𝐻1 (Q,Gsc)], as required. �

Corollary 4.3.15. The image of the abelianisation map G(Q)+ → 𝐻0
ab(Q,G) is the preimage of

ab0 (𝑍 (R)) ⊂ 𝐻0
ab(R,G) in 𝐻0

ab(Q,G).
Proof of Proposition 4.3.13. It is clear from Corollary 4.3.15 and the discussion above that the image
of G(Q)+ → 𝐻0

ab(Q,G) is the same for all inner forms. Thus, the images of H(Q)+ and G(Q)+ in
𝐻0

ab (Q,G) = 𝐻0
ab(Q,H) are equal.
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To prove the proposition, we simply note that the following diagram commutes

G(Q)+
𝜌(Gsc (Q)) 𝐻0

ab(Q,G)

G(A 𝑓 )

𝜌(Gsc (A 𝑓 ))

∏
𝑣≠∞ 𝐻

0
ab(Q𝑣 ,G)

and that 𝜋1 (G)
𝜎
𝐼 is a quotient of G(Q𝑝)/𝜌(G

sc(Q𝑝)) by Lemma 3.4.2. �

Proposition 4.3.16. Let Σ be a finite set of primes with 𝑝 ∈ Σ. Then 𝐺sc(AΣ
𝑓 ) acts transitively on the

fibres of

Ŝh𝐺,∅ (𝜏) → 𝜋0 (Sh𝐺,𝐾 ).

Proof. Let 𝑧 ∈ Ŝh𝐺,∅ (𝜏) (F𝑝), where Ŝh𝐺,∅ (𝜏) := lim
←−−𝑈 𝑝

Ŝh𝐺,∅,𝑈 𝑝 (𝜏), with image 𝑥 ∈ Sh𝐺,𝐾 (F𝑝).
Choose an isomorphism D𝑥 � 𝑉Z𝑝 ⊗Z𝑝 Z̆𝑝 sending 𝑠𝛼,0,𝑥 to 𝑠𝛼 ⊗ 1, and let 𝑏 ∈ 𝐺 (Q̆𝑝) be the element
corresponding to the Frobenius of D𝑥 under this isomorphism. Then as explained in Section 4.3.8, we
get an isomorphism

𝑖𝑧 : lim
←−−
𝑈 𝑝

𝐼𝑥 (Q)\𝑋 (𝜇, 𝑏)∅ × 𝐺 (A
𝑝
𝑓 )/𝑈

𝑝 → lim
←−−
𝑈 𝑝

Ŝh𝐺,∅, [𝑏],𝑈 𝑝 =: Ŝh𝐺,∅, [𝑏] .

Since the uniformisation is compatible with the Kottwitz–Rapoport (KR) stratifications on both sides,
see Lemma 3.3.3, this induces an isomorphism

lim
←−−
𝑈 𝑝

𝐼𝑥 (Q)\𝑋 (𝜇, 𝑏)∅ (𝜏) × 𝐺 (A
𝑝
𝑓 )/𝑈

𝑝 → lim
←−−
𝑈 𝑝

Ŝh𝐺,∅,𝑈 𝑝 (𝜏) = Ŝh𝐺,∅ (𝜏).

We also note that the natural map 𝐼𝑥 (Q)\𝑋 (𝜇, 𝑏)∅ (𝜏) × 𝐺 (A
𝑝
𝑓 ) → lim

←−−𝑈 𝑝
𝐼𝑥 (Q)\𝑋 (𝜇, 𝑏)∅ (𝜏) ×

𝐺 (A𝑝
𝑓 )/𝑈

𝑝 is a bijection by [Mil05, Lemma 4.20], as in the second paragraph of Section 3.4.
Using the base point 𝑥 ∈ Sh𝐺,𝐾 (F𝑝) to trivialise the 𝜋(𝐺)-torsor 𝜋0 (Sh𝐺,𝐾 ), see the beginning of

Section 3.4, we get an isomorphism of profinite sets

𝜋(𝐺) → 𝜋0 (Sh𝐺,𝐾 )

𝑔 ↦→ 𝑔 · 𝑍𝑥 ,

where 𝑍𝑥 is the connected component containing x. By the discussion in Section 3.4.1, there is an
isomorphism of topological groups

𝜋(𝐺) = 𝐺 (Q)+\𝜋1 (𝐺)
𝜎
𝐼 ×

𝐺 (A𝑝
𝑓 )

𝜌(𝐺sc (A
𝑝
𝑓 ))

.

By Proposition 3.4.5, the map

𝛼𝑥 : 𝐼𝑥 (Q)\𝜋0(𝑋 (𝜇, 𝑏)∅) × 𝐺 (A
𝑝
𝑓 ) → 𝜋0 (Sh𝐺,𝐾 )

induced by 𝑖𝑥 , satisfies 𝛼𝑥 (𝑦, 𝑔𝑝) = (𝜅(𝑦), 𝑔𝑝) · 𝑍𝑥 , where 𝜅(𝑦) ∈ 𝜋1 (𝐺)
𝜎
𝐼 is the image of y and

𝑔𝑝 ∈ 𝐺 (A𝑝
𝑓 ). Hence, our identifications fit in a commutative diagram

𝜋0 (Ŝh𝐺,∅ (𝜏)) 𝐼𝑥 (Q)\𝜋0(𝑋 (𝜇, 𝑏)∅ (𝜏)) × 𝐺 (A
𝑝
𝑓 )

𝜋0 (Sh𝐺,𝐾 ) 𝐺 (Q)+/𝜋1 (𝐺Q𝑝 )
𝜎
𝐼 ×

𝐺 (A
𝑝
𝑓
)

𝜌(𝐺sc (A
𝑝
𝑓
))
,

∼

∼

(4.3.3)
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where the map

𝑋 (𝜇, 𝑏)∅ (𝜏) × 𝐺 (A
𝑝
𝑓 ) → 𝜋1 (𝐺Q𝑝 )

𝜎
𝐼 × 𝐺 (A

𝑝
𝑓 )

is the product of the natural map 𝜅 of Section 3.4 and the identity map on 𝐺 (A𝑝
𝑓 ). By [PR94, Theorem

7.8], which is a strong approximation result, the group 𝐼sc(Q) is dense in (using 𝑗𝑥,𝑝 and 𝑗 𝑝𝑥 from
Section 4.3.8 to make the identification)∏

ℓ∈Σ

𝐼sc (Qℓ) = 𝐽sc
𝑏 (Q𝑝) ×

∏
ℓ∈Σ\{𝑝}

𝐺sc(Qℓ).

Recall that we sometimes write 𝐺sc(A
𝑝
𝑓 ) ⊂ 𝐺 (A

𝑝
𝑓 ) for 𝜌(𝐺sc(A

𝑝
𝑓 )) ⊂ 𝐺 (A

𝑝
𝑓 ). Using the discussion

above, we can identify the right vertical map in (4.3.3) with the natural map24

𝐼𝑥 (Q)\
𝜋0(𝑋 (𝜇, 𝑏)∅ (𝜏))

𝐽sc
𝑏 (Q𝑝)

×
𝐺 (A𝑝

𝑓 )∏
ℓ∈Σ\{𝑝} 𝐺

sc(Qℓ )
→ 𝐺 (Q)+/

(
𝜋1 (𝐺Q𝑝 )

𝜎
𝐼 ×

𝐺 (A𝑝
𝑓 )

𝐺sc (A
𝑝
𝑓 )

)
.

Lemma 4.3.11 tells us that 𝜅 induces an isomorphism 𝜋0 (𝑋 (𝜇,𝑏)∅ (𝜏))
𝐽 sc
𝑏
(Q𝑝)

→ 𝜋1 (𝐺Q𝑝 )
𝜎
𝐼 , and thus we get

𝐼𝑥 (Q)\𝜋1 (𝐺Q𝑝 )
𝜎
𝐼 ×

𝐺 (A𝑝
𝑓 )∏

ℓ∈Σ\{𝑝} 𝐺
sc (Qℓ)

→ 𝐺 (Q)+/

(
𝜋1 (𝐺Q𝑝 )

𝜎
𝐼 ×

𝐺 (A𝑝
𝑓 )

𝐺sc(A
𝑝
𝑓 )

)
. (4.3.4)

The fibres of the natural map

𝜋1 (𝐺Q𝑝 )
𝜎
𝐼 ×

𝐺 (A𝑝
𝑓 )∏

ℓ∈Σ\{𝑝} 𝐺
sc (Qℓ)

→ 𝜋1 (𝐺Q𝑝 )
𝜎
𝐼 ×

𝐺 (A𝑝
𝑓 )

𝐺sc (A
𝑝
𝑓 )

clearly have a transitive action of 𝐺sc(AΣ
𝑓 ). To show that the same is true for the fibres of (4.3.4), we

need to show that the images of the two natural maps

𝐼𝑥 (Q), 𝐺 (Q)+ → 𝜋1 (𝐺Q𝑝 )
𝜎
𝐼 ×

𝐺 (A𝑝
𝑓 )

𝐺sc (A
𝑝
𝑓 )

(4.3.5)

are equal. Now note that 𝐼𝑥 (Q) = 𝐼𝑥 (Q)+ because 𝐼ad
𝑥 (R) is compact and thus connected (see [PR94,

Corollary 1 on page 121]). Then the required identification of the images of (4.3.5) is exactly what is
proved in Proposition 4.3.13. �

Proposition 4.3.17. Let Σ be a finite set of primes with 𝑝 ∈ Σ. If either Sh𝑈 (𝐺, 𝑋) is proper or
Conjecture 4.3.1 holds, then 𝐺sc (AΣ

𝑓 ) acts transitively on the fibres of

𝜋0 (Ŝh𝐺,∅ (≤𝑤)) → 𝜋0 (Sh𝐺,𝐾 ).

Proof. There is a 𝐺 (A𝑝
𝑓 )-equivariant commutative diagram

Ŝh𝐺,∅ (𝜏) 𝜋0 (Ŝh𝐺,∅ (≤𝑤))

𝜋0 (Sh𝐺,𝐾 ).

