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Abstract
Under the assumption that sequences of graphs equipped with resistances, associated measures, walks and
local times converge in a suitable Gromov-Hausdorff topology, we establish asymptotic bounds on the dis-
tribution of the ε-blanket times of the random walks in the sequence. The precise nature of these bounds
ensures convergence of the ε-blanket times of the random walks if the ε-blanket time of the limiting diffu-
sion is continuous at ε with probability 1. This result enables us to prove annealed convergence in various
examples of critical random graphs, including critical Galton-Watson trees and the Erdős-Rényi random
graph in the critical window. We highlight that proving continuity of the ε-blanket time of the limiting
diffusion relies on the scale invariance of a finite measure that gives rise to realizations of the limiting
compact random metric space, and therefore we expect our results to hold for other examples of random
graphs with a similar scale invariance property.
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1. Introduction
A simple random walk on a finite connected graph G with at least two vertices is a reversible
Markov chain that starts at some vertex v ∈G, and at each step moves with equal probability to
any vertex adjacent to its present position. The mixing and the cover time of the random walk
are among the graph parameters which have been extensively studied. The mixing time measures
the time required such that the distribution of the Markov chain is within small total variation
distance from the unique invariant measure. To these parameters, Winkler and Zuckerman [39]
added the ε-blanket time variable (an exact definition will be given later in (1.4)) as the least time
such that the walk has spent at every vertex at least an ε fraction of time as much as expected
at stationarity. Then, the ε-blanket time of G is defined as the expected ε-blanket time variable
maximized over the starting vertex.

The motivation of introducing and studying the blanket time arises mainly from applications
in computer science. For example, suppose that a limited access to a source of information is
randomly transferred from (authorized) user to user in a network. How long does it take for each
user to own the information for as long as it is supposed to? To answer this question under the
assumption that each user has to be active processing the information equally often involves the
consideration of the blanket time. To a broader extent, viewing the internet as a (directed) graph,
where every edge represents a link, a web surfer can be regarded as a walker who visits and records
the sites at random. In a procedure that resembles Google’s PageRank, one wishes to rank a website
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according to the amount of time such walkers spend on it. A way to produce such an estimate is
to rank the website according to the number of visits. The blanket time is the first time at which
we expect this estimate to become relatively accurate.

Obviously, for every ε ∈ (0, 1), the ε-blanket time is larger than the cover time since one has
to wait for all the vertices to have been visited at least once. Winkler and Zuckerman [39] made
the conjecture that, for every ε ∈ (0, 1), the ε-blanket time and the cover time are equivalent up
to universal constants that depend only on ε and not on the particular underlying graph G. This
conjecture was resolved by Ding, Lee and Peres [23] who provided a highly non-trivial connection
between those graph parameters and the discrete Gaussian free field (GFF) onG using Talagrand’s
theory of majorizing measures. Recall that the GFF on G with vertex set V is a centred Gaussian
process (ηv)v∈V with ηv0 = 0, for some v0 ∈V , and covariance structure given by the Green kernel
of the random walk killed at v0.

Recent years have witnessed a growing interest in studying the geometric and analytic proper-
ties of random graphs partly motivated by applications in research areas ranging from sociology
and systems biology to interacting particle systems as well as by the need to present convinc-
ing models to gain insight into real-world networks. One aspect of this development consists of
examining the metric structure and connectivity of random graphs at criticality, that is precisely
when we witness the emergence of a giant component that has size proportional to the number
of vertices of the graph. Several examples of trees, including critical Galton-Watson trees, possess
the Brownian Continuum Random Tree (CRT) as their scaling limit. A programme [8] has been
launched in the last few years having as its general aim to prove that the maximal components in
the critical regime of a number of fundamental random graph models, with their distances scaling
like n1/3, fall into the domain of attraction of the Erdős-Rényi random graph. Their scaling limit
is a multiple of the scaling limit of the Erdős-Rényi random graph in the critical window, that is a
tilted version of the Brownian CRT where a finite number of vertices have been identified. Two of
the examples that belong to the Erdős-Rényi universality class are the configuration model in the
critical scaling window and critical inhomogeneous random graphs, where different vertices have
different proclivity to form edges, as it was shown in the recent work of [9] and [10] respectively.

In [19], Croydon, Hambly and Kumagai established criteria for the convergence of mixing
times for random walks on general sequences of finite graphs. Furthermore, they applied their
mixing time results in a number of examples of random graphs, such as self-similar fractal graphs
with random weights, critical Galton-Watson trees, the critical Erdős-Rényi random graph and
the range of high-dimensional random walk. Motivated by their approach, starting with the
strong assumption that the sequences of graphs, associated measures, walks and local times con-
verge appropriately, we provide asymptotic bounds on the distribution of the blanket times of the
random walks in the sequence.

To state the aforementioned assumption, we continue by introducing the graph theoretic
framework in which we work. Firstly, let G= (V(G), E(G)) be a finite connected graph with at
least two vertices, where V(G) denotes the vertex set of G and E(G) denotes the edge set of G.
We endow the edge set E(G) with a symmetric weight function μG :V(G)2 →R+ that satisfies
μG
xy > 0 if and only if {x, y} ∈ E(G). Now, the weighted random walk associated with (G,μG) is the

Markov chain ((XG
t )t≥0, PG

x , x ∈V(G)) with transition probabilities (PG(x, y))x,y∈V(G) given by

PG(x, y) :=
μG
xy

μG
x
,

where μG
x =∑y∈V(G) μG

xy. One can easily check that this Markov chain is reversible and has
stationary distribution given by

πG(A) :=
∑

x∈A μG
x∑

x∈V(G) μG
x
,
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for every A⊆V(G). The process XG has corresponding local times (LGt (x))x∈V(G),t≥0 given by
LG0 (x)= 0, for every x ∈V(G), and, for t ≥ 1

LGt (x) :=
1

μG
x

t−1∑
i=0

1{XG
i =x}, (1.1)

for every x ∈V(G). The simple random walk on this graph is a Markov chain with transition
probabilities (P(x, y))x,y∈V(G) given by

P(x, y) := 1/deg(x),

where deg(x) := |{y ∈V(G) : {x, y} ∈ E(G)}|. The simple random walk is reversible and has sta-
tionary distribution given by

π(A) :=
∑

x∈A deg(x)
2|E(G)| ,

for every A⊆V(G). It has corresponding local times as in (1.1) normalized by deg(x).
To endow G with a metric, we can choose dG to be the shortest path distance, which collects

the total weight accumulated in the shortest path between a pair of vertices inG. But this is not the
most convenient choice in many cases. Another typical graph distance that arises from the view
of G as an electrical network equipped with conductances (μG

xy){x,y}∈E(G) is the so-called resistance
metric. For f , g :V(G)→R let

EG(f , g) := 1
2

∑
x,y∈V(G):
{x,y}∈E(G)

(f (x)− f (y))(g(x)− g(y))μG
xy (1.2)

denote the Dirichlet form associated with the process XG. Note that the sum in the expression
above counts each edge twice. One can give the following interpretation of EG(f , f ) in terms of
electrical networks. Given a voltage f on the network, the current flow I associated with f is defined
as Ixy := μG

xy(f (x)− f (y)), for every {x, y} ∈ E(G). Then, the energy dissipation of a wire per unit
time connecting x and y is μG

xy(f (x)− f (y))2. So, EG(f , f ) is the total energy dissipation of G. We
define the resistance operator on disjoint sets A, B ∈V(G) through the formula

RG(A, B)−1 := inf{EG(f , f ) : f :V(G)→R, f |A = 0, f |B = 1}. (1.3)

Now, the distance on the vertices of G defined by RG(x, y) := RG({x}, {y}), for x �= y, and
RG(x, x) := 0 is indeed a metric on the vertices of G. For a proof and a treatise on random walks
on electrical networks see [34, Chapter 9].

Writing τGcov for the first time at which every vertex of G has been visited, ExτGcov denotes the
mean of this quantity when the random walk starts at x ∈V(G). Define the cover time by

tGcov := max
x∈V(G)

Exτ
G
cov.

For some ε ∈ (0, 1), define the ε-blanket time variable by

τGbl (ε) := inf{t ≥ 0 :mGLGt (x)≥ εt, ∀x ∈V(G)}, (1.4)

where mG is the total mass of the graph with respect to the measure μG, i.e. mG := ∑
x∈V(G) μG

x .
Taking themean over the randomwalk started from the worst possible vertex defines the ε-blanket
time, i.e.

tGbl(ε) := max
x∈V(G)

Exτ
G
bl (ε).
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Let us use the notation 	 to denote equivalence up to universal constant factors and 	ε to
denote equivalence up to universal constant factors that depend on ε,

Theorem 1.1. (Ding, Lee, Peres [23]). For any finite connected graph G= (V(G), E(G)) with at
least two vertices and any ε ∈ (0, 1),

tGcov 	 |E(G)|
(
E max

x∈V(G)
ηx

)2
	ε tGbl(ε),

where (ηx)x∈V(G) is a centred Gaussian process with ηx0 = 0, for some x0 ∈V(G), and
(
E(ηx − ηy)2

)
x,y∈V(G) = (RG( x, y))x,y∈V(G).

