J. Aust. Math. Soc. 82 (2007), 395-402

A NOTE ON THE BOUNDEDNESS OF BERGMAN-TYPE
OPERATORS ON MIXED NORM SPACES

ZENGJIANLOU

(Received 29 June 2005; revised 19 October 2005)

Communicated by P. C. Fenton

Abstract

We prove the boundedness of Bergman-type operators on mixed norm spaces L?-9(¢) for0 < g < 1 and
0 < p < oo of functions on the unit ball of C" with an application to Gleason’s problem.
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1. Introduction

Let B denote the open unit ball of the complex vector space C", v be the Lebesgue
measure on C" normalized so that v(B) = 1, and let o be the surface measure on the
boundary 3B of B. A positive continuous function ¢ on [0, 1) is normal (see [4]) if
there exist positive numbers a < b and 0 < ry < 1 such that:

(1) %‘7 is nonincreasing forro <r < 1 and rl_lffl_ —(1¢_(r,))a =5
o () 0

2) T=rp is nondecreasing forrg <r < 1 and rl_l’rln_ a_r7 =

The a, b in the definition are not uniquely related to ¢. Let a, denote the superemum
of all possible a’s and b, denote the infimum of all possible b’s. We say that a, and b,
are characteristic exponents of @.
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For a positive continuous function ¢ on [0,1) and 0 < p, g < o0, let L74(¢p)
denote the usual space of measurable functions f on B with || fl,4., < 00, where

1

1V
e = (Jy P = 'orMre, Hrar) < p < oo,
pa.9

SUPg<r < (p(r)Mq(r, f)v p =00,
and
1
M,(r, f) = [(f” [fro)lfdo@)”, 0<q < oo,
SUP; s | f (r&)l, q = 00,

"Suppose s € R and ¢+ > O (here and afterward in this note). The Bergman-type
operator P, on L?9(¢) is given by

_ 2yt-1
A1) P f@ =eni(l —|z|2)Sf A lwl)™ FW) oy, feLPi(p), z e B

B (] —_— (Z, w))n+l+s

where ¢,, = T(n +1)/(CEOT(n+ D)and (z,w) = Y., ziw; forz = (21, ..., 2,),
w=(Wq, ..., Wy).

The boundedness of Bergman-type operators P;, on mixed norm spaces L?4(¢p)
has been studied extensively; see, for example, [3, 4] and references cited therein.
Ren and Shi showed in [4], that if + > b > a > —s, then P,, is a bounded operator
on LP4(p)for1 < p,q < oo. Liu proved thecase forO < p < 1,1 < g < o0 in[3].
The only unsolved case is for 0 < g < 1. Since both the results in [4] and in [3]
rely on Holder’s inequality for 1 < g < oo (see [4, Lemma 2.1] and [3, Lemma 3]),
the idea used there cannot deal with the case 0 < ¢ < 1. In this note, by using an
‘inequality due to Beatrous and Burbea [1], we prove that P;, is bounded on L?9(¢p)
for0<g<land0 < p < .

THEOREM 1.1. Let ¢ be a normal function with characteristic exponents a, and b,,.
ForO<qg<1land0 < p <oo,ift >n(1/q—1)+b,ands > —a,, then P;, is a
bounded operator on LP9(p).

In this note, C denotes a constant independent of functions. Such a C may differ
at-different occurrences.

2. Proof of Theorem 1.1

To prove Theorem 1.1 we need the following lemmas.
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LEMMA 2.1. Suppose f : [0, 1) — [0, o0) is increasing, a, 8 > 0,0< p < 1 and
0 < p < 1. Then there exists a constant C such that

1 a- r)a—l P 1 a- r)pa-—l
([ Tmmsoe) se [ Gmmrore

The proof of Lemma 2.1 follows ideas of Hardy and Littlewood [2]. For the
completeness of the paper we prove it below.

PROOF. For0 < p < 1 and 8 > 0, the function f(r)/(1 — pr)? is increasing with
respect to r € [0, 1). We only need to prove the following fact: for an mcreasmg
function g : [0, 1) — [0, 00), ¢ > 0and0 < p < 1,

1 p 1
(/ (l—r)"_lg(r)dr) sc/ (1 —r)»'g(r)’dr.
0 0

In fact, let r, = 1 — 27*, Using the monotonicity of g and since 0 < p < 1, we have

1 p
(/ (1—r)“-'g(r)dr)
’ St I p o0 i p
=(Z f (1—r)“-'g(r)dr) s(Z / 2"<1—rk~,)“g(rk>dr)
k=] ¥k k=1 YTk