(4.3.6)

24Note that 𝜋 (𝐺) is Hausdorff, which follows from the discussion in the second paragraph of Section 3.4. Therefore, the kernel
of 𝐺 (A𝑝

𝑓
) × 𝐽𝑏 (Q𝑝) → 𝐺 (A

𝑝
𝑓
) × 𝜋1 (𝐺Q𝑝 )

𝜎
𝐼 → 𝜋 (𝐺) is closed and thus contains the closure of 𝐼𝑥 (Q) .
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If Conjecture 4.3.1 holds, then, by Proposition 4.3.5, every connected component of Ŝh𝐺,∅,𝑈 𝑝 (≤ 𝑤)

intersects Ŝh𝐺,∅,𝑈 𝑝 (𝜏). If Sh𝑈 (𝐺, 𝑋) is proper, then 𝒮𝑈 (𝐺, 𝑋) is proper by the main result of
[MP19]. Therefore, Sh𝐺,𝐾 ,𝑈 𝑝 is perfectly proper and, moreover, Ŝh𝐺,∅,𝑈 𝑝 is perfectly proper since
Ŝh𝐺,∅,𝑈 𝑝 → Sh𝐺,𝐾 ,𝑈 𝑝 is perfectly proper. Now, Lemma 4.3.4 tells us that every connected compo-
nent of Ŝh𝐺,∅,𝑈 𝑝 (≤ 𝑤) intersects Ŝh𝐺,∅,𝑈 𝑝 (𝜏). Thus, under the assumptions of the proposition, the
horizontal arrow in (4.3.6) is surjective. Indeed, it is a continuous morphism of profinite sets that is a
countable inverse limit of surjective maps between finite sets.

We see that the fibres of the left diagonal map surject onto the fibres of the right diagonal map. Now
𝐺sc (AΣ

𝑓 ) acts transitively on the fibres of the left diagonal map by Proposition 4.3.16, and, therefore,
also on the fibres of the right diagonal map. �

4.4. Proof of the main theorems

Theorem 4.4.1. If either Sh𝑈 (𝐺, 𝑋) is proper or Conjecture 4.3.1 holds, then the natural map
𝜄 : Sh𝐺,∅,𝑈 𝑝 → Ŝh𝐺,∅,𝑈 𝑝 is an isomorphism.

Proof. We know that 𝜄 is a closed immersion by Proposition 4.1.4, whose source and target are equidi-
mensional of the same dimension by Proposition 4.2.1. To prove that this closed immersion is an
isomorphism, it suffices to show that for each 𝑤 ∈ Adm({𝜇}) of maximal length, the closed immersion

Sh𝐺,∅,𝑈 𝑝 (≤𝑤) → Ŝh𝐺,∅,𝑈 𝑝 (≤𝑤)

is an isomorphism. Now source and target are normal by Corollary 4.2.3, and so the source is a union
of connected components of the target. To show that the inclusion

𝜋0 (Sh𝐺,∅,𝑈 𝑝 (≤𝑤)) → 𝜋0 (Ŝh𝐺,∅,𝑈 𝑝 (≤𝑤))

is an isomorphism, we will use the𝐺 (A𝑝
𝑓 )-equivariance of the map 𝜋0 (Sh𝐺,∅ (≤𝑤)) → 𝜋0 (Ŝh𝐺,∅ (≤𝑤)).

We know by Corollary 3.4.7 that

Sh𝐺,∅,𝑈 𝑝 (≤𝑤) → 𝜋0 (Sh𝐺,𝐾 ,𝑈 𝑝 )

is surjective for all 𝑈 𝑝 , and, therefore, it is enough to show that 𝐺sc (A
𝑝
𝑓 ) acts transitively on the fibres

of Ŝh𝐺,∅ (≤𝑤) → 𝜋0 (Sh𝐺,𝐾 ). Under our assumptions, this follows from Proposition 4.3.17. �

4.4.2. Proofs of the main theorems
In this section, we deduce the main theorems of the Introduction.

Proof of Theorem 2. Recall that we assumed in Theorem 2 that 𝜋1 (𝐺)𝐼 is torsion free, which implies that
all parahoric subgroups of𝐺 (Q𝑝) are connected by Lemma 2.2.2. Part 1 of Theorem 2 is Theorem A.4.5.

To prove part 2 of the theorem, we let𝑈 ′′𝑝 be an arbitrary parahoric subgroup. We choose an Iwahori
subgroup𝑈 ′𝑝 ⊂ 𝑈 ′′𝑝 and a very special parahoric𝑈𝑝 ⊃ 𝑈

′
𝑝 , this is possible as explained in Section 2.2.5.

The result for 𝒮𝑈 ′ (𝐺, 𝑋) now follows from Theorem 3.3.1 in combination with Theorem 4.4.1. Here, to
apply Theorem 4.4.1, we need to verify that either Sh𝑈 (𝐺, 𝑋) is proper or Conjecture 4.3.1 holds. In the
statement of Theorem 2, we are assuming that either Sh𝑈 (𝐺, 𝑋) is proper or that 𝐺Q𝑝 is unramified.
Now, we recall that Conjecture 4.3.1 holds if 𝐺Q𝑝 is unramified by [WZ18, Proposition 6.20] and
the main result of [And21] (see Remark 4.3.2). The result for 𝒮𝑈 ′′ (𝐺, 𝑋) follows from the result for
𝒮𝑈 ′ (𝐺, 𝑋) in combination with [Zho20, Proposition 7.7]. �

Proof of Theorem 1. Recall that we assumed in Theorem 2 that 𝜋1 (𝐺)𝐼 is torsion free, which implies
that all parahoric subgroups of 𝐺 (Q𝑝) are connected by Lemma 2.2.2. Theorem 1 is, therefore, a direct
consequence of Corollary 3.2.3. �
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Proof of Theorem 3. By [Zho20, Theorem 8.1.(ii)], uniformisation of isogeny classes, as proved in
Theorem 2, implies that the He–Rapoport axioms hold. �

Proof of Theorem 4. This follows from Theorem 4.5.2 below by noting that when 𝐺ad is Q-simple as
in the assumptions of Theorem 4.5.2, then Q-nonbasic just means nonbasic. Note that Theorem 4.5.2
has the assumption that either Sh𝑈 (𝐺, 𝑋) is proper or Conjecture 4.3.1 holds, which is true if either
Sh𝑈 (𝐺, 𝑋) is proper or if 𝐺Q𝑝 is unramified (see the proof of Theorem 2 above). �

4.5. Consequences for irreducible components

In this section, we prove a generalisation of Theorem 4. Before we can state it, we need to introduce
some notation. Let 𝐺ad =

∏
𝑖 𝐺𝑖 be the decomposition of 𝐺ad into simple groups over Q, and consider

the induced maps of Kottwitz sets

𝐵(𝐺Q𝑝 ) → 𝐵(𝐺ad
Q𝑝
) →

∏
𝑖

𝐵(𝐺𝑖,Q𝑝 ).

Definition 4.5.1 (Definition 5.3.2 of [KS21]). An element [𝑏] ∈ 𝐵(𝐺) is calledQ-nonbasic if the image
of [𝑏] in 𝐵(𝐺𝑖,Q𝑝 ) is nonbasic for all i. A Newton stratum Sh𝐺,𝐾 , [𝑏],𝑈 𝑝 is called Q-nonbasic if [𝑏] is
Q-nonbasic.

Recall that 𝐾 ⊂ S corresponds to a very special parahoric.

Theorem 4.5.2. Let 𝑤 ∈ 𝐾Adm({𝜇}), such that the EKOR stratum Sh𝐺,𝐾 ,𝑈 𝑝 {𝑤} intersects a
Q-nonbasic Newton stratum. If either Sh𝑈 (𝐺, 𝑋) is proper or Conjecture 4.3.1 holds, then

Sh𝐺,𝐾 ,𝑈 𝑝 {𝑤} → Sh𝐺,𝐾 ,𝑈 𝑝

induces a bijection on 𝜋0.

We start by proving a lemma.

Lemma 4.5.3. For 𝑤 ∈ 𝐾Adm({𝜇}), viewed as an element of Adm({𝜇}) via 𝐾Adm({𝜇}) ⊂ Adm({𝜇}),
the forgetful map Sh𝐺,∅,𝑈 𝑝 (𝑤) → Sh𝐺,𝐾 ,𝑈 𝑝 factors through Sh𝐺,𝐾 ,𝑈 𝑝 {𝑤}, via a surjective map
Sh𝐺,∅,𝑈 𝑝 (𝑤) → Sh𝐺,𝐾 ,𝑈 𝑝 {𝑤}.

Proof. The factorisation is [SYZ21, Theorem 5.4.5.(3)], and the surjectivity is proved there under the
assumption that Axiom 4(c) of [HR17] holds, which is true by Theorem 3. �

Proof of Theorem 4.5.2. We will prove that if 𝑤 ∈ Adm({𝜇}), such that Sh𝐺,∅,𝑈 𝑝 (𝑤) intersects a
Q-nonbasic Newton stratum, then the natural map 𝜋0 (Sh𝐺,∅,𝑈 𝑝 (𝑤)) → 𝜋0 (Sh𝐺,𝐾 ,𝑈 𝑝 ) is a bijection.
By Lemma 4.5.3, this will imply Theorem 4.5.2.

Step 1: We first deal with the case of 𝜎-straight 𝑤 ∈ Adm({𝜇}). Then Sh𝐺,∅,𝑈 𝑝 (𝑤) is contained in a
unique Newton stratum Sh𝐺,∅, [𝑏],𝑈 𝑝 , see [SYZ21, Theorem 1.3.5], which by assumption isQ-nonbasic.
We deduce from Theorem 4.4.1, Corollary 4.2.3 and Proposition 4.3.17 that for any finite set of primes
Σ with 𝑝 ∈ Σ, the group 𝐺sc (AΣ

𝑓 ) acts transitively on the fibres of

𝜋0 (Sh𝐺,∅ (𝑤)) → 𝜋0 (Sh𝐺,𝐾 ).