Secondly, let (K, dK) be a compact metric space and let π be a Borel probability measure of full
support on (K, dK). Take ((Xt)t≥0, Px, x ∈K) to be a π-symmetric Hunt process that admits jointly
continuous local times (Lt(y))y∈K,t≥0. A Hunt process is a strong Markov process that possesses
useful properties such as the right-continuity and the existence of the left limits of sample paths
(for definitions and other properties see [26, Appendix A.2]). Analogously, it is possible to define
the ε-blanket time variable of K as

τbl(ε) := inf{t ≥ 0 : Lt(x)≥ εt, ∀x ∈K} (1.5)

and check that it is a non-trivial quantity (see Proposition 4.1).
The following assumption encodes the information that, properly rescaled, the discrete state

spaces, invariant measures, random walks, and local times, converge to (K, dk), π , X, and
(Lt(x))x∈K,t∈[0,T] respectively, for some fixed T > 0. This formulation will be described in terms of
the extended Gromov-Hausdorff topology constructed in Section 2.

Assumption 1. Fix T > 0. Let (Gn)n≥1 be a sequence of finite connected graphs that have at least
two vertices, for which there exist sequences of real numbers (α(n))n≥1 and (β(n))n≥1, such that(
α(n)Gn, πn,

(
α(n)Xn

β(n)t

)
t∈[0,T] ,

(
α(n)Lnβ(n)t(x)

)
x∈V(Gn),
t∈[0,T]

)
−→

((
K, dK , ρ

)
, π , X, (Lt(x)) x∈K,

t∈[0,T]

)

in the sense of the extended pointed Gromov-Hausdorff topology, where α(n)Gn :=
(Gn, α(n)dGn , ρn) for distinguished points ρn ∈V(Gn) and ρ ∈K at which Xn and X start
respectively. In the above expression the definition of the discrete local times is extended to all
positive times by linear interpolation.

The convergence in the display above is in distribution; even when the spaces are deterministic,
the objects on both sides are random because of the processes and their local times. In most of the
examples that will be discussed later, we will consider random graphs. In this context, we want to
verify that the previous convergence holds in distribution. Our first conclusion is the following.

Theorem 1.2. Suppose that Assumption 1 holds in such a way that the time and space scaling factors
satisfy α(n)β(n)=mGn, for every n≥ 1. Then, for every ε ∈ (0, 1), δ ∈ (0, 1) and t ∈ [0, T],

lim sup
n→∞

Pn
ρn
(
β(n)−1τnbl(ε)≤ t

)≤ Pρ (τbl(ε(1− δ))≤ t) , (1.6)

lim inf
n→∞ Pn

ρn
(
β(n)−1τnbl(ε)≤ t

)≥ Pρ (τbl(ε(1+ δ))< t) , (1.7)

where Pn
ρn is the law of Xn on Gn, started from ρn, and Pρ is the law of X on K, started from ρ.
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The mapping ε �→ τbl(ε) is increasing in (0, 1), so it posseses left and right limits at each point.
It also becomes clear that if τbl(ε) is continuous with probability 1 at ε, then letting δ → 0 on both
(1.6) and (1.7) demonstrates the corollary below.

Corollary 1.3. Suppose that Assumption 1 holds in such a way that the time and space scaling factors
satisfy α(n)β(n)=mGn, for every n≥ 1. Then, for every ε ∈ (0, 1),

β(n)−1τnbl(ε)→ τbl(ε)

in distribution, if τbl(ε) is continuous with probability 1 at ε.

To demonstrate our main results consider first T, a critical Galton-Watson tree (with finite
variance σ 2 for the offspring distribution). The following result on the cover time of the simple
random walk was obtained by Aldous (see [3, Proposition 15]), which we apply to the blanket
time in place of the cover time. The two parameters are equivalent up to universal constants as
was conjectured in [39] and proved in [23].

Theorem 1.4. (Aldous [3]). Let T be a critical Galton-Watson tree (with finite variance σ 2 for the
offspring distribution). For any δ > 0 there exists A=A(δ, ε, σ 2)> 0 such that

P
(
A−1k3/2 ≤ tTbl(ε)≤Ak3/2

∣∣ |T| ∈ [k, 2k]
)≥ 1− δ,

for every ε ∈ (0, 1).

In what follows Pρn , n≥ 1 as well as Pρ are the annealed measures, that is the probability mea-
sures obtained by integrating out the randomness of the state spaces involved. Our contribution
refines the previous existing tightness result on the order of the blanket time.

Theorem 1.5. Let Tn be a critical Galton-Watson tree (with finite variance for the aperiodic off-
spring distribution) conditioned to have total progeny n+ 1. Fix ε ∈ (0, 1). If τnbl(ε) is the ε-blanket
time variable of the simple random walk on Tn, started from its root ρn, then

Pρn
(
n−3/2τnbl(ε)≤ t

)→ Pρ

(
τ ebl(ε)≤ t

)
,

for every t ≥ 0, where τ ebl(ε) ∈ (0,∞) is the ε-blanket time variable of the Brownian motion on the
Brownian CRT Te, started from the root ρ ∈ Te. Equivalently, for every ε ∈ (0, 1), n−3/2τnbl(ε) under
Pρn converges weakly to τ ebl(ε) under Pρ .

Now let G(n, p) be the resulting subgraph of the complete graph on n vertices labelled by [n] :=
{1, . . . , n} obtained by p-bond percolation. If p= n−1 + λn−4/3 for some λ ∈R, that is when we
are in the so-called critical window, the largest connected component Cn1 , rooted at its first ordered
vertex, say ρn, as a graph, converges to a random compact metric spaceM that can be constructed
directly from the Brownian CRT Te (see the work of [2]). The following result on the blanket time
of the simple random walk on Cn1 is due to Barlow, Ding, Nachmias and Peres [7].

Theorem 1.6. (Barlow, Ding, Nachmias, Peres [7]). Let Cn1 be the largest connected component of
G(n, p), p= n−1 + λn−4/3, λ ∈R fixed. For any δ > 0 there exists B= B(δ, ε)> 0 such that

P
(
B−1n≤ tC

n
1

bl (ε)≤ Bn
)≥ 1− δ,

for every ε ∈ (0, 1).

Our contribution refines the previous existing tightness result on the order of the blanket time.

Theorem 1.7. Fix ε ∈ (0, 1). If τnbl(ε) is the ε-blanket time variable of the simple random walk on
Cn1 , started from its root ρn, then

Pρn
(
n−1τnbl(ε)≤ t

)→ Pρ

(
τMbl (ε)≤ t

)
,
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for every t ≥ 0, where τMbl (ε) ∈ (0,∞) is the ε-blanket time variable of the Brownian motion onM,
started from its root ρ.

The paper is organized as follows. In Section 2, we introduce the extended Gromov-Hausdorff
topology and derive some useful properties. In Section 3, we present Assumption 2, a weaker suffi-
cient assumption when the sequence of spaces is equipped with resistancemetrics. In Section 4, we
prove Theorem 1.2 under Assumption 1. In Section 5, we verify the assumptions of Corollary 1.3,
and therefore prove convergence of blanket times for the series of critical random graphs
mentioned above, thus proving Theorem 1.5–1.7.

2. Extended Gromov-Hausdorff topologies
In this section we define an extended Gromov-Hausdorff distance between quadruples consist-
ing of a compact metric space, a Borel probability measure, a time-indexed right-continuous path
with left-hand limits and a local time-type function. This allows us tomake precise the assumption
under which we are able to prove convergence of blanket times for the random walks on various
models of critical random graphs. In Lemma 2.3, we give an equivalent characterization of the
assumption that will be used in Section 4 when proving distributional limits for the rescaled blan-
ket times. Also, Lemma 2.4 will be useful when it comes to checking that the examples we treat
satisfy the assumption.

Let (K, dK) be a non-empty compact metric space. For a fixed T > 0, let XK be a path in
D([0, T],K), the space of càdlàg functions, i.e. right-continuous functions with left-hand limits,
from [0, T] to K. We say that a function λ from [0, T] onto itself is a time change if it is strictly
increasing and continuous. Let � denote the set of all time-changes. If λ ∈ �, then λ(0)= 0 and
λ(T)= T. We equip D([0, T],K) with the Skorohod metric dJ1 defined as follows:

dJ1 (x, y) := inf
λ∈�

{
sup

t∈[0,T]
|λ(t)− t| + sup

t∈[0,T]
dK(x(λ(t)), y(t))

}
,

for x, y ∈D([0, T],K). The idea behind going from the uniform metric to the Skorohod metric
dJ1 is to say that two paths are close if they are uniformly close in [0, T], after allowing small
perturbations of time. Moreover, D([0, T],K) endowed with dJ1 becomes a separable metric space
(see [11, Theorem 12.2]). Let P(K) denote the space of Borel probability measures on K. If μ, ν ∈
P(K) we set

dP(μ, ν)= inf{ε > 0 :μ(A)≤ ν(Aε)+ ε and ν(A)≤ μ(Aε)+ ε, for any A ∈M(K)},
where M(K) is the set of all closed subsets of K. This expression gives the standard Prokhorov
metric between μ and ν. Moreover, it is known, see [22] Appendix A.2.5, that (P(K), dP) is a
Polish metric space, i.e. a complete and separable metric space, and the topology generated by dP
is exactly the topology of weak convergence, the convergence against bounded and continuous
functionals.

Let πK be a Borel probability measure on K and LK = (LKt (x))x∈K,t∈[0,T] be a jointly contin-
uous function of (t, x) taking non-negative real values. Let K be the collection of quadruples
(K, πK , XK , LK). We say that two elements (K, πK , XK , LK) and (K ′, πK′

, XK′
, LK

′
) of K are

equivalent if there exists an isometry f :K →K′ such that

• πK ◦ f−1 = πK′
,

• f ◦ XK = XK′
, which is a shorthand of f (XK

t )= XK′
t , for every t ∈ [0, T].

