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ABSTRACT

In the present paper we generalise Panjer's (1981) recursion for compound
distributions to a multivariate situation where each claim event generates a
random vector. We discuss situations within insurance where such models
could be applicable, and consider some special cases of the general
algorithm. Finally we deduce from the algorithm a multivariate extension
of De Pril's (1985) recursion for convolutions.

1 INTRODUCTION

1 A. Let N denote the number of claims occurring in an insurance portfolio
within a given period, and {/,- the amount of the zth of these claims. We
assume that these claim amounts are positive, integer-valued, mutually
independent and identically distributed with common probability function/,
and independent of N. Let p denote the probability function of N. Then the
distribution of the aggregate claims X — YM=\ Utls a compound distribution
with probability function

«=0

Panjer (1981) presented an algorithm for recursive evaluation of g when/?
satisfies a recursion in the form

p(n-\). (n=l ,2 , . . . ) (1.2)

We obtain that N has a Poisson distribution when a = 0, a negative binomial
distribution when a > 0, and a binomial distribution when a < 0. Panjer's
paper motivated the development of an extensive theory on recursive
methods for compound distributions as well as other types of distributions
that would be appropriate for aggregate claims of insurance portfolios.
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IB. Hesselager (1996) presented some bivariate extensions of Panjer's
recursion, using bivariate generalisations of the counting distribution. He
considered a situation with two portfolios. For 7 = 1,2, let Nj denote the
number of claims in portfolio; and Wy the amount of the ith of these claims.
We assume that the W,/s are positive, integer-valued, mutually independent,
independent of the claim numbers, and for fixed y identically distributed with
common probability function^. The aggregate claim amount from portfolio
j is Xj = Y^-,=\ Wy. Let q denote the joint probability function of Ni and N
and g the joint probability function of X\ and X2. Then

g{xhX2) = YJY.q{nun2)f^{xx)f^(x2). (xux2 = 0,1,...)
«l=0«2=0

Hesselager deduced recursions for g in some cases where q can be interpreted
as a bivariate extension of Panjer's counting distributions.

1C. In the present paper we shall study a multivariate extension of Panjer's
recursion in another direction than Hesselager. We shall still assume that the
claim number is one-dimensional, and that its distribution satisfies (1.2).
However, we now assume that each claim is an m-dimensional random
vector, and that these vectors are mutually independent and identically
distributed and independent of the number of claims. This can be interpreted
as if the number of claims is now the number of claim events within a
portfolio of m policies and the severity vector represents the vector of
payments to each policy caused by one claim event. We shall motivate this
model further in Section 2.

After the motivation in Section 2 we deduce the main result in Section 3.
In Section 4 we discuss some special cases. Finally, in Section 5, we look at
an additional special case, from which we deduce a multivariate extension of
De Pril's (1985) recursion for convolutions.

2 MOTIVATION

2A. Let N denote the number of claim events,

Ui = (Un,...,Uim)' (i = l,2,.. .)

an m-dimensional vector generated by the ith of these events, and

N

1=1

https://doi.org/10.2143/AST.29.1.504605 Published online by Cambridge University Press

https://doi.org/10.2143/AST.29.1.504605


ON MULTIVARIATE PANJER RECURSIONS 31

(we interpret YM=C
 = ® w n e n d < c). We assume that Ui, U2, ... are mutually

independent and identically distributed with probability function / , and
independent of N. It is further assumed that all the Uy's are non-negative.
Let p and g denote the probability functions of TV and X respectively. Then
(1.1) still holds.

2B. In this subsection we shall indicate some situations where our model
could be appropriate.
1. As indicated in Section 1, in a portfolio with m policies we can

interpret Uy as the claim amount of policy j caused by claim event i. A
natural example is windstorm insurance where one windstorm could
affect more than one policy. The variable Xj represents the aggregate
claims of policy j .

2. If we let Uy be equal to one if claim event / causes a payment on policy j ,
and zero otherwise, then Xj will be the number of claims of policy j .
Analogously we can develop multivariate counting distributions in the
following examples.