= <Z(1 — e o"g(rk)) Z (1 — )P g(ro)”

k=1

"L+1

<c 2(1 — )8 < C Z / — gy dr

= Cf (1 =r)"'g(r)? dr.
0
This proves Lemma 2.1. O

LEMMA 2.2 ([6, Lemma 6]). ForO<p < l,and 8 > a > 0,
1 _ pya-l
(_].L r 5 _—C_—_
o (T=rpyf * = (1= p)r
LEMMA 2.3. Let ¢ be a normal function with characteristic exponents a, and b,
Forp>00<p<lifs+t>b,ands < a, then

1
[ a0 N () N
a- r)ps+l(1 — rp)# (1 - p)p(5+x)
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Using definitions of a, and b,, the proof of Lemma 2.3 follows that of {4,
Lemma 2.3].

LEMMA24([1D). LetO < p<g <00, 0<a,B<ooanda+1/p=8+1/q.
Then for any measurable function f on B

. /g 1 1/p
(/ a- r)qﬂ‘lM;’(r, 12 dr) <C (/ - r)pa-‘M}f(r, i) dr) .
0 0

LEMMA 25. Let0 < g < l ands +t > n(l/q — 1). Then for any measurable
Junction f on B

1 rq(2n—1)(1 _ r)q(l+1)-—2

1/q9
My(p, P, f) < C(1 = pY* ( /0 T M;(r,f)dr> .

PROOF. Let
Z2n—1 f (Z)

(1 = (z, wyr+s+’

Fz) = z=rf and w=p¢,

where &, ¢ € 0B. Applying Lemma 2.4, equation (1.1) gives
i q9
[P f(w)l < C(1 — p)*? (/ (1-ry-! IF(ré)ldG(E)dr)
0 3B
1 q
=C( - p)* (/ (1 =-ryY~'M(, F)dr)
0

1
<€ - py / (1 =12 M, Fydr

s FRD( — D2 £ ()8
=ca "”q/ f T (&, pryforsre 7@ 4r

Integrating on 3 B with respect to ¢, together with the formula in [3, Section 1.4.10],
yield

1
M:(p, P.,f)<C-— p)Sq/ rq(ln—l)(l _ r)q(x+l)—2
0

1 .
* -/aa shill /ay 1= (8, pg s 10 &) do @) dr
, 1 rq(Zn-l)(l - r)q(r+1)-2
<C-p) "fo (T rpyscmesris Mi(r, f)dr.

Lemma 2.5 is proved.
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PROOF OF THEOREM 1.1. Let f € L”9(p) and g(z) := 2>~ f(2).
Casel.0 < g < 1, p < gq. Applying Lemmas 2.1, 2.3 and 2.5 and the assumptions
thatt > n(1/q - 1) + b,, s > —a,, we have

1
1P fIE,, <C / P11 = )P (p)

0

P pg@n=D(y — p)qt+1)-2 rlq
x ( / rda-n MSGr, f) dr) dp
0

(1 - rp)q(n+s+t)—n

1 l 1 a— r)q(1+l)—2 p/q
<C /0 (1= py* " (p) ( T 7oy Mi(r, g) dr) dp

1 1 (1 — r)p(z+1)~p/q—|
< C/ (1= p)"'9?(p) (/ M (r, 8) dr) dp
0 0

(1 — rp)ptrrstn—np/q

!
_ p(2n-1) +D=p/g—1
_C/(; rPETR L = )P OTPETIME (r, f)

1 _ sp—1
x( (1=p)7 ¢”(p) dp)dr

0 (1 — rp)p(n+s+t)—np/q

1
< Cf rp(Zn—l)(l _ r)p“_")(l_l/q)_l(pp(r)M:(l‘, f) dr
0

1
< Cf P =0T M N dr = CI I,
0

where we used the change of variables r” = p and the inequality ¢?(r'/?) < Co(r).
In fact, since ¢ is normal, there exists b > 0 and O < ry < 1 such that (r) /(1 — r)*
is nondecreasing forr, < r < 1. So r'/? < r implies that

(1 —rl/P)yp

¥ S
p(r’?) < a7y

p(r) < Co(r).

Case2. 0<g<l,g<p<oo.LetQ:=p/gand1/Q +1/0 = 1. We select
positive numbers by, b,, b3 and b4 such that

(N 0<q(l+1)—1=b1+b2=b3+b4;
(2) by > by

(3) ba/g+ @ —1)(A-1/q) > b,;

@) a, > (by —b))/q —s.

For example, for a sufficiently small number ¢ > 0, we may take

by=q@t+1D)—-1-Q0+¢) (b, + (1 -n)1-1/9))q,
by=(+¢)(b,+ (1 —nm1-1/9)q,
by=q@t+1)—1— (148 (b, + (1 —n)(1—1/g9))q +eq,
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and
bi=({0+5¢) (b,,, + (1 -n)(- l/q))q —£q.