• LK
′

t ◦ f = LKt , for every t ∈ [0, T], which is a shorthand of LK
′

t (f (x))= LKt (x), for every t ∈
[0, T], x ∈K.
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Not to overcomplicate our notation, we will often identify an equivalence class of K with a
particular element of it. We now introduce a distance dK onK by setting

dK((K, πK , XK , LK), (K ′, πK′
, XK′

, LK
′
))

:= inf
Z,φ,φ′,C

{
dZP (π

K ◦ φ−1, πK′ ◦ φ′−1)+ dZJ1 (φ(X
K
t ), φ′(XK′

t ))

+ sup
(x,x′)∈C

(
dZ(φ(x), φ′(x′))+ sup

t∈[0,T]
|LKt (x)− LK

′
t (x′)|

)}
,

where the infimum is taken over all metric spaces (Z, dZ), isometric embeddings φ :K → Z,
φ′ :K ′ → Z and correspondences C between K and K′. A correspondence between K and K ′ is
a subset of K ×K ′, such that for every x ∈K there exists at least one x′ in K ′ such that (x, x′) ∈ C
and conversely for every x′ ∈K ′ there exists at least one x ∈K such that (x, x′) ∈ C. In the above
expression dZP is the standard Prokhorov distance between Borel probability measures on Z, and
dZJ1 is the Skorohod metric dJ1 between càdlàg paths on Z.

In the following proposition we check that the definition of dK induces a metric and that the
resulting metric space is separable. The latter fact will be used repeatedly later when it comes to
applying Skorohod’s representation theorem on sequences of random graphs to prove statements
regarding their blanket times or the cover times. Before proceeding to the proof of Proposition 2.1,
let us first make a few remarks about the ideas behind the definition of dK. The first term along
with the Hausdorff distance on Z between φ(K) and φ′(K ′) is that used in the Gromov-Hausdorff-
Prokhorov distance for compact metric spaces (see [1, Section 2.2, (6)]). Though, in our definition
of dK we did not consider the Hausdorff distance between the embedded compact metric spaces
K and K ′, since it is absorbed by the first part of the third term in the expression for dK. Recall
here the equivalent definition of the standard Gromov-Hausdorff distance via correspondences
as a way to relate two compact metric spaces (see [12, Theorem 7.3.25]). The motivation for the
second term comes from [16], where the author defined a distance between pairs of compact
length spaces (for a definition of a length space see [12, Definition 2.1.6]) and continuous paths
on those spaces. As we will see later, the restriction to the set of length spaces is not necessary
for proving that dK provides a metric. Considering càdlàg paths instead of continuous paths and
replacing the uniformmetric with the Skorohod metric dJ1 allows us to prove separability without
assuming that (K, dK) is a non-empty compact length space. The final term was first introduced
in [24, Section 6] to define a distance between spatial trees equipped with a continuous function.

Proposition 2.1. (K, dK) is a separable metric space.

Proof. That dK is non-negative and symmetric is obvious. To prove that it is also finite, for any
choice of (K, πK , XK , LK), (K ′, πK′

, XK′
, LK

′
) consider the disjoint union Z =K �K′ of K and K ′.

Then, set dZ(x, x′) := diamK(K)+ diamK′(K ′), for any x ∈K, x′ ∈K ′, where
diamK(K)= sup

y,z∈K
dK(y, z)

denotes the diameter of K with respect to the metric dK . Since K and K ′ are compact their diam-
eters are finite. Therefore, dZ is finite for any x ∈K, x′ ∈K ′. To conclude that dK is finite, simply
suppose that C =K ×K ′.

Next, we show that dK is positive-definite. Let (K, πK , XK , LK), (K ′, πK′
, XK′

, LK
′
) be inK such

that dK((K, πK , XK , LK), (K ′, πK′
, XK′

, LK
′
))= 0. Then, for every ε > 0 there exist Z, φ, φ′, C such

that the sum of the quantities inside the infimum in the definition of dK is bounded above by
ε. Furthermore, there exists λε ∈ � such that the sum of the quantities inside the infimum in
the definition of dZJ1 is bounded above by 2ε. Recall that for every t ∈ [0, T], LKt :K →R+ is a
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continuous function and since K is a compact metric space, then it is also uniformly continuous.
Therefore, there exists a δ ∈ (0, ε] such that

sup
x1,x2∈K:

dK (x1,x2)<δ

sup
t∈[0,T]

|LKt (x1)− LKt (x2)| ≤ ε. (2.1)

Now, let (xi)i≥1 be a dense sequence of disjoint elements in K. Since K is compact, there exists an
integer Nε such that the collection of open balls (BK(xi, δ))Nε

i=1 covers K. Defining A1 = BK(x1, δ)
and Ai = BK(xi, δ) \ ∪i−1

j=1BK(xj, δ), for i= 2, . . . ,Nε , we have that (Ai)Nε

i=1 is a disjoint cover of K.
Consider a function fε :K →K ′ by setting

fε(x) := x′i
on Ai, where x′i is chosen such that (xi, x′i) ∈ C, for i= 1, . . . ,Nε . Note that by definition fε is a
measurable function defined on K. For any x ∈K, such that x ∈Ai for some i= 1, . . . ,Nε , we
have that

dZ(φ(x), φ′(fε(x)))= dZ(φ(x), φ′(x′i))

≤ dZ(φ(x), φ(xi))+ dZ(φ(xi), φ′(x′i))≤ δ + ε ≤ 2ε. (2.2)

From (2.2), it follows that for any x ∈K and y ∈K
|dZ(φ(x), φ(y))− dZ(φ′(fε(x)), φ′(fε(y))| ≤ dZ(φ(y), φ′(fε(y)))+ dZ(φ(x), φ′(fε(x)))

≤ 2ε + 2ε = 4ε.
This immediately yields

sup
x,y∈K

|dK(x, y)− dK′(fε(x), fε(y))| ≤ 4ε. (2.3)

From (2.3), we deduce the bound

dK
′

P (πK ◦ f−1
ε , πK′

)≤ 5ε (2.4)

for the Prokhorov distance between πK ◦ f−1
ε and πK′

in K ′. Using (2.1) and the fact that the last
quantity inside the infimum in the definition of dK is bounded above by ε, we deduce

sup
x∈K,t∈[0,T]

|LKt (x)− LK
′

t (fε(x))| ≤ 2ε. (2.5)

Using (2.2) and the fact that the second quantity in the infimum is bounded above by ε, we deduce
that for any t ∈ [0, T]

dZ(φ′(fε(XK
λε(t))), φ

′(XK′
t ))≤ dZ(φ′(fε(XK

λε(t))), φ(X
K
λε(t)))+ dZ(φ(XK

λε(t)), φ
′(XK′

t ))

≤ 2ε + 2ε = 4ε.
Therefore,

sup
t∈[0,T]

dK′(fε(XK
λε(t)), X

K′
t )≤ 4ε. (2.6)

Using a diagonalization argument we can find a sequence (εn)n≥1 such that fεn(xi) converges
to some limit f (xi) ∈K ′, for every i≥ 1. From (2.3) we immediately get that dK(xi, xj)=
dK′(f (xi), f (xj)), for every i, j≥ 1. By [12, Proposition 1.5.9], this map can be extended continu-
ously to the whole K. This shows that f is distance-preserving. Reversing the roles of K and K′, we
are able to find also a distance-preserving map from K ′ to K. Hence f is an isometry. We are now
able to check that πK ◦ f−1 = πK′

, LK
′

t ◦ f = LKt , for all t ∈ [0, T], and f ◦ XK = XK′
. Since fεn(xi)
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converges to f (xi) in K ′, we can find ε′ ∈ (0, ε] such that dK′(f
ε
′(xi), f (xi))≤ ε, for i= 1, . . . ,Nε .

Recall that (xi)Nε

i=1 is an ε-net in K. Then, for i= 1, . . . ,Nε , such that x ∈Ai, using (2.3) and the
fact that f is an isometry, we deduce

dK′(f
ε
′(x), f (x))≤ dK′(f

ε
′(x), f

ε
′(xi))+ dK′(f

ε
′(xi), f (xi))+ dK′(f (xi), f (x))≤ 7ε. (2.7)

This, combined with (2.4) implies

dK
′

P (πK ◦ f−1, πK′
)≤ dK

′
P (πK ◦ f−1, πK ◦ f−1

ε
′ )+ dK

′
P (πK ◦ f−1

ε
′ , πK′

)≤ 12ε.

Since ε > 0 was arbitrary, πK ◦ f−1 = πK′
. Moreover, from (2.5) and (2.7) we have that

sup
x∈K,t∈[0,T]

|LKt (x)− LK
′

t (f (x))|

≤ sup
x∈K,t∈[0,T]

|LKt (x)− LK
′

t (f
ε
′(x))| + sup

x∈K,t∈[0,T]
|LK′

t (f
ε
′(x))− LK

′
t (f (x))|

≤ 2ε + sup
x1′,x2′∈K′:

d
K′ (x1′,x2′)≤7ε

sup
t∈[0,T]

|LK′
t (x1′)− LK

′
t (x2′)|.