3. Another application of the model would be to a situation where each
claim event can induce various types of claims. These types could have
different reinsurance covers. Let m be the number of types and Uy the
payment of type j at claim event /. Then A) represents the aggregate
claims of type / We assume that Xj is covered by a reinsurance such that
the insurance company retains r,-(A}). Thus the total aggregate claims will
be Z = Y^jL\fj{Xj). From g we can evaluate the distribution of Z.
Perhaps z is covered by an umbrella cover. Then we can apply the
distribution of Z to evaluate the premium for the umbrella. A good
example of an insurance class where different types of claims could have
different reinsurance covers, is motor insurance, where the reinsurance
would often be different for vehicle damage and personal injury.
Analogously, in workers' compensation insurance one could have
different reinsurance for sickness and accident.

4. We now return to the case with only one type of claim and let m = 2. Of
claim / the ceding company retains Ut\, and the reinsurer covers the rest,
Ua- Then X\ and Xi represent the total payments of the insurer and the
reinsurer respectively, and by our generalised Panjer recursion we can
evaluate their joint distribution. In subsection 4H we shall study this
situation in the special case of unlimited excess-of-loss reinsurance.

5. Let us now consider the run-off of the claims incurred in an insurance
portfolio during a specified year. We assume that all claims will have been
settled after m years. Let Uy be the part of the rth claim paid in
development year j . Then Xj will be the total payments in development
year/

2C. By conditioning on N we easily obtain that

Cov(Xj,Xk) = EN Cov(C/y, Uik)+EUijEUxk VariV. (2.1)
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If Uy and U\k are independent, then (2.1) gives

Cov (Xj, Xk) = EUy EUlk Var N > 0, (k ^ j)

that is, because N affects all the policies, the aggregate claims of different
policies will be positively correlated when the severities of different policies
are independent.

We rewrite (2.1) as

Cov (Xj, Xk) = EN EUy Uxk + EUy EUXk (Var N - EN).

If N is Poisson distributed, then Var N = EN, and we obtain

We see that in this case, for k ^ j , Xj and Xk are uncorrelated if and only if
EU\jU\ic = 0. This implies that Uy and U\k cannot both be positive. In the
situation where C/y- denotes the amount caused to policy j by claim event /,
this means that a claim event cannot hit more than one policy. In the
situation where Uy denotes the amount of type j caused by one claim, it
means that a claim cannot cause payments of more than one type; there
cannot at the same time be payments on death and disability. In fact, in this
case we have not only that Xj and Xk are uncorrelated, but they are even
independent, cf. e.g. Sundt (1993).

Leaving the Poisson assumption, but keeping the assumption that
EU\jU\k = 0 for k y£j, we obtain

Cov (Xj,Xk) = EUy EUik (VarN - EN). (k ^ j)

When N is negative binomially distributed, we have Var ./V > EN, and thus
Xj and Xk are positively correlated. On the other hand, if ,/V is binomially
distributed, then Var./V < E./V, and Xj and Xk are negatively correlated.

3 MAIN RESULT

3A. In the following we shall apply the notation

x = (xi,...,xm)'; u=(u\,...,um)'

We shall always tacitly assume that the elements of x and u are non-negative
integers. By u < x we shall mean that uj < Xjforj = 1, ..., m and by u < x
that uj < Xj for j = 1, ..., m with strict inequality for at least one j . For
j = \,•-.:-., m we define e7 to be the m x 1 vector whosey'th element is 1 and all
the other elements are 0.
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Under the additional assumption that p satisfies (1.2), we shall deduce
multivariate extensions of Panjer's recursion.

Theorem 1. The probability function g satisfies the recursion

(3.1)

- u) (x > 0) (3.2)

n=0

aJ \u) o<u<x

for k = 1, 2, ..., m.

Proof. Formula (3.1) follows from (1.1) and the assumption that YljLi U\j is
non-negative.

When x > 0, we have

00 OO / L\

2_]p{n- l)E\axk + bUik

»=i I

^)/(u)/ (" i r(x - u) =
0<u<x

(axk + Z,M/t)/(u) ^ / , ( « - l y ^ ' ^ x - u) =
0<u<x

(k ^)/()^(x - U) =
0<u<x

0<u<x

and solving for Xkg(x) gives (3.2).
This completes the proof of Theorem 1. Q.E.D.