By Lemma 4.3.7, there exists 𝑦 ∈ 𝐾Adm({𝜇}), such that the natural map Ŝh𝐺,∅,𝑈 𝑝 (𝑤) → Sh𝐺,𝐾 ,𝑈 𝑝

factors via a finite étale map Ŝh𝐺,∅,𝑈 𝑝 (𝑤) → Sh𝐺,𝐾 ,𝑈 𝑝 {𝑦}. We want to apply [vH24, Theorem 3.4.1]
to the𝐺 (A𝑝

𝑓 )-equivariant finite étale cover Sh𝐺,∅ (𝑤) → Sh𝐺,𝐾 {𝑦}. Note that [vH24, Hypothesis 2.3.1]
follows from Theorem 1 (see [vH24, Remark 2.3.3]). Moreover, [vH24, Hypothesis 3.4.1] is satisfied
since Sh𝐺,𝐾 ,𝑈 𝑝 is normal because G𝐾 is very special (see [KP18, Corollary 4.6.26]). The assumption
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that every connected component of Sh𝐺,𝐾 ,𝑈 𝑝 {𝑦} intersects a Q-nonbasic Newton stratum holds since
Sh𝐺,∅,𝑈 𝑝 {𝑦} is contained in a single Q-nonbasic Newton stratum, since Sh𝐺,∅,𝑈 𝑝 (𝑤) is.

Therefore, the assumptions of [vH24, Theorem 3.4.1] are satisfied, and we conclude that if Σ
contains all the primes ℓ where 𝐺ad

Qℓ
has a compact factor, then 𝐺sc(AΣ

𝑓 ) acts trivially on the fibres
of 𝜋0 (Sh𝐺,∅ (𝑤)) → 𝜋0 (Sh𝐺,𝐾 ). Since it also acts transitively on these fibres by Proposition 4.3.17
and since the map 𝜋0 (Sh𝐺,∅ (𝑤)) → 𝜋0 (Sh𝐺,𝐾 ) is surjective by Corollary 3.4.7, we deduce that
𝜋0 (Sh𝐺,∅ (𝑤)) → 𝜋0 (Sh𝐺,𝐾 ) is a bijection.

Step 2: For general 𝑤 ∈ Adm({𝜇}) intersecting a Q-nonbasic Newton stratum Sh𝐺,∅, [𝑏],𝑈 𝑝 ,
there is a 𝜎-straight element 𝑤′ ≤ 𝑤 with Sh𝐺,∅,𝑈 𝑝 (𝑤′) ∩ Sh𝐺,∅, [𝑏],𝑈 𝑝 nonempty; this follows
from [HZ20, Theorem 4.1] as in the proof of Lemma 4.3.6. It follows from our assumptions that
every connected component V of Sh𝐺,∅,𝑈 𝑝 (≤ 𝑤) intersects Sh𝐺,∅,𝑈 𝑝 (𝜏).25 Thus, the intersec-
tion 𝑉 ∩ Sh𝐺,∅,𝑈 𝑝 (≤ 𝑤′) is nonempty, and it is, therefore, a union of connected components of
Sh𝐺,∅,𝑈 𝑝 (≤𝑤′). Hence, 𝑉 ∩ Sh𝐺,∅,𝑈 𝑝 (≤𝑤′) is equidimensional of dimension ℓ(𝑤′) and must, there-
fore, intersect Sh𝐺,∅,𝑈 𝑝 (𝑤′). We see that the natural map Sh𝐺,∅,𝑈 𝑝 (𝑤′) → Sh𝐺,∅,𝑈 𝑝 (≤𝑤) induces a
surjective map on 𝜋0. Consider the commutative diagram

𝜋0 (Sh𝐺,∅ (𝑤
′)) 𝜋0 (Sh𝐺,∅ (≤𝑤)

𝜋0 (Sh𝐺,𝐾 ).

The right diagonal map is surjective by Corollary 3.4.7, the horizontal map is surjective by the discussion
above and the left diagonal arrow is a bijection by step 1. It follows that 𝜋0 (Sh𝐺,∅ (≤𝑤)) → 𝜋0 (Sh𝐺,𝐾 )

is a bijection and since 𝜋0 (Sh𝐺,∅ (𝑤)) → 𝜋0 (Sh𝐺,∅ (≤ 𝑤)) is a bijection by the normality of
𝜋0 (Sh𝐺,∅ (≤𝑤)), see Corollary 4.2.3, we are done. �
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A. Connected components of affine Deligne–Lusztig varieties with very special level structure,
by Rong Zhou

As explained in the Introduction, proving uniformisation of isogeny classes in Shimura varieties of Hodge
type with parahoric level is closely related to the problem of understanding connected components
of affine Deligne–Lusztig varieties with parahoric level. In this Appendix, we study the connected
components of affine Deligne–Lusztig varieties with very special level structure and prove, for instance,
that 𝐽𝑏 (Q𝑝) acts transitively on these connected components. These results will be used in Section A.4
to prove uniformisation of isogeny classes in Shimura varieties of Hodge type with very special level.

A.1. The main result

We follow the notation of Section 2. Thus, G is a reductive group over Q𝑝 and {𝜇} is a geometric
conjugacy class of cocharacters of 𝐺

Q𝑝
. We assume that G is quasi-split, and we let I be the Iwahori

25Recall that 𝜏 is the unique element of length zero of Adm( {𝜇}) .
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group scheme corresponding to a𝜎-stable alcove 𝔞 in the building for G. We fix G a very special standard
parahoric group scheme for G. Then G corresponds to a 𝜎-stable special point 𝔰 lying in the closure
of 𝔞, and we write 𝐾 ⊂ S for the subset of simple affine reflections which preserve 𝔰. The projection
�̃� → 𝑊0 induces an isomorphism 𝑊𝐾 � 𝑊0.

As explained in [Zho20, Section 9], we have an identification

𝑊𝐾 \�̃�/𝑊𝐾 � 𝑋∗(𝑇)+𝐼 .

By [HR17], there exists a reduced root system Σ (the échelonnage root system), such that

𝑊𝑎 � 𝑊 (Σ) �𝑄∨(Σ),

where 𝑊 (Σ) (respectively, 𝑄∨(Σ)) is the Weyl group (respectively, coroot lattice) of Σ. We define a
partial order � on 𝑋∗(𝑇)

+
𝐼 by setting 𝜆 � 𝜆′ if 𝜆 − 𝜆′ can be written as a sum of positive coroots in

𝑄∨(Σ) with positive integral coefficients. Then, by [Lus83, p. 210], the Bruhat order on 𝑊𝐾 \�̃�/𝑊𝐾

agrees with the partial order �. It follows that for 𝜇 ∈ 𝑋∗(𝑇)+𝐼 , we have

Adm(𝜇)𝐾 = {𝜆 ∈ 𝑋∗(𝑇)
+
𝐼 |𝜆 � 𝜇}.

Let 𝑏 ∈ 𝐺 (Q̆𝑝), such that [𝑏] ∈ 𝐵(𝐺, {𝜇}). We have the affine Deligne–Lusztig variety 𝑋 (𝜇, 𝑏)𝐾
defined in Section 2.4.3. We also set

Adm(𝜇)𝐾 := 𝑊𝐾Adm(𝜇)𝑊𝐾 ⊂ �̃�

and define

𝑋 (𝜇, 𝑏)𝐾 :=
⋃

𝑤 ∈Adm(𝜇)𝐾
𝑋𝑤 (𝑏),

which is a locally closed subscheme of the Witt vector affine flag variety GrI . Then there is a natural map

𝑋 (𝜇, 𝑏)𝐾 → 𝑋 (𝜇, 𝑏)𝐾 (A.1.1)

which is equivariant for the action of the 𝜎-centraliser group 𝐽𝑏 (Q𝑝). In fact, (A.1.1) is an étale locally
trivial fibration with connected fibres, and hence induces a 𝐽𝑏 (Q𝑝)-equivariant bijection

𝜋0 (𝑋 (𝜇, 𝑏)
𝐾 )

∼
−→ 𝜋0 (𝑋 (𝜇, 𝑏)𝐾 ). (A.1.2)

A.1.1.
Recall from, for example, [KMPS22, Section 1.1.2] that associated to [𝑏] ∈ 𝐵(𝐺) there is a dominant
Newton cocharacter 𝜈 [𝑏] ∈ (𝑋∗(𝑇)

+
𝐼 ,Q)

𝜎 . By definition, this is the dominant representative of the
Newton cocharacter 𝜈𝑏 for any choice of 𝑏 ∈ [𝑏]. Let M denote the centraliser of 𝜈 [𝑏] , and we fix a
representative b of [𝑏], such that 𝜈𝑏 = 𝜈 [𝑏] . The existence of such a representative follows from the
same argument as in [CKV15, Lemma 2.5.2], which also shows that 𝑏 ∈ 𝑀 (Q̆𝑝). Then b is a basic
element of M, in other words, 𝜈 [𝑏] is central in M.

We use a subscript M to denote the corresponding objects for M. Thus, �̃�𝑀 (respectively, 𝑊𝑎,𝑀 )
denotes the Iwahori–Weyl group (respectively, affine Weyl group) for M. The intersection 𝑀 (Q̆𝑝) ∩

G (Z̆𝑝) arises as the Z̆𝑝-points of a very special parahoric group scheme M for M, which is standard for
the alcove 𝔞𝑀 for M determined by 𝔞. We write I𝑀 for the Iwahori group scheme of M determined by
𝔞𝑀 , and we let 𝐾𝑀 ⊂ S𝑀 denote the subset of simple affine reflections for M corresponding to M. We
let Σ𝑀 denote the échelonnage root system for M so that

𝑊𝑎,𝑀 � 𝑊 (Σ𝑀 ) �𝑄
∨(Σ𝑀 ).
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For 𝑥 ∈ 𝜋1 (𝑀)𝐼 , we write 𝜏𝑥 ∈ Ω𝑀 for the corresponding length 0 element, and we write 𝜏𝑥 = 𝑡𝜇𝑥𝑤𝑥

for a unique 𝑤𝑥 ∈ 𝑊𝐾 . Then the map 𝑥 ↦→ 𝜇𝑥 induces a bijection

𝜋1 (𝑀)𝐼 � {𝜆 ∈ 𝑋∗(𝑇)𝐼 |𝜆 is 𝑀-dominant and 𝑀-minuscule}, (A.1.3)

here, M-minuscule means minuscule with respect to the root system Σ𝑀 . We define the set

𝐼𝜇,𝑏,𝑀 := {𝑥 ∈ 𝜋1 (𝑀)𝐼 |𝜅𝑀 (𝑏) = 𝑥, 𝜇𝑥 � 𝜇}.