Now, this and the uniform continuity of LK
′
(replace LK by LK

′
in (2.1)) gives LK

′
t ◦ f = LKt , for all

t ∈ [0, T]. Finally, we verify that f ◦ XK = XK′
. For any t ∈ [0, T]

dK′(f (XK
λε(t)), X

K′
t )≤ dK′(f (XK

λε(t)), fε′(X
K
λε(t)))+ dK′(f

ε
′(XK

λε(t)), X
K′
t )≤ 7ε + 4ε = 11ε,

where we used (2.6) and (2.7). Therefore,

sup
t∈[0,T]

dK′(f (XK
λε(t)), X

K′
t )≤ 11ε. (2.8)

Recall that supt∈[0,T] |λε(t)− t| ≤ 2ε. From this and (2.8), it follows that for every t ∈ [0, T], there
exists a sequence (zn)n≥1, such that zn → t and dK′(f (XK

zn), X
K′
t )→ 0, as n→ ∞. If t is a con-

tinuity point of f ◦ XK , then dK′(f (XK
zn), f (X

K
t ))→ 0, as n→ ∞. Thus, f (XK

t )= XK′
t . If f ◦ XK

has a jump at t and (zn)n≥1 has a subsequence (znk)k≥1, such that znk ≥ t, for any k≥ 1, then
dK′(f (XK

znk
), XK′

t )→ 0, as n→ ∞, and dK′(f (XK
znk

), f (XK
t ))→ 0, as n→ ∞. Therefore, f (XK

t )=
XK′
t . Otherwise, zn < t, for n large enough and dK′(f (XK

zn), f (X
K
t−))→ 0, as n→ ∞, which implies

f (XK
t−)= XK′

t . Essentially, what we have proved is that if f ◦ XK has a jump, then either f (XK
t )=

XK′
t or f (XK

t−)= XK′
t . But, since XK′

is càdlàg, f ◦ XK = XK′
. This completes the proof that the

quadruples (K, πK , XK , LK) and (K ′, πK′
, XK′

, LK
′
) are equivalent in (K, dK), and consequently

that dK is positive-definite.
For the triangle inequality we follow the proof of [12, Proposition 7.3.16], which proves the

triangle inequality for the standard Gromov-Hausdorff distance. Let Ki = (Ki, π i, Xi, Li) be an
element of (K, dK) for i= 1, 2, 3. Suppose that

dK(K1,K2)< δ1.

Thus, there exists a metric space Z1, isometric embeddings φ1,1 :K1 → Z1, φ2,1 :K2 → Z1 and a
correspondence C1 between K1 and K2 such that the sum of the quantities inside the infimum that
defines dK is bounded above by δ1. Similarly, if

dK(K2,K3)< δ2,
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there exists a metric space Z2, isometric embeddings φ2,2 :K2 → Z2, φ2,3 :K3 → Z2 and a corre-
spondence C2 between K2 and K3 such that the sum of the quantities inside the infimum that
defines dK is bounded above by δ2. Next, we set Z = Z1 � Z2 to be the disjoint union of Z1 and Z2
and we define a distance on Z in the following way. Let dZ|Zi×Zi = dZi , for i= 1, 2, and for x ∈ Z1,
y ∈ Z2 set

dZ(x, y) := inf
z∈K2

{dZ1 (x, φ2,1(z))+ dZ2 (φ2,2(z), y)}.
It is obvious that dZ is symmetric and non-negative. It is also easy to check that dZ satisfies the
triangle inequality. Identifying points that are separated by zero distance and slightly abusing
notation, we turn (Z, dZ) into a metric space, which comes with isometric embeddings φi of Zi
for i= 1, 2. Using the triangle inequality of the Prokhorov metric on Z, gives us that

dZP (π
1 ◦ (φ1 ◦ φ1,1)−1, π3 ◦ (φ2 ◦ φ3,2)−1)

≤ dZP (π
1 ◦ (φ1 ◦ φ1,1)−1, π2 ◦ (φ1 ◦ φ2,1)−1)+ dZP (π

2 ◦ (φ1 ◦ φ2,1)−1, π3 ◦ (φ2 ◦ φ3,2)−1).
Now, since φ1(φ2,1(y))= φ2(φ2,2(y)), for all y ∈K2, we deduce

dZP (π
1 ◦ (φ1 ◦ φ1,1)−1, π3 ◦ (φ2 ◦ φ3,2)−1)≤ dZ1P (π1 ◦ φ−1

1,1 , π
2 ◦ φ−1

2,1 )+ dZ2P (π2 ◦ φ−1
2,2 , π

3 ◦ φ−1
3,2 ).
(2.9)

A similar bound also applies for the embedded càdlàg paths. Namely, using the same methods as
above, we deduce

dZJ1 ((φ1 ◦ φ1,1)(X1), (φ2 ◦ φ3,2)(X3))≤ dZJ1 (φ1,1(X1), φ2,1(X2))+ dZJ1 (φ2,2(X2), φ3,2(X3)). (2.10)

Now, let
C := {(x, z) ∈K1 ×K3 : (x, y) ∈ C1, (y, z) ∈ C2, for some y ∈K2}.

Observe that C is a correspondence betweenK1 andK3. Then, if (x, z) ∈ C, there exists y ∈K2 such
that (x, y) ∈ C1 and (y, z) ∈ C2, and noting again that φ1(φ2,1(y))= φ2(φ2,2(y)), for all y ∈K2, we
deduce

dZ(φ1(φ1,1(x)), φ2(φ3,2(z)))≤ dZ1 (φ1,1(x), φ2,1(y))+ dZ2 (φ2,2(y), φ3,2(z)). (2.11)

Using the same arguments one can prove a corresponding bound involving Li, i= 1, 2, 3. Namely,
if (x, z) ∈ C, there exists y ∈K2 such that (x, y) ∈ C1 and (y, z) ∈ C2, and moreover

sup
t∈[0,T]

|L1t (x)− L3t (z)| ≤ sup
t∈[0,T]

|L1t (x)− L2t (y)| + sup
t∈[0,T]

|L2t (y)− L3t (z)|. (2.12)

Putting (2.9), (2.10), (2.11) and (2.12) together gives

dK(K1,K3)≤ δ1 + δ2,
and the triangle inequality follows. Thus, (K, dK) forms a metric space.

To finish the proof, we need to show that (K, dK) is separable. Let (K, π , X, L) be an element
of K. First, let Kn be a finite n−1-net of K, which exists since K is compact. Furthermore, we can
endow Kn with a metric dKn , such that dKn(x, y) ∈Q, and moreover |dKn(x, y)− dK(x, y)| ≤ n−1,
for every x, y ∈Kn. Since, Kn is a finite n−1-net of K we can choose a partition for K, (Ax)x∈Kn ,
such that x ∈Ax, and diamK(Ax)≤ 2n−1.We can even choose the partition in such a way thatAx is
measurable for all x ∈Kn (see for example the definition of (Ai)Nε

i=1 after (2.1)). Next, we construct
a Borel probability measure πn in Kn that takes rational mass at each point, i.e. πn({x}) ∈Q, and
|πn({x})− π(Ax)| ≤ n−1. Define εn by

εn := sup
s,t∈[0,T]:
|s−t|≤n−1

sup
x,x′∈K:

dK (x,x′)≤n−1

|Ls(x)− Lt(x′)|.
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By the joint continuity of L, εn → 0, as n→ ∞. Let 0= s0 < s1 < · · · < sr = T be a set of rational
times such that |si+1 − si| ≤ n−1, for i= 0, . . . , r − 1. Choose Lnsi(x) ∈Q with |Lnsi(x)− Lsi(x)| ≤
n−1, for every x ∈Kn. We interpolate linearly between the finite collection of rational time points
in order to define Ln to the whole domain Kn × [0, T]. Let Cn := {(x, x′) ∈K ×Kn : dK(x, x′)≤
n−1}. Clearly Cn defines a correspondence between K and Kn. Let (x, x′) ∈ Cn and s ∈ [si, si+1], for
some i= 0, . . . , r − 1. Then, using the triangle inequality we observe that

|Lns (x)− Ls(x′)| ≤ |Lns (x)− Ls(x)| + |Ls(x)− Ls(x′)| ≤ |Lns (x)− Ls(x)| + εn. (2.13)
Since we interpolated linearly to define Ln beyond rational time points on the whole space Kn ×
[0, T] we have that

|Lns (x)− Ls(x)| ≤ |Lnsi+1 (x)− Ls(x)| + |Lnsi(x)− Ls(x)|. (2.14)
Applying the triangle inequality again yields

|Lnsi(x)− Ls(x)| ≤ |Lnsi(x)− Lsi(x)| + |Lsi(x)− Ls(x)|
≤ n−1 + εn.

The same upper bound applies for |Lnsi+1 (x)− Ls(x)|, and from (2.13) and (2.14) we conclude that
for (x, x′) ∈ Cn and s ∈ [si, si+1], for some i= 0, . . . , r − 1,

|Lns (x)− Ls(x′)| ≤ 2n−1 + 3εn.
For X ∈D([0, T],K) and A⊆ [0, T] put

w(X;A) := sup
s,t∈A

dK(Xt , Xs).