When Xk > 0, we can divide (3.2) by xk. We obtain

(u )g (x -u ) , (x>e*) (3.3)
0 <u< x

which together with (3.1) can be applied for recursive evaluation of g.
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When/(O) = 0, (3.1) and (3.3) reduce to

g(0)=P(0)

(3.4)
0<u<x

In the situation with a portfolio with m policies, this assumption means that
any claim event will affect at least one policy. When m = 1, (3.4) reduces to

(3.5)

This is the recursion deduced by Panjer (1981).

3B. It is interesting to notice that when b ^ 0, the recursion (3.3) is not
symmetric in the policies; one of them, policy k, is treated in a special way. In
practice it seems to be computationally most efficient to choose the policy
where the claim amount can take the least number of values. We shall return
to this in Section 4.

Also, we see that we have to apply another policy than policy k as the
special policy when Xk = 0. Let us apply policy / when Xk = 0 and x\ > 0.
However, when Xk = x/ = 0, we have to apply a third policy as the special
policy, and so on. In the worst case, we will have to involve each of the m
policies as the special policy at some stage. This may make the recursion of
Theorem 1 awkward to program. However, it will normally involve less
arithmetic operations than brute force evaluation by (1.1).

In some cases the problem of Xk = 0 is reduced or vanishes completely.
We see that the problem arises when Xk = 0 and Xj > 0 for at least one j ^ k.
If Uik is always positive when at least one of the other f/y's is positive, then
Xk is also positive only when at least one of the other X/s is positive.
Therefore g(x) — 0 when Xk = 0 and some other Xj is positive, and the case
Xk = 0 does not create any problem for the recursion. In the situation with
excess-of-loss reinsurance mentioned in Example 4 in subsection 2B the
ceding company will always make payments for own account when there are
positive reinsurance payments, and thus, with k = 1, the case Xk = 0 is
unproblematic. We shall return to this situation in subsection 4H.

It seems that in practice the multivariate recursions would be applicable only
when m is small, as otherwise the computational work would be prohibitive.

3C. Let c — (c\, ...,cm)' be a constant vector. Multiplication of (3.2) by Ck
and summation over k gives

J2 K x + Z>c'u)/(u)g(x-u). (x>0) (3.6)
0<u<x
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When c'x ^ 0, we can divide (3.6) by c'x, and we obtain

( u k ( x - u)" ( c ' x * 0 ) (3-7)
0<U<X

Normally we would choose the c/s equal to zero or one. In particular, when
c = ek (3.7) reduces to (3.3). Another interesting case is when cj = 1 for a l l /
Then c'x = x., which is always positive when x > 0. Thus

( ) x>0) (3.8)
0<u<x

Under efficient programming, (3.8) is not necessarily significantly more time-
consuming than (3.3), and it has the advantage that it can be applied for all
x > 0.

When m = 1, the recursion (3.8) reduces to Panjer's recursion (3.5).
For the rest of the paper we shall mainly concentrate on recursions with

division by Xk and leave to the readers to deduce corresponding recursions
with division by x. or c'x.

3D. The way we extended Panjer's univariate recursion, can easily be
applied to other univariate recursions. As an example, let us generalise the
recursion (3.3) to the situation when p satisfies a recursion

(3-9)
.5=1

for some positive integer r; we have p(n) = 0 for n < 0. When r = 1, (3.9)
reduces to (1.2). By modifying the proof of Theorem 9 in Sundt (1992)
analogous to the way we modified the proof of Theorem 10.6 in Sundt (1993)
for the proof of Theorem 1, we obtain

"u) t
and analogous to (3.8) we obtain

E ^x - u ) E («-+77)/w(u)- (x >0)

0<u<x j=l V S *
These recursions reduce to respectively (3.3) and (3.8) when r —\, and to the
recursion of Sundt (1992) when m = 1.