Via the bijection (A.1.3), we also consider 𝐼𝜇,𝑏,𝑀 as a subset of the set of M-minuscule and
M-dominant elements in 𝑋∗(𝑇)𝐼 . For each 𝜆 ∈ 𝐼𝜇,𝑏,𝑀 , we have the affine Deligne–Lusztig variety
𝑋𝑀 (𝜆, 𝑏)𝐾𝑀 for the group M. It is a closed subscheme of the partial affine flag variety for M with
respect to the parahoric subgroup M, and its F𝑝-points are given by

{𝑚 ∈ 𝑀 (Q̆𝑝)/M(Z̆𝑝) |𝑚−1𝑏𝜎(𝑚) ∈M(Z̆𝑝) �𝑡𝜆
′M(Z̆𝑝), 𝜆′ �𝑀 𝜆}.

It is equipped with a natural map

𝑋𝑀 (𝜆, 𝑏)𝐾𝑀 → 𝑋 (𝜇, 𝑏)𝐾 , (A.1.4)

which is equivariant for the action of the 𝜎-centraliser group 𝐽𝑏 (Q𝑝).

A.1.2.
Our main theorem on the connected components of affine Deligne–Lusztig varieties is the following.

Theorem A.1.3. 𝐽𝑏 (Q𝑝) acts transitively on 𝜋0 (𝑋 (𝜇, 𝑏)𝐾 ). In particular, for any 𝜆 ∈ 𝐼𝜇,𝑏,𝑀 , the map
(A.1.4) induces a surjection

𝜋0 (𝑋
𝑀 (𝜆, 𝑏)𝐾𝑀 ) → 𝜋0 (𝑋 (𝜇, 𝑏)𝐾 ).

Remark A.1.4. The theorem is stated for G a quasi-split reductive group over Q𝑝 . However, the result
makes sense for general quasi-split groups over any local field F and can be proved in exactly the same
way.

A.1.5.
We follow the strategy of [CKV15] and [Nie18], where this result was proved for unramified groups G.
The result follows from the following two propositions.

Proposition A.1.6. The natural map∐
𝜆∈𝐼𝜇,𝑏,𝑀

𝑋𝑀 (𝜆, 𝑏)𝐾𝑀 → 𝑋 (𝜇, 𝑏)𝐾

induces a surjection ∐
𝜆∈𝐼𝜇,𝑏,𝑀

𝜋0 (𝑋
𝑀 (𝜆, 𝑏)𝐾𝑀 ) → 𝜋0 (𝑋 (𝜇, 𝑏)𝐾 ).

Proposition A.1.7. Let 𝜆 ∈ 𝐼𝜇,𝑏,𝑀 . The image of the natural map

𝜋0 (𝑋
𝑀 (𝜆, 𝑏)𝐾𝑀 ) → 𝜋0 (𝑋 (𝜇, 𝑏)𝐾 )

does not depend on the choice of 𝜆 ∈ 𝐼𝜇,𝑏,𝑀 .
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Proof of Theorem A.1.3. Fix 𝜆 ∈ 𝐼𝜇,𝑏,𝑀 . By Propositions A.1.6 and A.1.7, the map

𝜋0 (𝑋
𝑀 (𝜆, 𝑏)𝐾𝑀 ) → 𝜋0 (𝑋 (𝜇, 𝑏)𝐾 )

is surjective. By [HZ20, Theorems 4.1 and 5.1], 𝐽𝑏 (Q𝑝) acts transitively on 𝜋0 (𝑋
𝑀 (𝜆, 𝑏)𝐾𝑀 ), and

hence on 𝜋0 (𝑋 (𝜇, 𝑏)𝐾 ). �

A.1.8.
We now proceed to prove the two propositions. Note that by a standard reduction (see [HZ20, Section 6]),
it suffices to prove the propositions when G is adjoint and Q𝑝-simple. We may and do assume this from
now on.

A.2. Proof of Proposition A.1.6

A.2.1.
In the case of unramified groups, Proposition A.1.6 is [CKV15, Proposition 3.4.1]. Here, we prove
the general case using a different method based on the Deligne–Lusztig reduction method for affine
Deligne–Lusztig varieties in the affine flag variety.

We begin with some preliminaries regarding 𝜎-conjugacy classes in Iwahori–Weyl groups. For any
element 𝑤 ∈ �̃� , we let n be a sufficiently divisible integer, such that 𝜎𝑛 acts trivially on �̃� and
𝑤𝜎(𝑤) . . . 𝜎𝑛−1 (𝑤) = 𝑡𝜆 for some 𝜆 ∈ 𝑋∗(𝑇)𝐼 . We set 𝜈𝑤 := 𝑡𝜆

𝑛 ∈ 𝑋∗(𝑇)𝐼 ,Q and 𝜈𝑤 ∈ 𝑋∗(𝑇)
+
𝐼 ,Q for

the dominant representative of 𝜈𝑤 . We let 𝜅(𝑤) ∈ 𝜋1 (𝐺)Γ denote the image of w under the projection
�̃� → 𝜋1 (𝐺)𝐼 → 𝜋1 (𝐺)Γ. We write 𝐵(�̃�, 𝜎) for the set of 𝜎-conjugacy classes in �̃� . Then 𝑤 ↦→ [ �𝑤]
induces a well-defined map Ψ : 𝐵(�̃�, 𝜎) → 𝐵(𝐺), and we have a commutative diagram (see [He14,
Section 3.3, Theorem 3.5]):

𝐵(�̃�, 𝑠)
Ψ ��

(𝜈,𝜅)
����

���
���

���
��

𝐵(𝐺)

(𝜈,𝜅)
�����

���
���

���
�

(𝑋∗(𝑇)
+
𝐼 ,Q)

𝜎 × 𝜋1 (𝐺)Γ .

A.2.2.
We will need the following lemma. We write 𝐽 ⊂ 𝐾 for the subset corresponding to M. Recall that an
element 𝑤 ∈ �̃� is said to be 𝜎-straight, if

𝑛ℓ(𝑤) = ℓ(𝑤𝜎(𝑤) . . . 𝜎𝑛−1 (𝑤))

for all n.

Lemma A.2.3. Let 𝑤 ∈ �̃� be 𝜎-straight, such that �𝑤 ∈ [𝑏]; in particular, 𝜈𝑏 = 𝜈𝑤 . Let 𝑢 ∈ 𝐽𝑊0, such
that 𝑢(𝜈𝑤 ) = 𝜈𝑏 , and set 𝑤♯ := 𝑢𝑤𝜎(𝑢)−1. Then 𝑤♯ ∈ Ω𝑀 .

Proof. It suffices to show that 𝑤♯ ∈ 𝑊𝑀 and

𝑤♯I𝑀 (Z̆𝑝)𝑤−1
♯ = I𝑀 (Z̆𝑝).

The first statement follows since 𝑤♯ (𝜈𝑤 ) = 𝜈𝑤 . By [HZ20, Theorem 5.2], the element w is (𝜈𝑤 , 𝜎)-
fundamental. Thus

𝑤𝜎(I𝑀𝜈𝑤
(Z̆𝑝))𝑤

−1 = I𝑀𝜈𝑤
(Z̆𝑝),
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where 𝑀𝜈𝑤 is the centraliser of 𝜈𝑤 and I𝑀𝜈𝑤
(Z̆𝑝) := I (Z̆𝑝) ∩ 𝑀𝜈𝑤 (Q̆𝑝). Since 𝑢 ∈ 𝐽𝑊0, we have

𝑢I𝑀𝜈𝑤
(Z̆𝑝)𝑢

−1 = I𝑀 (Z̆𝑝). It follows that

𝑤♯I𝑀 (Z̆𝑝)𝑤−1
♯ = 𝑤♯𝜎(I𝑀 (Z̆𝑝))𝑤−1

♯

= 𝑢𝑤𝜎(I𝑀𝜈𝑤
(Z̆𝑝))𝑤

−1𝑢−1

= I𝑀 (Z̆𝑝)

as desired. �

Proof of Proposition A.1.6. By (A.1.2), it suffices to show the natural map∐
𝜆∈𝐼𝜇,𝑏,𝑀

𝑋𝑀 (𝜆, 𝑏)𝐾𝑀 → 𝑋 (𝜇, 𝑏)𝐾

induces a surjection ∐
𝜆∈𝐼𝜇,𝑏,𝑀

𝜋0 (𝑋
𝑀 (𝜆, 𝑏)𝐾𝑀 ) → 𝜋0 (𝑋 (𝜇, 𝑏)

𝐾 ).

Let Y be a connected component of 𝑋 (𝜇, 𝑏)𝐾 . Then, by [HZ20, Theorem 4.1], there exists a𝜎-straight
element𝑤 ∈ Adm(𝜇)𝐾 , such that𝑌∩𝑋𝑤 (𝑏) ≠ ∅. Let𝑤♯ denote the element constructed in Lemma A.2.3
and 𝑢 ∈ 𝐽𝑊0, such that 𝑢𝑤𝜎(𝑢) = 𝑤♯. Then we claim that [𝑏]𝑀 = [ �𝑤♯]𝑀 ∈ 𝐵(𝑀). Indeed, we have
𝜈𝑤♯ = 𝜈𝑤 = 𝜈𝑏 . Therefore, the image of [𝑏]𝑀 and [ �𝑤♯]𝑀 in 𝜋1 (𝑀)𝐼 coincide up to torsion. Note that
ker(𝜋1 (𝑀) → 𝜋1 (𝐺)) is freely generated by the subset of simple roots contained in M but not in G, and
hence is an induced module for the action of I. Thus, ker(𝜋1 (𝑀)𝐼 → 𝜋1 (𝐺)𝐼 ) is torsion free. Moreover,
the images of [𝑏]𝑀 and [ �𝑤♯]𝑀 in 𝜋1 (𝐺)𝐼 coincide. It follows that 𝜅𝑀 ([𝑏]𝑀 ) = 𝜅𝑀 ([ �𝑤♯]𝑀 ), and hence
[𝑏]𝑀 = [ �𝑤♯]𝑀 . Thus, we may replace b by �𝑤♯.