Now, for δ ∈ (0, 1), define the càdlàg modulus to be
w′(X; δ) := inf

�
max
1≤i≤k

w(X; [ti−1, ti)),

where the infimum is taken over all partitions � = {0= t0 < t1 < · · · < tk = T}, k ∈N, with
min1≤i≤k (ti − ti−1)> δ. For a function to lie inD([0, T],K), it is necessary and sufficient to satisfy
w′(X; δ)→ 0, as δ → 0. Let Bn be the set of functions having a constant value inKn over each inter-
val [(u− 1)T/n, uT/n), for some n ∈N and also a value in Kn at time T. Take B= ∪n≥1Bn, and
observe that is countable. Clearly, putting z = (zu)nu=0, with zu = uT/n, for every u= 0, . . . , n sat-
isfies 0= z0 < z1 < · · · < zn = T. Let Tz :D([0, T],K)→D([0, T],K) be the map that is defined in
the following way. ForX ∈D([0, T],K) take TzX to have a constant valueX(zu−1) over the interval
[zu−1, zu) for 1≤ u≤ n and the value X(T) at t = T. From an adaptation of [11, Lemma 3, p.127],
considering càdlàg paths that take values on metric spaces, we have that

dJ1 (TzX, X)≤ Tn−1 +w′(X; Tn−1). (2.15)
Also, there exists Xn ∈ Bn, for which

dJ1 (TzX, Xn)≤ Tn−1. (2.16)
Combining (2.15) and (2.16), we have that

dJ1 (Xn, X)≤ dJ1 (Xn, TzX)+ dJ1 (TzX, X)≤ 2Tn−1 +w′(X; Tn−1).
With the choice of the sequence (Kn, πn, Xn, Ln), we find that

dK((Kn, πn, Xn, Ln), (K, π , X, L))≤ (4+ 2T)n−1 + 3εn +w′(X; Tn−1).
Recalling that w′(X; Tn−1)→ 0, as n→ ∞, and noting that our sequence was drawn from a
countable subset ofK completes the proof of the proposition. �

Fix T > 0. Let K̃ be the space of quadruples of the form (K, πK , XK , LK), where K is a non-
empty compact pointed metric space with distinguished vertex ρ, πK is a Borel probability
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measure on K, XK = (XK
t )t∈[0,K] is a càdlàg path on K and LK = (Lt(x))x∈K,t∈[0,T] is a jointly con-

tinuous positive real-valued function of (t, x). We say that two elements of K̃, say (K, πK , XK , LK)
and (K ′, πK′

, XK′
, LK

′
), are equivalent if and only there is a root-preserving isometry f :K →K′,

such that f (ρ)= ρ′, πK ◦ f−1 = πK′
, f ◦ XK = XK′

and LK
′

t ◦ f = LKt , for every t ∈ [0, T]. It is pos-
sible to define a metric on the equivalence classes of K̃ by imposing in the definition of dK that
the infimum is taken over all correspondences that contain (ρ, ρ′). The incorporation of distin-
guished points to the extended Gromov-Hausdorff topology leaves the proof of Proposition 2.1
unchanged and it is possible to show that (K̃, d

K̃
) is a separable metric space.

The aim of the following lemmas is to establish a sufficient condition for Assumption 1 to hold,
as well as to show that if Assumption 1 holds then we can isometrically embed the rescaled graphs,
measures, random walks and local times into a random common metric space such that they all
converge to the relevant objects. Even whenGn andK are deterministic, the commonmetric space
will depend on the realizations of Xn and X. To be more precise we formulate this last statement
in the next lemma.

Lemma 2.2. If Assumption 1 is satisfied, then we can find isometric embeddings of
(V(Gn), α(n)dGn)n≥1 and (K, dK) into a common metric space (F, dF) such that

lim
n→∞ dFH(V(G

n),K)= 0, lim
n→∞ dF(ρn, ρ)= 0, (2.17)

where dFH is the standard Hausdorff distance between V(Gn) and K, regarded as subsets of (F, dF),

lim
n→∞ dFP(π

n, π)= 0, (2.18)

where dFP is the standard Prokhorov distance between V(Gn) and K, regarded as subsets of (F, dF),

lim
n→∞ dFJ1 (α(n)X

n, X)= 0, (2.19)

where dFJ1 is the Skorohod dJ1 metric between V(Gn) and K, regarded as subsets of (F, dF). Also,

lim
δ→0

lim sup
n→∞

sup
xn∈V(Gn),x∈K:
dF(xn,x)<δ

sup
t∈[0,T]

|α(n)Lnβ(n)t(xn)− Lt(x)| = 0. (2.20)

For simplicity we have identified the measures and the random walks in V(Gn) with their isometric
embeddings in (F, dF).

Proof. Since Assumption 1 holds, for each n≥ 1 we can find metric spaces (Fn, dn), isomet-
ric embeddings φn :V(Gn)→ Fn, φn′ :K → Fn and correspondences Cn (that contain (ρn, ρ))
between V(Gn) and K such that (identifying the relevant objects with their embeddings)

dFnP (πn, π)+ dFnJ1 (α(n)X
n, X)+ sup

(x,x′)∈Cn

(
dn(x, x′)+ sup

t∈[0,T]
|α(n)Lnβ(n)t(x)− Lt(x′)|

)
≤ εn,

(2.21)

where εn → 0, as n→ ∞. Now, let F = �n≥1Fn, be the disjoint union of Fn, and define the distance
dF|Fn×Fn = dn, for n≥ 1, and for x ∈ Fn, x′ ∈ Fn′ , n �= n′

dF(x, x′) := inf
y∈K{dn(x, y)+ dn′(y, x

′)}.
This distance, as the distance that was defined in order to prove the triangle inequality in
Proposition 2.1, is symmetric and non-negative, so identifying points that are separated by a zero
distance, we turn (F, dF) into a metric space, which comes with natural isometric embeddings
of (V(Gn), α(n)dGn)n≥1 and (K, dK). In this setting, under the appropriate isometric embeddings
(2.17), (2.18) and (2.19) readily hold from (2.21). Thus, it only remains to prove (2.20). For every
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x ∈V(Gn), since Cn is a correspondence inV(Gn)×K, there exists an x′ ∈K such that (x, x′) ∈ Cn.
Then, (2.21) implies that dF(x, x′)≤ εn. Now, let (y, y′) ∈ Cn, (z, z′) ∈ Cn and note that

sup
t∈[0,T]

α(n)|Lnβ(n)t(y)− Lnβ(n)t(z)|

≤ sup
t∈[0,T]

|α(n)Lnβ(n)t(y)− Lt(y′)| + sup
t∈[0,T]

|α(n)Lnβ(n)t(z)− Lt(z′)| + sup
t∈[0,T]

|Lt(y′)− Lt(z′)|

≤ 2εn + sup
t∈[0,T]

|Lt(y′)− Lt(z′)|.

For any δ > 0 and y, z ∈V(Gn), such that α(n)dGn(y, z)< δ, we have that

dK(y′, z′)≤ dF(y, y′)+ dF(z, z′)+ α(n)dGn(y, z)< 2εn + δ.

Therefore,

sup
y,z∈V(Gn):

α(n)dGn (y,z)<δ

sup
t∈[0,T]

α(n)|Lnβ(n)t(y)− Lnβ(n)t(z)|

≤ 2εn + sup
y,z∈K:

dK (y,z)<2εn+δ

sup
t∈[0,T]

|Lt(y)− Lt(z)|. (2.22)

Also, for every x ∈K there exists an x′ ∈V(Gn) such that (x′, x) ∈ Cn, and furthermore dF(x′, x)≤
εn. Let xn ∈V(Gn) such that dF(xn, x)< δ. Then,

dF(xn, x′)≤ dF(xn, x)+ dF(x′, x)< 2εn + δ.

More generally, if we denote by BF(x, r), the open balls of radius r, centred in x, we have the
following inclusion

BF(x, δ)∩V(Gn)⊆ BF(x′, 2εn + δ)∩V(Gn).

For x ∈K, and x′ ∈V(Gn) with dF(x′, x)≤ εn, using (2.21), we deduce

sup
t∈[0,T]

|α(n)Lnβ(n)t(xn)− Lt(x)|

≤ sup
t∈[0,T]

α(n)|Lnβ(n)t(xn)− Lnβ(n)t(x′)| + sup
t∈[0,T]

|α(n)Lnβ(n)t(x′)− Lt(x)|

≤ εn + sup
t∈[0,T]

α(n)|Lnβ(n)t(xn)− Lnβ(n)t(x′)|.

Since xn ∈ BF(x′, 2εn + δ)∩V(Gn), taking the supremumover all xn ∈V(Gn) and x ∈K, for which
dF(xn, x)< δ and using (2.22), we deduce
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sup
xn∈V(Gn),x∈K:
dF(xn,x)<δ

sup
t∈[0,T]

|α(n)Lnβ(n)t(xn)− Lt(x)|

≤ εn + sup
y,z∈V(Gn):

α(n)dGn (y,z)<2εn+δ

sup
t∈[0,T]

α(n)|Lnβ(n)t(y)− Lnβ(n)t(z)|

≤ 3εn + sup
y,z∈K:

dK (y,z)<4εn+δ

sup
t∈[0,T]

|Lt(y)− Lt(z)|.

Using the continuity of L, as n→ ∞
lim sup
n→∞

sup
xn∈V(Gn),x∈K:
dF(xn,x)<δ

sup
t∈[0,T]

|α(n)Lnβ(n)t(xn)− Lt(x)| ≤ sup
y,z∈K:

dK (y,z)≤δ

sup
t∈[0,T]

|Lt(y)− Lt(z)|. (2.23)

Again appealing to the continuity of L, the right-hand side converges to 0, as δ → 0. Thus, we
showed that (2.20) holds, and this finishes the proof of Lemma 2.2. �

In the process of proving (2.20) we established a useful equicontinuity property. We state and
prove this property in the next corollary.