The recursions of the present subsection are further analysed in Sundt
(1998).
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4 SPECIAL CASES

4A. We consider the situation where a claim event can induce various types
of claims, and assume that one claim event cannot induce claims of more
than one type. Forj =1 ,2 , . . . , m let Uy be equal to one if the /th claim event
induces a claim of type j and zero otherwise. Then Yl%\ Uy = \. Let

h(j)=Pv(Uy=\). ( y = 1,2, ...,/«)

Application of (3.8) gives

S(x) = fa + j) J2 KM* ~ ey). (x > 0)

4B. For the rest of Section 4 we shall for simplicity restrict our presentation
to the case m = 2, and we assume that/(0,0) = 0. Some of the examples are
primarily of theoretical interest whereas others have practical relevance.

Let U, = Un, V( = Ua, X = Xx = Y.t\ u» a n d Y = x* = T,t.\ v<- I n

this case (3.4) gives

(a + * )
«=0 X v=0

g(x,y) = J2 (a + b -) Y/(u, v)g(x -u,y-v), (4.2)
^ y'v=o

and from (3.8) we obtain

X V

J2Y )) (4.3)

Notice that, unlike in (3.4), in these formulae we have included (M, V) = (0,0)
in the summations to simplify the display of the formulae. However, as by
assumption /(0,0) = 0, the extra term is equal to zero.

If we were to base our evaluation of g(x,y) on (4.1) for all (x,>')'s such
that x > 0, then we could evaluate g(0,y) by (4.2), that is,
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However, if U, is always positive, then together with g(0, 0) the recursion
(4.1) specifies g completely. In this case we have

g(0,y) = 0. (y=l ,2 , . . . )

4C. To assume that £/, and F, are independent does not seem to bring
any substantial simplification to our recursions. In that case, if h and k
denote the marginal probability functions of £/, and F , then we can write
(4.1) as

g(x,y) = J2(a + b-)h(u)J2k(v)g(x -u,y- v).
u=0 X v=0

( x = 1,2,...; 7 = 0,1,...)

4D. Let us now consider the situation with two types of claims. Unlike in
subsection 4A we do not exclude the possibility that one claim event can
induce payments of both types. We let Ut = 1 if claim event / leads to
payments of type 1, and £/, = 0 if that is not the case. Analogously we let
Vj = 1 if claim event / leads to payments of type 2, and F, = 0 if that is not
the case. Then X and Y are the total numbers of claims of type 1 and 2
respectively. In this case/(w, v) can be positive only when u,v e {0,1}, and
(4.1) reduces to

af(0,\)g{x,y-]). ( x= l , 2 , . . . ; j = 0,l,...) (4.4)

4E. We now leave the restriction that £/, and Vt can only take the values 0
and 1, and consider the case when Et/,F, = 0. As pointed out in subsection
2C, in the situation with different types of payments, this corresponds to the
case that a claim cannot have payments of more than one type. Let c denote
the probability that a claim is of type 1, h the conditional probability
function of the claim amount given that the claim is of type 1, and k the
conditional probability function of the claim amount given that the claim is
of type 2. As /(0,0) should be equal to zero, we have that h(0) = k(0) = 0.
Then

ch(u) (u= 1,2,...; t> = 0)

f(u,v)={ (\-c)k{v) (« = 0; ^ = 1,2,...)

0. otherwise
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Insertion in (4.1) gives

g(x,y) = c^T(a + bV^jh(u)g(x -u,y) + (l- c)a^k{v)g(x,y - v ) .
w=l v=\

(x=l ,2 , . . . ; .y = 0,l,...) (4.5)

In the special case with a = 0, that is, N is Poisson distributed with
parameter b, the last summation in (4.5) vanishes, and we obtain

g(x,y)=-Yth(u)g(x-u,y). {x = 1,2,...; y = 0,1,...) (4.6)
u=\

As pointed out in subsection 2C, in the present case we know that X and Y
are independent. Thus g(x, y) = s{x)t(y), where s and t denote the marginal
probability functions of respectively X and Y. Insertion in (4.6) gives

s(x)t{y) = t{y)-YJh{u)s(x-u). (x = 1,2,...; y = 0,1,...)
u=\

As there must exist some y such that t(y) > 0, we obtain

{u)s{x-u). (x= l ,2 , . . . ) (4.7)
x .

w = l
This is the univariate Panjer recursion for a compound Poisson distribution
with Poisson parameter cb and severity distribution with probability
function h. As

we could also have obtained (4.7) from (4.6) by summation over y.
If we, leaving the Poisson assumption, define £/, and V, as in subsection

4D, we obtain

and insertion in (4.4) gives

g(x,y) = (a + %g{x -\,y) + a{\ - c)g(x,y - 1). (4.8)
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4F. The model of subsection 4E can also be expressed within the framework
of subsection IB. For j = 1, 2 let TV/ be the number of claims of type j and
Wtj the amount of the ith of these claims. Then the assumptions of
subsection 1B are fulfilled with f\=h and f2 = k.