By Lemmas 2.2, 2.3 and 2.5 and Hdlder’s inequality, we get
1
1Py < C [ 6270 = 0"
0

' (1 = p)ae+b-2 ol
q
* (./(; (1 — rp)at+s+o-n M(r, 8) dr) dp
l ! by-1 0/0Q
- (1 — r)Q 1
SC/ (1 = p)*® 1(pp(p)( ——_/_dr)
0 o (I ~rp)2h
! (1 —_ r)Qb:-l

X Mp(r, g)drdp

o - rp)(b4—n+l+q(n+s—l))Q

1
<C / (1~ pyPetr=ti-lpP (p)
0

1 (1 _ r)Qb;—l )
x /; (1 —_ rp)(b4—n+1+q(n+s—l))Q Mq (r’ g) dr dp

1
= cf rP@ N — ) ME(r, f)
0

1 (1 = p)Pes+bi=bd/@~10p ()
(] — rp)p((b4—n+l)/q+n+.v—])

dodr
0

1

<c /0 PPOnD (1 — p)PPOUT G (Y MP(r, f)dr < CISIL, -

Case3. 0 < g <1, p=o0c0. Sincet > n(l/qg — 1)+ b,, s > —a,, there exists
B > Osuchthat (n —~ 1)(1 — 1/g) + B+s > b, anda, > B —t — 1 + 1/q. In fact,
from the definitions of a, and b,, there exist 0 < ay < by and 0 < ry < 1 such that
t >n(l/g = 1)+ by, s > —ay, and @{r)/(1 — r)® is nonincreasing forrp, < r < 1
with lim,_,,-(p(r)/(1 — r)®) = 0, ¢(r)/(1 — r)™ is nondecreasing for ry, < r < 1
with lim,_, ;- (@(r)/(1 — r)¥*) = oo. Taking B = (1 —n)(1 — 1/q) + ao + by. It is
easy to check that B satisfies the requirement.

Let ¢ (r) = (1 —r)f/o(r),
a’=(1—n)(l—l>+ao and b’=(1—h)(1__1_)+b0.
g q

Then ¥ (r)/(1 — r)® = (1 — r)®/e(r) is nonincreasing for ry < r < 1 and
Y (r)

1 =
r=1= (1 — r)e
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¥ (r)/(1 —r)* = (1 — r)®/p(r) is nondecreasing for r, < r < 1 and

G
Jim G =

Therefore i (r) is a normal function.
From Lemmas 2.3 and 2.5, we obtain

D pa@u=D(] — p)at+h-2 1/¢
I1Pss flloogp < COSUP p(p)(1 = py (/ M (r, f)dr)
0

<p<l (1 - rp)q(n+s+r)—n

< C sup ¢(p)(1 - p)’

O<p<i

(1 = p)ae+n-2-p l/q
9 (/ (1 —r)ae+ qlp(r)q(p(r)qM;’(r, P dr)
0

(1 _ rp)q(n+s+t)—n
1 72— 1/q
s (] — p)90+D Bq (r)q
< Cllfloae SUP ()1 = 9) ( / ) LALLyH
0

<p< (1 — ’-p)q(n+s+1)—n

< Cl fllso.qe Sup P(P)Y (p)(1 — p)!~mU=1a=p

<p<

= Cl fllso.gp sup (1 = p)™4"YD < C|l flloq.0-

0<p<l
This completes the proof of Theorem 1.1. d

Finally we finish this note by stating a result on an application of Theorem 1.1 to
Gleason’s problem. Define H?%(yp) to be the space of holomorphic functions on B
belonging to L”9(p). Gleason’s problem on H?”9(p) has been solved for the case
1 g <00,0 < p < o0 (see, for example, [3] and [4]). The only unsolved case
is0 <g < 1,0 < p < 00. As an application of Theorem 1.1, we solve Gleason’s
problemon H?¥(p) for0 < g < 1and 0 < p < oo.

THEOREM 2.6. Gleason’s problem can be solved on H?(p) for 0 < q < 1
and 0 < p < oo. Precisely, for any integer m > 1, there exist bounded linear
operators A, on H?(p) such that if f € H”(p) and D* f(0) =0 (ja| < m — 1),
then f(z) = )4 1om 2°Aaf(2) on B, where D® f denotes the fractional derivative
of f of orderw, fora = (ay, ..., a,), la| = || + - + |a,).

The proof of Theorem 2.6 is similar to that of Theorem B in [3]} and so is omitted.
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