Corollary 2.3. Fix T > 0 and suppose that Assumption 1 holds. Then,

lim
δ→0

lim sup
n→∞

sup
y,z∈V(Gn):

α(n)dGn (y,z)<δ

sup
t∈[0,T]

α(n)|Lnβ(n)t(y)− Lnβ(n)t(z)| = 0. (2.24)

Proof. As we hinted upon when deriving (2.23), using the continuity of L,

lim sup
n→∞

sup
y,z∈V(Gn):

α(n)dGn (y,z)<δ

sup
t∈[0,T]

α(n)|Lnβ(n)t(y)− Lnβ(n)t(z)| ≤ sup
y,z∈K:

dK (y,z)≤δ

sup
t∈[0,T]

|Lt(y)− Lt(z)|.

Sending δ → 0 gives the desired result. �
Next, we prove that if we reverse the conclusions of Lemma 2.2, more specifically if (2.17)-

(2.20) hold, then also Assumption 1 holds.

Lemma 2.4. Suppose that (2.17)-(2.20) hold. Then so does Assumption 1.

Proof. There exist isometric embeddings of (V(Gn), α(n)dGn)n≥1 and (K, dK) into a common
metric space (F, dF), under which the assumptions (2.17)-(2.20) hold. Since (2.17) gives the con-
vergence of spaces under the Hausdorff metric, (2.18) gives the convergence of measures under
the Prokhorovmetric and (2.19) gives the convergence of paths under dJ1 , it only remains to check
the uniform convergence of local times. Let Cn be the set of all pairs (x, x′) ∈K ×V(Gn), for which
dF(x, x′)≤ n−1. Since (2.17) holds, Cn are correspondences for n≥ 1. Then, for (x, x′) ∈ Cn

sup
t∈[0,T]

|α(n)Lnβ(n)t(x′)− Lt(x)| ≤ sup
xn∈V(Gn),x∈K:
dF(xn,x)<n−1

sup
t∈[0,T]

|α(n)Lnβ(n)t(xn)− Lt(x)|,

and using (2.20) completes the proof. �

3. Local time convergence
To check that Assumption 1 holds we need to verify that the convergence of the rescaled local
times in (2.20), as suggested by Lemma 2.2. Due to work done in a more general framework in
[20], we can weaken the local convergence statement of (2.20) and replace it by the equicon-
tinuity condition of (2.24). In (1.3) we defined a resistance metric on a graph viewed as an
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electrical network. Next, we give the definition of a regular resistance form and its associated
resistance metric for arbitrary non-empty sets, which is a combination of [20, Definition 2.1] and
[20, Definition 2.2].

Definition 3.1. Let K be a non-empty set. A pair (E ,K) is called a regular resistance form on K if
the following six conditions are satisfied.

(i) K is a linear subspace of the collection of functions {f :K →R} containing constants, and
E is a non-negative symmetric quadratic form on K such that E(f , f )= 0 if and only if f is
constant on K.

(ii) Let ∼ be an equivalence relation on K defined by saying f ∼ g if and only if the difference
f − g is constant on K. Then, (K/ ∼, E) is a Hilbert space.

(iii) If x �= y, there exists f ∈K such that f (x) �= f (y).
(iv) For any x, y ∈K,

R(x, y) := sup
{ |f (x)− f (y)|2

E(f , f ) : f ∈K, E(f , f )> 0
}

< ∞. (3.1)

(v) For any f ∈K, f̄ := (f ∧ 1)∨ 0 ∈K, and E(f̄ , f̄ )≤ E(f , f ).
(vi) K ∩ C0(K) is dense with respect to the supremum norm on C0(K), where C0(K) denotes the

space of compactly supported, continuous (with respect to R) functions on K.

It is the first five conditions that have to be satisfied in order for the pair (E ,K) to define a resistance
form. If in addition the sixth condition is satisfied then (E ,K) defines a regular resistance form.

Note that the fourth condition can be rewritten as R(x, y)−1 = inf{E(f , f ) : f :K →R, f (x)= 0,
f (y)= 1}, and it can be proven that it is actually a metric on K (see [31, Proposition 3.3]). It also
clearly resembles the effective resistance on V(G) as defined in (1.3). More specifically, taking
K := {f :V(G)→R} and EG as defined in (1.2) one can prove that the pair (EG,K) satisfies
the six conditions of Definition 3.1, and therefore is a regular resistance form on V(G) with
associated resistance metric given by (1.3). For a detailed proof of this fact see [26, Example
1.2.5]. Finally, in this setting given a regular Dirichlet form, standard theory gives us the existence
of an associated Hunt process X = ((Xt)t≥0, Px, x ∈K) that is defined uniquely everywhere (see
[26, Theorem 7.2.1] and [31, Theorem 9.9]).

Suppose that the discrete state spaces (V(Gn))n≥1 are equipped with resistances (RGn)n≥1 as
defined in (1.3) and that the limiting non-empty metric space K, that appears in Assumption 1, is
equipped with a resistance metric R as in Definition 3.1, such that

• (K, R) is compact,
• π is a Borel probability measure of full support on (K, R),
• X = ((Xt)t≥0, Px, x ∈K) admits jointly continuous (with respect to R) local times L=

(Lt(y))y∈K,t≥0.

In the following extra assumption we input the information encoded in the first three conclu-
sions of Lemma 2.2, given that we work in a probabilistic setting instead. For simplicity as before
we identify the various objects with their embeddings.

Assumption 2. Fix T > 0. Let (Gn)n≥1 be a sequence of finite connected graphs that have at least
two vertices, for which there exist sequences of real numbers (α(n))n≥1 and (β(n))n≥1, such that((

V(Gn), α(n)RGn , ρn) , πn,
(
α(n)Xn

β(n)t

)
t∈[0,T]

)
−→ ((K, R, ρ) , π , X)
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in distribution with respect to the pointed extended pointed Gromov-Hausdorff topology, where
ρn ∈V(Gn) and ρ ∈K are distinguished points at which Xn and X start respectively. Furthermore,
suppose that for every ε > 0 and T > 0,

lim
δ→0

lim sup
n→∞

Pn
ρn

⎛
⎜⎜⎝ sup

y,z∈V(Gn):
α(n)RGn (y,z)<δ

sup
t∈[0,T]

α(n)|Lnβ(n)t(y)− Lnβ(n)t(z)| ≥ ε

⎞
⎟⎟⎠= 0. (3.2)

It is Assumption 2 we have to verify in the examples of random graphs we will consider later. As
we prove below in the last lemma of this subsection, if Assumption 2 holds then the finite dimen-
sional local times converge in distribution, see (2.20) in Lemma 2.2, which is one of the conditions
for Assumption 1 to be satisfied. Given that (V(Gn), α(n)RGn)n≥1 and (K, R) can be isometri-
cally embedded into a common metric space (F, dF) such that Xn under Pn

ρn converges weakly to
the law of X under Pρ on D([0, T], F) (see Lemma 2.2), we can couple Xn started from ρn and
X started from ρ into a common probability space such that (α(n)Xn

β(n)t)t∈[0,T] → (Xt)t∈[0,T] in
D([0, T], F), almost-surely. Denote by P the joint probability measure under which the conver-
gence above holds. Proving the convergence of finite dimensional distributions of local times is
then an application of three lemmas that appear in [20], which we summarize below. For every
x ∈ F, δ > 0, introduce the function fδ,x(y) := max{0, δ − dF(x, y)}.
Lemma 3.2. (Croydon, Hambly, Kumagai [20]). Under Assumption 2,

(i) P-a.s., for each x ∈K and T > 0, as δ → 0,

sup
t∈[0,T]

∣∣∣∣∣
∫ t
0 fδ,x(Xs)ds∫

K fδ,x(y)π(dy)
− Lt(x)

∣∣∣∣∣→ 0.

(ii) P-a.s., for each x ∈K, T > 0 and δ > 0, as n→ ∞,

sup
t∈[0,T]

∣∣∣∣∣
∫ t
0 fδ,x(Xs)ds∫

K fδ,x(y)π(dy)
−
∫ t
0 fδ,x(α(n)X

n
β(n)s)ds∫

V(Gn) fδ,x(y)πn(dy)

∣∣∣∣∣→ 0.

(iii) For each x ∈K and T > 0, if xn ∈V(Gn) is such that dF(xn, x)→ 0, as n→ ∞, then

lim
δ→0

lim sup
n→∞

P

(
sup

t∈[0,T]

∣∣∣∣∣
∫ t
0 fδ,x(α(n)X

n
β(n)s)ds∫

V(Gn) fδ,x(y)πn(dy)
− α(n)Lnβ(n)t(x

n)

∣∣∣∣∣> ε

)
= 0.

By applying the conclusions of Lemma 3.2, one deduces that for any x ∈K and T > 0, if
xn ∈V(Gn) such that dF(xn, x)→ 0, as n→ ∞, then (α(n)Ln

β(n)t(x
n))t∈[0,T] → (Lt(x))t∈[0,T] in P-

probability in C([0, T],R). This result extends to finite collections of points, and this is enough to
establish the convergence of finite dimensional distributions of local times.