The conditional distribution of iVi given that TV = n, is binomial with

Pr(JVi = nx \N = n) = ( " ) c"1 (1 - c)"'"1.

(«i =0,1,. . . ,«; « = 0,1,...)

Thus for «i,«2 = 0,1,. . we have

q(nun2) = Pr((JVi = m) H (N2 = »2)) =

«2) Pr(iVi = n\ \N = nx + n2) =

We are now within Model A of Hesselager (1996), and the recursions (4.5)
and (4.8) are given in his Theorems 2.2 and 2.1 respectively.

4G. Let us now consider a univariate situation. Let Wj be the amount of the /th
claim. We assume that the Wfs are positive, integer-valued, mutually
independent and identically distributed with common probability function h,
and independent of N. Let s be a positive integer. We say that a claim is of type 1 if
it is less than or equal to s, and of type 2 if it is greater than s. In this case we have

g(x,y) = 0. (x = 0,1,...; y= 1,2, ...,s)

We now have a special case of the situation of subsection 4E with

{ h(u) (u = 1,2, ...,s; v = 0)

h{v) (u = 0;v = s+l,s + 2,...) (4.9)

0, otherwise
and insertion in (4.1) gives

S y

g(x,y) = Y^ (a + b-)h(u)g(x-u,y) + a ]P h(v)g(x,y - v);
l +l

, s + 2, ...)
V=8+l

https://doi.org/10.2143/AST.29.1.504605 Published online by Cambridge University Press

https://doi.org/10.2143/AST.29.1.504605


40 BJ0RN SUNDT

Insertion of (4.9) in (4.2) gives

s y / \
g(x,y) = aY^h(u)g{x - u,y)+ J2 [a + b-\h{v)g{x,y - v).

U=\ V=S+\ ^ • ' '

2, ...)

4H. In the previous subsection, we distinguished between claims less than
or equal to s and claims larger than s. A more interesting situation would
be to let

Uj = min( Wus); Vt = max( Wt - s, 0).

Under an unlimited excess-of-loss treaty with retention s, Uj and F, are
respectively the retained and reinsured parts of the /th claim. Thus X
becomes the total payments of the ceding company and 7 the total payments
of the reinsurer. In this case we have

g(x,y) = 0. (x = 0 ,1 , . . . , 5 -1 ; j = l , 2 , . . . )

Analogous to (4.9) we obtain

h(u) (u=\,2,...,s;v =

(u = s-v=\,2,...) (4.10)

[ 0. otherwise

Insertion in (4.1) gives

(
•1=1 - x

g(x,y) = y > + fe:)%)fe(x-Wl.

(4.11)
+ s)g(x-s,y-v).

v=l

(x= 1,2,...; 7 = 0,1,...)

As now Uj is always positive, together with g(0, 0) this recursion completely
specifies g.

Insertion of (4.10) in (4.2) gives

" y ( v\
g(x,y) = a2_2Ku)s(x-u,y) + 2_j [a + b~)h(v + s)g(x~s>y ~v)-

(x= 1,2,...; y= 1,2,...)

For small y this recursion may be more convenient than (4.11). However, we
will still need (4.11) to evaluate g(x, 0).
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ON MULTIVARIATE PANJER RECURSIONS 4 1

41. Let us finally consider the case when £/,- = Wt and F, = 1. Then Xwill be
the aggregate claims and Y the number of claims, that is, g will be the joint
probability function of the aggregate claims and the number of claims. Thus
we have

g(x,y) = P r (7 = y) Pr(Z = x\Y = y) = p(y)hT(x). (x, y = 0,1,...)