We will show that 𝑌 ∩ 𝑋𝑀
𝑤♯
( �𝑤♯) ≠ ∅. Since 𝑤♯ ∈ Adm𝑀 (𝜆)𝐾𝑀 , where 𝜆 ∈ 𝐼𝜇,𝑏,𝑀 corresponds to

the image of 𝑤♯ in 𝜋1 (𝑀)𝐼 , it follows that 𝑋𝑤♯ ( �𝑤♯) ⊂ 𝑋
𝑀 (𝜆, �𝑤♯)

𝐾𝑀 ; this implies the proposition.
For any affine root 𝛼, we let U𝛼 denote the affine root subgroup corresponding to 𝛼 over Z̆𝑝 . By

[BT84, Sections 4.3.2, 4.3.5 and 4.3.7], U𝛼 is the group scheme associated to a finite free Z̆𝑝-module.
For any 𝜖 > 0, we let U𝛼+𝜖 (Z̆𝑝) be the subgroup of U𝛼 (Z̆𝑝) corresponding to the affine function 𝛼 + 𝜖 .
Similarly, we write U𝛼+(Z̆𝑝) for the union of U𝛼+𝜖 (Z̆𝑝) over all 𝜖 > 0. As the notation suggests, these
arise as the Z̆𝑝-points of group schemes U𝛼+𝜖 and U𝛼+𝜖 over Z̆𝑝 , and the quotient U𝛼 (Z̆𝑝)/U𝛼+(Z̆𝑝) is
a 1-dimensional vector space over 𝑘 . We choose a Z̆𝑝-module morphism Z̆𝑝 → U𝛼 (Z̆𝑝) which lifts the
map 𝑘 � U𝛼 (Z̆𝑝)/U𝛼+𝜖 (Z̆𝑝). This induces a morphism of group schemes over Z̆𝑝

𝑓𝛼 : G𝑎 → U𝛼 .

For R a perfect k-algebra and 𝑎 ∈ 𝑅, the map

ℎ𝛼 : 𝑅 → U𝛼 (𝑊 (𝑅))

𝑎 ↦→ 𝑓𝛼 ([𝑎]),

where [𝑎] ∈ 𝑊 (𝑅) is the Teichmüller lift of a, induces a 𝑘-scheme morphism

ℎ𝛼 : A1,perf → 𝐿+U𝛼,

where A1,perf denotes the perfection of A1 over k. The induced morphism A1,perf → GrI extends to a
morphism P1,perf → GrI also denoted ℎ𝛼.
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Now let 𝛼 be a simple affine root. Then a computation in 𝑆𝐿2 or 𝑆𝑈3 shows that

𝑓−𝛼 (𝑥) ∈ 𝑓𝛼 (𝑥
−1) �𝑠𝛼I .

For example, if I is the Iwahori in SL2 corresponding to the upper triangular matrices mod p, then we
compute that (

1 0
𝑥 1

)
=

(
1 𝑥−1

0 1

) (
0 −1
1 0

) (
𝑥 1
0 𝑥−1

)
.

It follows that we have

ℎ−𝛼 (∞) = �𝑠𝛼I ∈ GrI . (A.2.1)

Let 𝑔0I ∈ 𝑌 ∩ 𝑋𝑤 ( �𝑤♯) with 𝑔0 ∈ 𝐺 (Q̆𝑝). By [HZ20, Theorem. 5.2], we may choose 𝑔0, such that
𝑔−1

0 �𝑤♯𝑔0 = �𝑤. Let 𝑠𝑛 . . . 𝑠1 be a reduced word decomposition for u (note that 𝑠𝑖 ∈ 𝐾), and we write 𝑢𝑖
for the element 𝑠1 . . . 𝑠𝑖 ∈ �̃� and 𝑢0 = 𝑒. We write 𝑔𝑖 ∈ 𝐺 (Q̆𝑝) for the element 𝑔0 �𝑢𝑖 . We will prove by
induction that 𝑔𝑖I ∈ 𝑌 for 𝑖 = 0, 1, . . . , 𝑛; clearly this is true for 𝑖 = 0.

Assume 𝑔𝑖 ∈ 𝑌 , and we let 𝛼𝑖+1 denote the positive affine root corresponding to 𝑠𝑖+1. We consider
the map

𝑔 := 𝑔𝑖ℎ−𝛼𝑖+1 : P1,perf → GrI .

Since U−𝛼𝑖+1 ⊂ I �𝑠𝑖+1I, for any 𝑠 ∈ A1,perf (𝑘), we have

𝑔(𝑠)−1 �𝑤♯𝜎(𝑔(𝑠)) = ℎ−𝛼𝑖+1 (𝑠)
−1𝑔−1

𝑖 �𝑤♯𝜎(𝑔𝑖)𝜎(ℎ−𝛼𝑖+1 (𝑠))

∈ I �𝑠𝛼𝑖+1I �𝑤𝑖I𝜎( �𝑠𝛼𝑖+1)I
⊂

⋃
𝑥∈𝐴

I �𝑥I,

where 𝑤𝑖 := 𝑢−1
𝑖 𝑤♯𝜎(𝑢𝑖) ∈ Adm(𝜇)𝐾 and 𝐴 ⊂ �̃� is the subset

𝐴 = {𝑤𝑖 , 𝑠𝑖+1𝑤𝑖 , 𝑤𝑖𝜎(𝑠𝑖+1), 𝑠𝑖+1𝑤𝑖𝜎(𝑠𝑖+1)}.

Since Adm(𝜇)𝐾 is closed under left and right multiplication by𝑊𝐾 , we have 𝐴 ⊂ Adm(𝜇)𝐾 , and hence

𝑔(𝑠)−1 �𝑤♯𝜎(𝑔(𝑠)) ∈
⋃

𝑣 ∈Adm(𝜇)𝐾
I �𝑣I

for any 𝑠 ∈ P1,perf (𝑘). Moreover, we have 𝑔(0) = 𝑔𝑖I and 𝑔(∞) = 𝑔𝑖+1I, where the latter equality
follows from (A.2.1). Thus, the image of g is a curve in 𝑋 (𝜇, 𝑏)𝐾 which connects 𝑔𝑖I and 𝑔𝑖+1I, and
hence 𝑔𝑖+1I ∈ 𝑌 . Then, by definition 𝑔𝑛, 𝑔𝑛I lies in the image of 𝑋𝑀

𝑤♯
( �𝑤♯) as desired. �

A.3. Proof of Proposition A.1.7

A.3.1.
When G is unramified, this proposition follows from the proof of [CKV15, Proposition 4.1.12] when 𝜇
is minuscule; the general case is proved in [Nie18, Proposition 5.1]. The main input is the construction of
explicit curves in 𝑋 (𝜇, 𝑏)𝐾 which connect points in 𝑋𝑀 (𝜆, 𝑏)𝐾𝑀 and 𝑋𝑀 (𝜆′, 𝑏)𝐾𝑀 for 𝜆 ≠ 𝜆′ ∈ 𝐼𝜇,𝑏,𝑀 .
The construction of these curves relied on certain combinatorial results concerning the root system for
G. The exact same method of proof works in our setting; however, there are a few subtleties which we
now explain.
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Firstly, the explicit curves were constructed in [CKV15] and [Nie18] using root subgroups of 𝐺Q̆𝑝
which are all isomorphic to G𝑎 when the group is unramified. In general, the root subgroups are more
complicated, and thus one needs to be more careful. However, we are still able to give a uniform
construction of the curves that we need.

Secondly, we need to generalise the combinatorial results to general quasi-split groups G. It turns
out there is a systematic way to deduce these combinatorial results for quasi-split G from the case of
unramified groups, which we now explain.

A.3.2.
Recall we have assumed G is adjoint and simple. As in [He14, Section 7.2], see [ZZ20, Proof of Theorem
A.3.1] for an explicit construction, there is an unramified adjoint group H over Q𝑝 , such that the pair
(𝑊 ′, 𝜎′) consisting of the Iwahori–Weyl group for 𝐺 ′ and the action of Frobenius is identified with the
pair (𝑊, 𝜎). Moreover, the échelonnage root system Σ is identified with the absolute root system Σ′ for
𝐺 ′, and we have an isomorphism

𝜋1 (𝐺)𝐼 � 𝜋1 (𝐺
′)

𝑋∗(𝑇)𝐼 � 𝑋∗(𝑇 ′),

where 𝑇 ′ is a suitable maximal Q̆𝑝-split torus of 𝐺 ′.
We use a superscript ′ to denote the corresponding objects for 𝐺 ′. Then G determines a hyperspecial

subgroup G ′ for 𝐺 ′, and we write 𝐾 ′ ⊂ S′ for the corresponding subset of simple reflections. Then M
determines a Levi subgroup 𝑀 ′ of𝐺 ′, and hence a subset 𝐽 ′ ⊂ 𝐾 ′. It follows that the combinatorial data

(Σ, 𝑋∗(𝑇)𝐼 , 𝜎, 𝐽, 𝜇, 𝜅𝑀 (𝑏)) (A.3.1)

is identified with the corresponding data for 𝐺 ′. Thus, any result, which only depends on the data
((A.3.1)), can be reduced to the case of unramified groups. The combinatorial results that we need
are already proved in the case of unramified groups in [Nie18] and [CKV15]. We, therefore, take the
convention that whenever we need certain results which depend on the data ((A.3.1)), we will refer to
the relevant result in [CKV15] or [Nie18].