Lemma 3.3. Suppose that Assumption 2 holds. Then, if the finite collections (xni )
k
i=1 in V(Gn), for

n≥ 1, are such that dF(xni , xi)→ 0, as n→ ∞, for some (xi)ki=1 in K, then it holds that
(α(n)Lnβ(n)t(x

n
i ))i=1,...,k,t∈[0,T] → (Lt(xi))i=1,...,k,t∈[0,T], (3.3)

in distribution in C([0, T],Rk).

4. Blanket time-scaling and distributional bounds
In this section, we show that under Assumption 1, and as a consequence of the local time conver-
gence in Lemma 3.3, we are able to establish asymptotic bounds on the distribution of the blanket
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times of the graphs in the sequence. The argument for the cover time-scaling was provided first
in [17, Corollary 7.3] by restricting to the unweighted Sierpiński gasket graphs. The argument is
applicable to any other model as long as the relevant assumptions are satisfied. First, let us check
that the ε-blanket time variable of K as written in (1.5) is well-defined.

Proposition 4.1. Fix ε ∈ (0, 1). For every x ∈K, Px-a.s. we have that τbl(ε) ∈ (0,∞).

Proof. Fix x �= y. There is a strictly positive Px-probability that Lt(x)> 0 for t large enough, which
is a consequence of [36, Lemma 3.6]. From the joint continuity of (Lt(z))z∈K,t≥0, there exist r ≡
r(x), δ ≡ δ(x)> 0 and t∗ ≡ t∗(x)< ∞ such that

Px

(
inf

z∈B(x,r)
Lt∗(z)> δ

)
> 0. (4.1)

Now, let τx,y(t∗) := inf{t > t∗ + τx : Xt = y}, where τx := inf{t > 0 : Xt = x} is the hitting time of x.
In other words, τx,y(t∗) is the first hitting of y by X after time t∗ + τx. The commute time identity
for a resistance derived in the proof of [20, Lemma 2.9], lets it be deduced that

Ezτw ≤Ezτw +Ewτz = R(z,w)π(K),

for every z,w ∈K, which in turn deduces that Exτy < ∞. Here π(K)= 1. Applying this observa-
tion about the finite first moments of hitting times, it is easy to check that τx,y(t∗)< ∞, Py-a.s.,
and also that

Py

(
inf

z∈B(x,r)
Lτx,y(t∗)(z)> δ

)
> 0.

The latter simply follows from an application of (4.1) and the Strong Markov property. We only
need to show that Eyτx,y(t∗)< ∞ in order to conclude that the former holds. This is easy to show
since we have for instance:

Eyτx,y(t∗)≤ t∗ +Eyτx + sup
z∈K

Ezτy

≤ t∗ + π(K)R(x, y)+ π(K) sup
z,w∈K

R(z,w)≤ t∗ + 2 sup
z,w∈K

R(z,w)< ∞. (4.2)

The additivity of local times and the Strong Markov property implies that

lim inf
t→∞ inf

z∈B(x,r)
Lt(z)
t

≥
( ∞∑

i=1
ξ 1i

)( ∞∑
i=1

ξ 2i

)−1

, (4.3)

where (ξ 1i )i≥1 are independent random variables distributed as infz∈B(x,r) Lτx,y(t∗)(z) and (ξ 2i )i≥1
are independent copies of τx,y(t∗). The strong law of large numbers along with (4.1) yields that the
right-hand side of the inequality above converges to

Ey

[
inf

z∈B(x,r)
Lτx,y(t∗)(z)

]
(Eyτx,y(t∗))−1,

Px-a.s. Using basic properties of the resolvents of killed processes of resistance forms (e.g. [18,
(6)-(8), p. 1945]), the way the stopping times are defined, and the upper bound in (4.2),

Ey
[
Lτx,y(t∗)(x)

]
(Eyτx,y(t∗))−1 ≥ExLτy(x)(Eyτx,y(t∗))−1

= R(x, y)
t∗ + R(x, y)+ supz,w∈K R(z,w)

,
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and therefore, the joint continuity of local times lets it to be deduced that the right-hand side of
(4.3) satisfies

lim inf
t→∞ inf

z∈B(x,r)
Lt(z)
t

≥ ε∗(x), (4.4)

Py-a.s., for some ε∗(x) ∈ (ε, 1). To extend this statement that holds uniformly over B(x, r), Py-a.s.,
we use the compactness of K. Consider the open cover (B(x, r))xi∈K the open cover for K, which
say admits a finite subcover (B(xi, ri))Ni=1. Since the right-hand of (4.4) is greater than ε∗, Py-a.s.,
the result clearly follows as

lim inf
t→∞

Lt(x)
t

≥ min
1≤i≤N

lim inf
t→∞ inf

x∈B(xi,ri)
Lt(x)
t

,

which implies that there exists t0 ≡ t0(x)< ∞, such that Lt0 (x)≥ εt0, for every x ∈K, and recalling
the definition of the ε-blanket time variable of K in (1.5), we deduce that τbl(ε)≤ t0 < ∞. �

4.1 Proof of Theorem 1.2
We are now ready to prove one of our main results.

Proof of Theorem 1.2. Let ε ∈ (0, 1), δ ∈ (0, 1) and t ∈ [0, T]. Suppose that t < τbl(ε(1− δ)).
Then, there exists a y ∈K for which Lt(y)< ε(1− δ)t. Using the Skorohod representation theo-
rem, we can suppose that the conclusions of Lemma 2.2 hold in an almost-surely sense. From
(2.17), there exists yn ∈V(Gn) such that, for n large enough, dF(yn, y)< 2ε. Then, the local
convergence at (2.20) implies that, for n large enough

α(n)Lnβ(n)t(y
n)≤ Lt(y)+ εδt.

Thus, for n large enough, it follows that α(n)Ln
β(n)t(y

n)≤ Lt(y)+ εδt < εt. Using the time and
space scaling identity, we deduce mGnLn

β(n)t(y
n)< εβ(n)t, for n large enough, which in turn

implies that β(n)t ≤ τnbl(ε), for n large enough. As a consequence, we get that τbl(ε(1− δ))≤
lim infn→∞ β(n)−1τnbl(ε), which proves (1.6).

Assume now that τbl(ε(1+ δ))< t. Then, for some τbl(ε(1+ δ))≤ t0 < t, it is the case that
Lt0 (x)≥ ε(1+ δ)t0, for every y ∈K. As in the previous paragraph, using the Skorohod representa-
tion theorem, we suppose that the conclusions of Lemma 2.2 hold almost-surely. From (2.17), for
every yn ∈V(Gn), there exists a y ∈K such that, for n large enough, dF(yn, y)< 2ε. From the local
convergence statement at (2.20), we have that, for n large enough

α(n)Lnβ(n)t0 (y
n)≥ Lt0 (y)− εδt0.

Therefore, for n large enough, it follows that α(n)Ln
β(n)t0 (y

n)≥ Lt0 (y)− εδt0 ≥ εt0, for every y ∈K.
As before, using the time and space scaling identity yields mGnLn

β(n)t0 (y
n)≥ εβ(n)t0, for every

yn ∈V(Gn) and large enough n, which in turn implies that β(n)t0 ≥ τnbl(ε), for n large enough. As
consequence we get that lim supn→∞ β(n)−1τnbl(ε)≤ τbl(ε(1+ δ)), from which (1.7) follows. �

5. Examples
In this section we demonstrate that it is possible to apply ourmain results in a number of examples
where the graphs, and the limiting spaces are random. These examples include critical Galton-
Watson trees and the critical Erdős-Rényi random graph. We expect the method to apply to
other examples. The aforementioned models of sequences of random graphs exhibit a mean-field
behaviour at criticality in the sense that the scaling exponents for the walks, and consequently for
the local times, are a multiple of the volume and the diameter of the graphs. In the first few pages
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of each subsection we quickly survey some of the key features of each example that will be helpful
when verifying Assumption 2. Our method used in proving continuity of the blanket time of the
limiting diffusion is generic in the sense that it applies on each randommetric measure space and
a corresponding σ -finite measure that generates realizations of the randommetric measure space
in such a way that rescaling the σ -finite measure by a constant factor results in generating the
same space with its metric and measure perturbed by a multiple of this constant factor. For that
reason we believe our results to easily transfer when considering Galton-Watson trees with criti-
cal offspring distribution in the domain of attraction of a stable law with index α ∈ (1, 2) (see [33,
Theorem 4.3]) and random stable looptrees (see [21, Theorem 4.1]). Also, we hope our work to
be seen as a stepping stone to deal with the more delicate problem of establishing convergence in
distribution of the rescaled cover times of the discrete-time walks in each application of our main
result. See [17, Remark 7.4] for a thorough discussion on the demanding nature of this project.