(4.12)

Furthermore,

jh(u) (u=l,2,...,s;v=l)

I 0, otherwise

and insertion in respectively (4.1) and (4.2) gives

u)g(x-u,y-l) (x,y = 1,2,...) (4.13)

) j ( ) g ( , y ) (x,y = 1,2,...) (4.14)
\ y ) »i

As both Uj and F, are always positive, together with g(0, 0) each of the
recursions completely specifies g.

The recursion (4.14) can easily be seen more directly. By successively
applying (4.12) and (1.2) in the right-hand side of (4.14) we obtain

u=\

(«)AH*(^-«) =p(y)hy\x)=g{x).

It does not seem possible to give such a simple interpretation of (4.13).

5 CONVOLUTIONS

5A. Let us now consider the special case of Theorem 1 when p is the
binomial probability function

p{n)=(r
r\c

n{\-c)r~n. (« = 0,l,...,r; r = l , 2 , . . . ; 0 < c < l ) (5.1)
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Then

We assume that/(O) = 0. Application of Theorem 1 gives

(\~cY (5.2)

V (V+l)^-lV(uk(x-u). (x>e*) (5.3)

We shall apply this recursion to deduce a multivariate extension of De Pril's
(1985) recursion for convolutions.

5B. Let Vi,. . . ,Vr be r m-dimensional independent and identically distri-
buted random vectors with non-negative integer-valued elements and
common probability function h. It is assumed that 0 < h(0) < 1. We want
to deduce a recursion for the probability function g of X = ^ _ , V,. We
obviously have g = hr*.

Let

c=l-h(O) (5.4)

^ (y>°) (5-5)

The function / can be interpreted as the conditional probability function
of V, given that at least one of its elements is greater than zero. We now
have that X has a compound binomial distribution with counting
distribution given by (5.1) with c given by (5.4) and severity distribution
with probability function / . Insertion of (5.4) and (5.5) in (5.2) and (5.3)
gives

W ) g ( ) (x>e*) (5.6)
0<u<x \ xk J

Analogously, by application of (3.8) we obtain

x>0)
\ v /

0<u<x
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ON MULTIVAR1ATE PANJER RECURSIONS 4 3

When m = 1, both these recursions reduce to

(x=\,2,...) (5.7)

This is the recursion deduced by De Pril (1985).
Fory = 1, ..., AM, let hj and gj denote the marginal probability functions of

V\j and Xj respectively. As h(0) > 0, we must have hj(0) > 0 fory = 1,..., m.
If V[[,..., V\m are independent, then X\, ...,Xm are also independent, and we
have

7=1 7=1

Insertion in (5.6) gives

7=1 0<u<x V *k / « l U J

However, in this case it seems more convenient to evaluate each of the g/s
separately by the univariate recursion (5.7) and then multiply them.

If Y\i^kSj(xj) > 0, we can rewrite (5.8) as

gk(xk)=

As the univariate recursion (5.7) gives

8k{Xk) =W)^ (ir+l)y-l)h^k)gk(xk-uk), (5.9)

it is tempting to conclude that we obtain 1 by a summation over the u/s of

11 hj{V)gj{xj) •

However, in the next subsection we shall see that it is not that simple.
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5C. Let us now consider the special case m = 2. In that case (5.6) with k = 1
gives

g{x,y) =
1

h(0,0) u=\

J 2 h ( 0 , v ) g ( x , y - v ) \ ; (x = 1,2,.. .; y = 0 ,1 , . . . ) (5.10)

as h(0,0) > 0, we cannot include (u, v) = (0,0) in the summation as in (4.1)
and (4.2).

If V\\ and V\2 are independent, (5.10) gives that for x = 1, 2, ...;y = 0, 1,...

8lix)82{y)=

1
*i(0)A2(0)

1 — v —
v=0

• - v

that is,

gi(x)g2{y) =

1
hi(0)h2(0)

A J2 h2(v)g2(y - v)+hx (0)g, (x)h2(0)g2(y) (5.11)

with

u=\

From (5.9) we see that A
reduces to gi(x)g2(y).

= 0, and thus the right-hand expression in (5.11)
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