A.3.3.
We now proceed with the proof of Proposition A.1.7. Let 𝑥, 𝑥 ′ ∈ 𝜋1 (𝑀)𝐼 . We write 𝑥

(𝛼,𝑟 )
→ 𝑥 ′ for some

𝛼 ∈ Σ and 𝑟 ∈ N if 𝑥 − 𝑥 ′ = 𝛼∨ − 𝜎𝑟 (𝛼∨) and

𝜇𝑥 , 𝜇𝑥+𝛼∨ , 𝜇𝑥−𝜎𝑟 (𝛼∨) , 𝜇𝑥′ � 𝜇.

We write 𝑥
(𝛼,𝑟 )
� 𝑥 ′ if 𝑥

(𝛼,𝑟 )
→ 𝑥 ′ and neither

𝑥
(𝛼,𝑖)
→ 𝑥 + 𝛼∨ − 𝜎𝑖 (𝛼∨)

(𝜎𝑖 (𝛼) ,𝑟−𝑖)
→ 𝑥 ′

nor

𝑥
(𝜎𝑖 (𝛼) ,𝑟−𝑖)
→ 𝑥 + 𝜎𝑖 (𝛼∨) − 𝜎𝑟 (𝛼∨)

(𝛼,𝑖)
→ 𝑥 ′

for any 𝑖 ∈ [1, 𝑟 − 1].
We let

〈 , 〉 : (𝑄(Σ) ⊗Z R) × (𝑋∗(𝑇)𝐼 ⊗Z R) → R
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be the natural pairing, where 𝑄(Σ) is the root lattice of Σ. For any element 𝛼 ∈ Σ, we write O𝛼 for the
𝜎-orbit of 𝛼. We let h denote the number of connected components of the Dynkin diagram of G over
Q̆𝑝; then we have #O𝛼 ∈ {ℎ, 2ℎ, 3ℎ}.

Lemma A.3.4 [Nie18, Lemma 7.7]. Let 𝑥 ≠ 𝑥 ′ ∈ 𝐼𝜇,𝑏,𝑀 . Then there exists 𝑥 𝑗 ∈ 𝜋1 (𝑀)𝐼 , 𝛼 𝑗 ∈ Σ − Σ𝑀

and 𝑟 𝑗 ∈ N for 𝑗 ∈ [0, 𝑚 − 1], such that

1. 𝛼∨𝑗 is M-dominant and M-minuscule.
2. 𝑟 𝑗 ∈ [1, ℎ] if #O𝛼𝑗 ∈ {ℎ, 2ℎ}, and 𝑟 𝑗 ∈ [1, 2ℎ − 1] if #O𝛼𝑗 = 3ℎ.

3. 𝑥0 = 𝑥, 𝑥𝑚 = 𝑥 ′, and we have 𝑥 𝑗
(𝛼𝑗 ,𝑟 𝑗 )
→ 𝑥 𝑗+1 for 𝑗 ∈ [0, 𝑚 − 1].

Proof. This follows from [Nie18, Lemma 7.7] by discussion in Section A.3.2 above. Note that in loc.
cit., the result is stated for M a Levi subgroup, such that b is superbasic in M. However, one checks that
the same proof works for any M as long as 𝐼𝜇,𝑏,𝑀 contains a weakly dominant element. Here, 𝜆 ∈ 𝑋∗(𝑇)𝐼
is weakly dominant if 〈𝛼, 𝜆〉 ≥ −1 for any positive root 𝛼 ∈ Σ. But as in [Nie18, Lemma 4.1], any
element 𝜆 ∈ 𝐼𝜇,𝑏,𝑀 is weakly dominant, so the result applies to our M. �

A.3.5.
We now construct certain curves inside 𝐿𝐺 which we will use to connect points in 𝑋 (𝜇, 𝑏)𝐾 . Let 𝛼 ∈ Σ
be a root. Then 𝛼 determines a relative root �̃� of G over Q̆𝑝 , which we always take to be the short root.
We let 𝐺𝛼 denote the simply connected cover of the (semi-simple) group generated by 𝑈𝛼 and 𝑈−𝛼,
and we write

𝑖𝛼 : 𝐺𝛼 → 𝐺

for the natural map. We let G𝛼 denote the very special parahoric of 𝐺𝛼, such that G (Z̆𝑝) := 𝐺𝛼 (Q̆𝑝) ∩

𝑖−1
𝛼 (G (Z̆𝑝)).

If �̃� is not divisible, then we have an isomorphism

𝐺𝛼 � Res�̆�/Q̆𝑝𝑆𝐿2,

where �̆�/Q̆𝑝 is a finite extension. Then up to conjugacy G𝛼 is identified with the very special parahoric
𝑆𝐿2 (O�̆� ) ⊂ 𝐺𝛼 (Q̆𝑝), and there is an isomorphism

𝑓𝛼 : Res�̆�/Q̆𝑝G𝑎
∼
−→ 𝑈𝛼 .

If �̃� is divisible, then there is an isomorphism

𝐺𝛼 � Res�̆�/Q̆𝑝𝑆𝑈3,

where 𝑆𝑈3 is the special unitary group over �̆� associated to a quadratic extension �̆� ′/�̆� .

A.3.6.
We recall the presentation of the �̆�-group 𝑆𝑈3 in [Tit79, Example 1.15].

We let 𝜏 ∈ Gal(�̆� ′/�̆�) denote the nontrivial element, and we consider the Hermitian form on �̆� ′3
given by

〈(𝑥−1, 𝑥0, 𝑥1), (𝑦−1, 𝑦0, 𝑦1)〉 = 𝜏(𝑥−1)𝑦1 + 𝜏(𝑥0)𝑦0 + 𝜏(𝑥1)𝑦−1.

The group 𝑆𝑈3 is the special unitary group attached to this form. For 𝑖 = −1, 1 and 𝑐, 𝑑 ∈ �̆� ′, such that
𝜏(𝑐)𝑐 + 𝑑 + 𝜏(𝑑) = 0, we define

𝑢𝑖 (𝑐, 𝑑) = 𝐼3 + (𝑔𝑟𝑠),
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where 𝐼3 is the identity matrix and (𝑔𝑟𝑠) is the matrix with entries 𝑔−𝑖,0 = −𝜏(𝑐), 𝑔0,𝑖 = 𝑐, 𝑔−𝑖,𝑖 = 𝑑 and
𝑔𝑟𝑠 = 0 otherwise. The root subgroups are then given by

𝑈±𝛼 (�̆�) = {𝑢±1(𝑐, 𝑑) |𝑐, 𝑑 ∈ �̆�
′, 𝜏(𝑐)𝑐 + 𝜏(𝑑) + 𝑑 = 0}

𝑈±2𝛼 (�̆�) = {𝑢±1(0, 𝑑) |𝑐, 𝑑 ∈ �̆� ′, 𝜏(𝑑) + 𝑑 = 0}.

We consider the very special parahoric 𝐺𝛼 (�̆�) ∩ 𝐺𝐿3 (O�̆� ′ ) of 𝐺𝛼 (�̆�); we call this the standard
parahoric. Let 𝜋 ∈ �̆� ′ be a uniformiser, such that 𝜏(𝜋) = −𝜋, and let 𝑠 ∈ 𝐺𝐿3 (�̆�

′) denote the element
diag(𝜋, 1, 1). Then the subgroup of 𝐺𝛼 (Q̆𝑝) defined by

𝐺𝛼 (Q̆𝑝) ∩ 𝑠�̆�𝐿3 (O�̆� ′ )𝑠
−1

is a very special parahoric subgroup of 𝐺𝛼 (Q̆𝑝), which we shall call the nonstandard parahoric. Up to
conjugacy, these are the only very special parahorics of 𝑆𝑈3.

A.3.7.
For𝛼 ∈ Σ, we define a map 𝑢𝛼 : A1,perf → 𝐿𝑈𝛼 ⊂ 𝐿𝐺 as follows. Let R be a perfect ring of characteristic
p, and 𝑎 ∈ 𝑅 will denote an arbitrary element. We consider the following three separate cases.

1. 𝐺𝛼 � Res�̆�/Q̆𝑝𝑆𝐿2 and G𝛼 (Z̆𝑝) = 𝑆𝐿2 (O�̆� ).
We define 𝑢𝛼 to be the map induced by

𝑎 ↦→ 𝑖𝛼 ( 𝑓�̃� (𝜋
−1 · [𝑎])).

2. 𝐺𝛼 � Res�̆�/Q̆𝑝𝑆𝑈3 and G𝛼 is the standard parahoric subgroup.
We define 𝑢𝛼 to be the map

𝑎 ↦→ 𝑖𝛼 (𝑢1 (0, 𝜋−1 · [𝑎])).

3. 𝐺𝛼 � Res�̆�/Q̆𝑝𝑆𝑈3 and G𝛼 is the nonstandard parahoric subgroup.
We define 𝑢𝛼 to be the map

𝑎 ↦→ 𝑖𝛼 (𝑢1 ([𝑎],
[𝑎]2

2
)).

A.3.8.
A calculation using the presentations of 𝑆𝐿2 or 𝑆𝑈3 above gives the following lemma (cf. [Nie18,
Lemma 7.14]).

Lemma A.3.9.

1. Let 𝜆, 𝛿 ∈ 𝑋∗(𝑇)𝐼 and 𝛼, 𝛽 ∈ Σ, such that𝑄(Σ)∩ (Z𝛼+Z𝛽) is of type 𝐴2, 𝐴1×𝐴1 or 𝐴1 and such that

𝛿, 𝛿 + 𝛼∨, 𝛿 − 𝛽∨, 𝛿 + 𝛼∨ − 𝛽∨ � 𝜆.

Then, for all 𝑦, 𝑧 ∈ 𝑘 , we have

𝑢𝛼 (𝑧) �𝑡
𝛿𝑢𝛽 (𝑦) ∈

⋃
𝜆′�𝜆

𝐿+G �𝑡𝜆′𝐿+G .

2. Let 𝛼, 𝛽 ∈ Σ and 𝜆 ∈ 𝑋∗(𝑇)𝐼 , such that 〈𝛼, 𝛽∨〉 = 〈𝛽, 𝛼∨〉 = −1 and 〈𝛼, 𝜆〉 ≥ 2. Then, for any
𝑦, 𝑧 ∈ 𝑘 , we have

𝑢𝛽 (𝑧) (�𝑡
𝜆𝑢𝛼 (𝑦) �𝑡

−𝜆)𝑢𝛽 (−𝑧) ∈ 𝐿
+G .
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A.3.10.
The following lemma is the analogue of [Nie18, Lemma 7.8].

Lemma A.3.11. Let 𝑥, 𝑥 ′ ∈ 𝜋1 (𝑀)𝐼 , 𝛼 ∈ Σ − Σ𝑀 and 𝑟 ∈ N, such that

1. 𝛼∨ is M-dominant and M-minuscule.
2. 𝑟 ∈ [1, ℎ] if #O𝛼 ∈ {ℎ, 2ℎ}, and 𝑟 ∈ [1, 2ℎ − 1] if #O𝛼 = 3ℎ.
3. 𝑥

(𝛼,𝑟 )
→ 𝑥 ′.

Then, for any 𝑃 ∈ 𝑋𝑀 (𝜇𝑥 , 𝑏)𝐾𝑀 , there exists 𝑃′ ∈ 𝑋𝑀 (𝜇𝑥′ , 𝑏)𝐾𝑀 , such that P and 𝑃′ lie in the
same connected component of 𝑋 (𝜇, 𝑏)𝐾 , and we have

𝜅𝑀 (𝑃) − 𝜅𝑀 (𝑃
′) =

𝑟−1∑
𝑖=0

𝜎𝑖 (𝛼∨) ∈ 𝜋1 (𝑀)𝐼 .

Proof. As in [Nie18, Lemma 7.5], we may assume that 𝑥
(𝛼,𝑟 )
� 𝑥 ′. Moreover, arguing as in [Nie18,

Lemma 7.15], it suffices to show that there exists 𝑃 ∈ 𝑋𝑀 (𝜇𝑥 , 𝑏)𝐾𝑀 and 𝑃′ ∈ 𝑋𝑀 (𝜇𝑥′ , 𝑏)𝐾𝑀 , such
that P and 𝑃′ lie in the same connected component of 𝑋 (𝜇, 𝑏)𝐾 , and we have 𝜅𝑀 (𝑃) − 𝜅𝑀 (𝑃

′) =∑𝑟−1
𝑖=0 𝜎

𝑖 (𝛼∨) ∈ 𝜋1 (𝑀)𝐼 .
Let 𝑏𝑥 = �𝑡𝜇𝑥 �𝑤𝑥 ; then 𝑏𝑥 is basic in M, and since 𝜅𝑀 (𝑏) = 𝜅𝑀 (𝑏𝑥) ∈ 𝜋1 (𝑀)Γ, there exists

𝑔𝑥 ∈ 𝑀 (�̆�), such that 𝑔−1
𝑥 𝑏𝜎(𝑔𝑥) = 𝑏𝑥 . We define 𝑃 := 𝑔𝑥𝐿+M so that 𝑃 ∈ 𝑋𝑀 (𝜇𝑥 , 𝑏)𝐾𝑀 .

We first consider the case 𝑟 ∈ [1, ℎ]. For an element 𝑔 ∈ 𝐿𝐺, we write 𝑏𝑥𝜎𝑔 for the element
𝑏𝑥𝜎(𝑔)𝑏

−1
𝑥 . We define a map 𝑢 : A1,perf → GrG given by

𝑢(𝑧) = 𝑔𝑥𝑢𝛼 (𝑧)
𝑏𝑥𝜎𝑢𝛼 (𝑧) . . .

(𝑏𝑥𝜎)
𝑟−1
𝑢𝛼 (𝑧)𝐿

+G .

Then, by ind-projectivity of GrG , u extends to a map 𝑔 : P1,perf → GrG . As in [Nie18, Lemma 7.8], for
any 𝑧 ∈ 𝑘 , we have

𝑔(𝑧)−1𝑏𝜎(𝑔(𝑧)) ∈ 𝐿+G𝑢𝛼 (−𝑧)𝑏𝑥𝜎 (𝑏𝑥𝜎)
𝑟−1
𝑢𝛼 (𝑧)𝐿

+G
= 𝐿+G𝑢𝛼 (−𝑧) �𝑡𝜇𝑥𝑢𝑤𝑥𝜎𝑟 (𝛼) (𝑐𝜎𝑟 (𝑧))𝐿+G

for some 𝑐 ∈ 𝑘×. Here, we use [Nie18, Corollary 7.12], which shows that 𝑤𝑥𝜎
𝑖 (𝛼) = 𝜎𝑖 (𝛼) and

〈𝜎𝑖 (𝛼), 𝜇𝑥〉 = 0 for 𝑖 ∈ [1, 𝑟 − 1]. By [CKV15, Lemma 4.4.5], we have

𝜇𝑥 + 𝛼
∨, 𝜇𝑥 − 𝑤𝑥 (𝜎

𝑟 (𝛼∨)), 𝜇𝑥 + 𝛼
∨ − 𝑤𝑥 (𝜎

𝑟 (𝛼∨)) � 𝜇.

Thus, by Lemma A.3.9 (1), we have

𝑔(𝑧)−1𝑏𝜎(𝑔(𝑧)) ∈
⋃
𝜇′�𝜇

𝐿+G �𝑡𝜇′𝐿+G,

and hence g factors through 𝑋 (𝜇, 𝑏)𝐾 . Moreover, one computes that

𝑃′ := 𝑔(∞) = lim
𝑧→∞

𝑔𝑥

𝑟−1∏
𝑖=0

𝑢′
−𝜎𝑖 (𝛼)

(𝑧−1) �𝑡𝜎
𝑖 (𝛼∨)𝐿+G

= 𝑔𝑥 �𝑡
−

∑𝑟−1
𝑖=0 𝜎𝑖 (𝛼∨)𝐿+G,

which lies in the image of 𝑋𝑀 (𝜇𝑥′ , 𝑏)𝐾𝑀 . Here, for an affine root 𝛽, 𝑢′𝛽 : A1,perf → 𝐿𝑈𝛽 is the map
𝑎 ↦→ �𝑡𝛽

∨
𝑢𝛽 (𝑎) �𝑡

−𝛽∨ (cf. [Nie18, Proof of Proposition 7.8]).
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We now consider the case 𝑟 ∈ [ℎ + 1, 2ℎ− 1]. In this case, #O𝛼 = 3ℎ and each connected component
of the Dynkin diagram of G over Q̆𝑝 is of type 𝐷4. Then either 𝐽 = ∅ or 𝐽 = O𝛽 , where 𝛽 is the unique
root in Σ with 𝜎ℎ (𝛽) and such that 𝛽, 𝛼 lie in the same connected component of Σ. We consider the
following two cases.

Case (i): Either 〈𝛽, 𝜇𝑥〉 = 0 or 〈𝛽, 𝛼∨〉 = 0. Then, as in [Nie18, Lemma 7.15, Case 2.2], we have
〈𝜎 𝑗 (𝛼), 𝜇𝑥〉 = 0 and 𝑤𝑥 (𝜎

𝑗 (𝛼)) = 𝜎 𝑗 (𝛼) for 𝑗 ∈ [1, 𝑟 − 1]. Then we may define 𝑢 : A1,perf → GrG by

𝑢(𝑧) = 𝑔𝑥𝑢𝛼 (𝑧)
𝑏𝑥𝜎𝑢𝛼 (𝑧) . . .

(𝑏𝑥𝜎)
𝑟−1
𝑢𝛼 (𝑧)𝐿

+G

as above. Then u extends to 𝑔 : P1,perf → GrG , and the same computation shows that g is a curve
connecting 𝑃 = 𝑔(0) ∈ 𝑋𝑀 (𝜇𝑥 , 𝑏) and 𝑃′ := 𝑔(∞) = 𝑔𝑥 �𝑡−

∑𝑟−1
𝑖=0 𝜎𝑖 (𝛼∨)𝐿+G ∈ 𝑋𝑀 (𝜇𝑥′ , 𝑏).

Case (ii): 〈𝛽, 𝛼∨〉 = −1 and 〈𝛽, 𝜇𝑥〉 = 1. Then, by [Nie18, Lemma 7.15, Case 2], upon switching the
roles of x and 𝑥 ′ if necessary, we may assume that

〈𝜎𝑟 (𝛽), 𝜇𝑥〉 = 〈𝜎
𝑟−ℎ (𝛼), 𝜇𝑥〉 = 〈𝜎

ℎ (𝛼), 𝜇𝑥〉 = 0.

We define 𝑢 : A1,perf → GrG by

𝑢(𝑧) = 𝑔𝑥
(𝑏𝑥𝜎)

𝑟−1
𝑢𝛼 (𝑧)

(𝑏𝑥𝜎)
𝑟−2
𝑢𝛼 (𝑧) . . . 𝑢𝛼 (𝑧)𝐿

+G .

Then u extends to 𝑔 : P1,perf → GrG , and we have

𝑔(𝑧)−1𝑏𝜎(𝑔(𝑧)) ∈ 𝐿+G𝑢𝜎𝑟−ℎ (𝛼) (−𝑐2𝑧) (�𝑡
𝜆𝑢𝜎𝑟 (𝛼)+𝜎𝑟 (𝛽) (𝑐1𝑧) �𝑡

−𝜆)𝑢𝜎𝑟−ℎ (𝛼) (𝑐2𝑧)𝑢𝛼 (−𝑧)𝑏𝑥𝐿
+G,

where 𝜆 ∈ 𝑋∗(𝑇)𝐼 satisfies 〈𝜎𝑟 (𝛼) + 𝜎𝑟 (𝛽), 𝜆〉 ≥ 2. By Lemma A.3.9 (1), we have

𝑢𝛼 (−𝑧)𝑏𝑥 ∈
⋃
𝜇′�𝜇

𝐿+G �𝑡𝜇′𝐿+G,

and by Lemma A.3.9 (2), we have

𝑢𝜎𝑟−ℎ (𝛼) (−𝑐2𝑧) (�𝑡
𝜆𝑢𝜎𝑟 (𝛼)+𝜎𝑟 (𝛽) (𝑐1𝑧) �𝑡

−𝜆)𝑢𝜎𝑟−ℎ (𝛼) (𝑐2𝑧).

It follows that

𝑔(𝑧)−1𝑏𝜎(𝑔(𝑧)) ∈
⋃
𝜇′�𝜇

𝐿+G �𝑡𝜇′𝐿+G,

and hence g factors through 𝑋 (𝜇, 𝑏)𝐾 . A similar calculation to the above shows that g is a curve connect-
ing 𝑃 = 𝑔(0) ∈ 𝑋𝑀 (𝜇𝑥 , 𝑏) and 𝑃′ := 𝑔(∞) ∈ 𝑋𝑀 (𝜇𝑥′ , 𝑏) with 𝜅𝑀 (𝑃) − 𝜅𝑀 (𝑃′) =

∑𝑟−1
𝑖=0 𝜎

𝑖 (𝛼∨). �

Proof of Proposition A.1.7. This follows by combining Lemmas A.3.4 and A.3.11. �

A.4. Uniformisation in the case of very special level structure

A.4.1.
We will use Theorem A.1.3 to give a description of the isogeny classes in 𝒮K (𝐺, 𝑋). We assume
that 𝑝 > 2, 𝑝 � |𝜋1 (𝐺der) | and that 𝐺Q𝑝 is quasi-split and splits over a tamely ramified extension of
Q𝑝 . We now follow the notation in Section 3.1, so (𝐺, 𝑋) is a Shimura datum of Hodge type. We let
𝑈 = 𝑈 𝑝𝑈𝑝 , where 𝑈𝑝 ⊂ 𝐺 (A𝑝

𝑓 ) is a compact open subgroup and 𝑈𝑝 is a very special connected
parahoric subgroup of 𝐺 (Q𝑝); we write G for the corresponding parahoric group scheme.
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A.4.2.
Recall that for 𝑥 ∈ Sh𝐺,𝐾 ,𝑈 𝑝 (F𝑝), there is an attached abelian variety A𝑥 with contravariant Dieudonné
module D𝑥 equipped with tensors 𝑠𝛼,0,𝑥 . Moreover, for all ℓ ≠ 𝑝, the ℓ-adic Tate module 𝑇ℓA𝑥 is
equipped with tensors 𝑠𝛼,ℓ,𝑥 ∈ 𝑇ℓA⊗𝑥 . By [Zho20, Section 5.6], there is an isomorphism

𝑉Z(𝑝) ⊗Z(𝑝) Z̆𝑝 � D𝑥 ,

taking 𝑠𝛼 to 𝑠𝛼,0,𝑥 . Under this identification, the Frobenius on D𝑥 is of the form 𝜑 = 𝑏𝜎 for some
𝑏 ∈ 𝐺 (Q̆𝑝); then b is well-defined up to 𝜎-conjugation by G𝐾 (Z̆𝑝).

We let 𝜇′ ∈ 𝑋∗(𝑇)+𝐼 denote the image of a dominant representative of the conjugacy class {𝜇−1
ℎ }, and

we define 𝜇 = 𝜎(𝜇′) as in Section 3.1.6. Then, by the argument in [Zho20, Section 5.6], we have

𝑏 ∈ G𝐾 (Z̆𝑝) �𝑤G𝐾 (Z̆𝑝)

for some 𝑤 ∈ Adm(𝜇)𝐾 ; it follows that 1 ∈ 𝑋 (𝜇, 𝑏)𝐾 (F𝑝). As in [Zho20, Section 6.7], there is a natural
map

𝑖′𝑥 : 𝑋 (𝜇, 𝑏)𝐾 (F𝑝) → 𝒮𝑈𝑉 (𝐺𝑉 ,H𝑉 ) (F𝑝)

defined using Dieudonné theory, which sends 1 to the image of x under Sh𝐺,𝐾 ,𝑈 𝑝 (F𝑝) =
𝒮𝑈 (𝐺, 𝑋) (F𝑝) → 𝒮𝑈𝑉 (𝐺𝑉 ,H𝑉 ) (F𝑝).

Let r be the residue degree of the extension 𝐸𝑣/Q𝑝 . Then 𝑋 (𝜇, 𝑏)𝐾 is equipped with an action Φ
given by Φ(𝑔) = (𝑏𝜎)𝑟 (𝑔).
Proposition A.4.3 (cf. [Zho20, Proposition 6.5]). Suppose 𝑈𝑝 is a very special connected26 parahoric
subgroup of 𝐺 (Q𝑝). Then there exists a unique map

𝑖𝑥 : 𝑋 (𝜇, 𝑏)𝐾 (F𝑝) → 𝒮𝑈 (𝐺, 𝑋) (F𝑝)

lifting 𝑖′𝑥 , such that 𝑠𝛼,0,𝑖𝑥 (𝑔) = 𝑠𝛼,0,𝑥 and Φ ◦ 𝑖𝑥 = 𝑖𝑥 ◦ Φ, where Φ acts on 𝒮𝑈 (𝐺, 𝑋) (F𝑝) via the
geometric r-Frobenius.
Proof. For notational simplicity, we write 𝑋 (𝜇, 𝑏)𝐾 for 𝑋 (𝜇, 𝑏)𝐾 (F𝑝). The uniqueness and com-
patibility with Φ is proved in the same way as [Zho20, Proposition 6.5]. We may thus define
𝑋 (𝜇, 𝑏)◦𝐾 ⊂ 𝑋 (𝜇, 𝑏)𝐾 as the maximal subset which admits such a lifting. We, therefore, need to show
that 𝑋 (𝜇, 𝑏)◦𝐾 = 𝑋 (𝜇, 𝑏)𝐾 . To do this, we follow the strategy of [Zho20, Proposition 6.5].

Arguing as in [Zho20, Lemma 6.10], we have that 𝑋 (𝜇, 𝑏)◦𝐾 is (the set of F𝑝-points of) a union of
connected components. Note that the key input [Zho20, Proposition 6.9] needed for this can be proved
verbatim in our setting.

It, therefore, suffices to show that the map

𝑋 (𝜇, 𝑏)◦𝐾 → 𝜋0 (𝑋 (𝜇, 𝑏)𝐾 )

is a surjection. Let 𝑀 ⊂ 𝐺Q𝑝 be the standard Levi subgroup given by the centraliser of the Newton
cocharacter 𝜈𝑏 . By Theorem A.1.3, there exists 𝜆 ∈ 𝐼𝜇,𝑏,𝑀 and an element

𝑔 ∈ 𝑋 (𝜇, 𝑏)◦𝐾 ∩ 𝑋
𝑀 (𝜆, 𝑏)𝑀 .

Upon replacing x by 𝑖𝑥 (𝑔) and using the diagram [Zho20, Equation (6.7)], we may assume 𝑏 ∈ 𝑀 (Q̆𝑝).
Since b is basic in M and using [HZ20, Theorem 4.1], we may further assume that 𝑏 = �𝜏𝜆, where
𝜏𝜆 ∈ Ω𝑀 corresponds to 𝜅𝑀 (𝑏) ∈ 𝜋1 (𝑀)𝐼 .

Arguing as in [Zho20, Lemma 6.11], we find that [Zho20, Assumption 5.12] is satisfied, in other
words, the Hodge filtration on D𝑥 ⊗ F𝑝 lifts to a filtration on D𝑥 ⊗ O𝐾 for some 𝐾/Q̆𝑝 finite which is

26See Section 2.2.1 for the definition of connected parahoric.
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induced by an M-valued cocharacter 𝜇𝑦 . We may, therefore, let �̃�/O�̆� ′ be an (𝑀, 𝜇𝑦)-adapted lifting
of 𝒢, cf. [Zho20, Definition 4.6], which corresponds to a point 𝑥 ∈ 𝒮𝑈 (𝐺, 𝑋) (O�̆� ′ ). The construction
in [Zho20, Proposition 6.5] gives us a map

𝜄 : 𝑀 (Q𝑝)/M(Z𝑝) → 𝑋𝑀 (𝜆, 𝑏)𝐾𝑀 , 𝑔 ↦→ 𝑔0

which induces a surjection

𝑀 (Q𝑝)/M(Z𝑝) → 𝜋0 (𝑋
𝑀 (𝜆, 𝑏)𝐾𝑀 )

by [Zho20, Proposition 5.19]. Moreover, the image of 𝜄 lands in 𝑋 (𝜇, 𝑏)◦𝐾 . Therefore, by Theorem A.1.3,
𝑋 (𝜇, 𝑏)◦𝐾 intersects every connected component of 𝑋𝑀 (𝜆, 𝑏)𝐾𝑀 , and hence 𝑋 (𝜇, 𝑏)◦𝐾 → 𝜋0 (𝑋 (𝜇, 𝑏)𝐾 )
is a surjection as desired. �

A.4.4.
Proposition A.4.3 implies that [Zho20, Assumption 6.17] is satisfied, hence, we obtain Theorem A.4.5
below.

Theorem A.4.5. Let 𝑝 > 2 and (𝐺, 𝑋) a Shimura datum of Hodge type with 𝐺Q𝑝 tamely ramified and
quasi split. We assume that 𝑝 � |𝜋1 (𝐺der) | and that𝑈𝑝 is a very special connected parahoric subgroup
of 𝐺 (Q𝑝).

1. Let 𝑥 ∈ 𝒮𝑈𝑝 (𝐺, 𝑋) (F𝑝) and 𝑏 ∈ 𝐺 (Q̆𝑝) the associated element. Then there is a 𝐺 (A𝑝
𝑓 )-equivariant

bijection (where ℐ𝑥 ⊂ 𝒮𝑈𝑝 (𝐺, 𝑋) (F𝑝) is the isogeny class of x)

𝐼𝑥 (Q)\𝑋 (𝜇, 𝑏)𝐾 (F𝑝) × 𝐺 (A
𝑝
𝑓 ) → ℐ𝑥 .

2. Each isogeny class of 𝒮𝑈𝑝 (𝐺, 𝑋) (F𝑝) contains a point x which is the reduction of a special point on
Sh𝑈𝑝 (𝐺, 𝑋). This confirms [KMPS22, Conjecture 1].
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