5.1 Critical Galton-Watson trees
We start by briefly describing the connection between critical Galton-Watson trees and the
Brownian continuum random tree (CRT). Let ξ be a mean 1 random variable, whose distribu-
tion is aperiodic (its support generates the lattice Z, not just a strict subgroup of Z), with variance
0< σ 2

ξ < +∞ and exponential moments, i.e. there exists a constant λ > 0 such that E(eλξ )< ∞.
Let Tn be a Galton-Watson tree with offspring distribution ξ conditioned to have total number of
vertices n+ 1, which is well-defined from the aperiodicity of the distribution of ξ . Then, it is the
case that (

V(Tn), n−1/2dTn
)→ (

Te,
(
2/σξ

)
dTe
)
, (5.1)

in distribution with respect to the Gromov-Hausdorff distance between compact metric spaces,
where dTn is the shortest path distance on the vertex set V(Tn) (see [4] and [32]). To describe the
limiting object in (5.1), let (et)0≤t≤1 denote the normalized Brownian excursion, which is infor-
mally a linear Brownian motion, started from zero, conditioned to remain positive in (0, 1) and
come back to zero at time 1. We extend the definition of (et)0≤t≤1 by setting et = 0, if t > 1. We
define a distance dTe in [0, 1] by setting

dTe(s, t)= e(s)+ e(t)− 2 min
r∈[s∧t,s∨t]

e(r). (5.2)

Introducing the equivalence relation s∼ t if and only if e(s)= e(t)=minr∈[s∧t,s∨t] e(r) and defin-
ing Te := [0, 1]/ ∼ it is possible to check that (Te, dTe) is almost-surely a compact metric space.
Moreover, (Te, dTe) is a random real tree, called the CRT. For the notion of compact real trees
coded by functions and a proof of the previous result see [33, Section 2]. There is a natural Borel
probability measure upon Te, π e say, which is the image measure on Te of the Lebesgue measure
on [0, 1] by the canonical projection of [0, 1] onto Te.

Upon almost-every realization of the metric measure space (Te, dTe , π e), it is possible to define
a corresponding Brownian motion Xe. The way this can be done is described in [13, Section 2.2].
Now if we denote by PTnρn the law of the simple random walk in Tn, started from a distinguished
point ρn, and by πn the stationary probability measure, then as it was shown in [15] the scaling
limit in (5.1) can be extended to the distributional convergence of((

V(Tn), n−1/2dTn , ρ
n), πn, PTnρn

(
(n−1/2Xn

�n3/2t�)t∈[0,1] ∈ ·))

to ((Te, dTe , ρ), π e, Pe
ρ), where Pe

ρ is the law of Xe, started from a distinguished point ρ. This con-
vergence described in [15] holds after embedding all the relevant objects nicely into a Banach
space. We can reformulate this result in terms of the pointed extended Gromov-Hausdorff
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topology that incorporates distinguished points. Namely((
V(Tn), n−1/2dTn , ρ

n) , πn,
(
n−1/2Xn

�n3/2t�
)
t∈[0,1]

)
−→

((
Te, dTe , ρ

)
, π e,

(
Xe
(σξ /2)t

)
t∈[0,1]

)
,

(5.3)
in distribution in an extended pointed Gromov-Hausdorff sense.

Next, we introduce the contour function of Tn. Informally, it encodes the trace of the motion
of a particle that starts from the root at time t = 0 and then explores the tree from left to right,
moving continuously at unit speed along its edges. Formally, we define a function first for integer
arguments as follows:

f (0)= ρn.

Given f (i)= v, we define f (i+ 1) to be, if possible, the leftmost child that has not been visited yet,
let’s sayw. If no child is left unvisited, we let f (i+ 1) be the parent of v. Then, the contour function
of Tn, is defined as the distance of f (i) from the root ρn, i.e.

Vn(i) := dTn(ρ
n, f (i)), 0≤ i≤ 2n.

The functionVn is only defined for integer arguments. Tomap intermediate values of f intoV(Tn)
extend f to [0, 2n] by taking f (t) to be f (�t�) or f (�t�), whichever is further away from the root.
The following theorem is due to Aldous.

Theorem 5.1. (Aldous [4]). Let vn denote the normalized contour function of Tn, defined by

vn(s) := Vn(2ns)√
n

, 0≤ s≤ 1.

Then, the following convergence holds in distribution in C([0, 1]):

vn
(d)−→ v := 2

σξ

e,

where e is a normalized Brownian excursion.

An essential tool in what follows will be a universal concentration estimate of the fluctuations
of local times that holds uniformly over compact time intervals. Since (Tn)n≥1 is a collection of
graph trees it follows that the shortest path distance dTn , n≥ 1 is identical to the resistance metric
on the vertex set V(Tn), n≥ 1. For the statement of this result let

r(Tn) := sup
x,y∈V(Tn)

dTn(x, y)

denote the diameter of Tn in the shortest path distance andm(Tn) denote the total mass of Tn. Here
m(Tn)= 2n. Also, we introduce the rescaled shortest path distance d̃Tn(x, y) := r(Tn)−1dTn(x, y).

Theorem 5.2. (Croydon [17]). For every T > 0 and any rooted tree (V(t), dt, ρt), there exist
constants c1, c2 > 0 not depending on t such that

sup
y,z∈V(t)

Pt
ρt

(
r(t)−1 sup

t∈[0,T]

∣∣∣Ltr(t)m(t)t(y)− Ltr(t)m(t)t(z)
∣∣∣≥ λ

√
d̃t(y, z)

)
≤ c1e−c2λ (5.4)

for every λ ≥ 0. Moreover, the constants can be chosen in such a way that only c1 depends on T.

We remark here that the product m(Tn)r(Tn), that is the product of the volume and the diam-
eter of the graph, which is also the maximal commute time of the random walk, gives the natural
time-scaling for the various models of sequences of critical random graphs we are going to con-
sider. The concentration estimate of Theorem 5.2 is a version of [17, (V.3.28)] for graphs. The last
ingredient we are going to make considerable use of is the tightness of the sequence ||vn||Hα of
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Hölder norms, for some α > 0. The proof of Theorem 5.3 is based on Kolmogorov’s continuity
criterion (and its proof to get uniformity in n). Indeed, the following result can be obtained for
any α ∈ (0, 1/2).

Theorem 5.3. (Janson and Marckert [29]). There exists α ∈ (0, 1/2) such that for every ε > 0 there
exists a finite real number Kε such that

P

(
sup

0≤s �=t≤1

|vn(s)− vn(t)|
|t − s|α ≤Kε

)
≥ 1− ε, (5.5)

uniformly in n.

Remark 5.4. Building upon [27], Janson and Marckert proved this precise estimate on the geom-
etry of the trees when the offspring distribution has finite exponential moments. Relaxing this
strong condition to only a finite variance assumption, the recent work of Marzouk and more
specifically [37, Lemma 1] implies that Theorem 5.3 holds for the normalized height function of
Tn, which constitutes an alternative encoding of the trees.

In this context, we make use of the full machinery provided by the theorems above in order to
prove that the local times are equicontinuous with respect to the annealed law, which is formally
defined for suitable events as

Pρn(·) :=
∫

P
Tn
ρn(·)P(dTn). (5.6)

Proposition 5.5. For every ε > 0 and T > 0,

lim
δ→0

lim sup
n→∞

Pρn

⎛
⎜⎜⎝ sup

y,z∈V(Tn):
n−1/2dTn (y,z)<δ

sup
t∈[0,T]

n−1/2|Lnn3/2t(y)− Lnn3/2t(z)| ≥ ε

⎞
⎟⎟⎠= 0.

Proof. Let us define, similarly to dTe , the distance dvn in [0, 1] by setting

dvn(t1, t2) := vn(t1)+ vn(t2)− 2 min
r∈[t1∧t2,t1∨t2]

vn(r).

Using the terminology introduced to describe the CRT, Tn equipped with n1/2dvn , when t1 and t2
are equivalent if and only if

vn(t1)= vn(t2)= min
r∈[t1∧t2,t1∨t2]

vn(r),

coincides with the tree coded by n1/2vn. We denote by pvn : [0, 1]→ Tn the canonical projection
that maps every time point in [0, 1] to its equivalence class on Tn.

Given t1, t2 ∈ [0, 1], with 2nt1 and 2nt2 integers, such that pvn(t1)= y and pvn(t2)= z, let
u ∈ [t1 ∧ t2, t1 ∨ t2] with minr∈[t1∧t2,t1∨t2] vn(r)= vn(u). From Theorem 5.3, there exist K > 0 and
α > 0, such that

dvn(t1, t2)= (vn(t1)− vn(u))+ (vn(t2)− vn(u))≤K(|t1 − u|α + |u− t2|α)
≤ 2K|t1 − t2|α (5.7)

with probability arbitrarily close to 1, where the last inequality follows from the concavity of tα .
We condition on vn, assuming that it satisfies (5.7). The total length of the path between y and z
is, using (5.7), is

Vn(2nt1)+Vn(2nt2)− 2 min
r∈[t1∧t2,t1∨t2]

Vn(2nr)= n1/2dvn(t1, t2)≤ 2Kn1/2|t1 − t2|α .
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Hence, by Theorem 5.2, if we denote by
||Ln(x)||∞,[0,T] := sup

t∈[0,T]
|Lnt (x)|, x ∈V(Tn),

the supremum norm of Ln(x) : [0, T]→R+, for any fixed p≥ 2,

E
Tn
ρn

∣∣∣∣∣∣r(Tn)−1
(
Lnr(Tn)m(Tn)·(y)− Lnr(Tn)m(Tn)·(z)

)∣∣∣∣∣∣p∞,[0,T]

=
∫ ∞

0
P
Tn
ρn

(
sup

t∈[0,T]
r(Tn)−1

∣∣∣Lnr(Tn)m(Tn)t(y)− Lnr(Tn)m(Tn)t(z)
∣∣∣≥ ε1/p

)
dε

≤ c1
∫ ∞

0
e
−c2 ε1/p√

r(Tn)−1dTn (y,z) dε.

Changing variables, λ1/p = ε1/p√
r(Tn)−1dTn (y,z)

yields

∫ ∞

0
e
−c2 ε1/p√

r(Tn)−1dTn (y,z) dε

= (r(Tn)−1dTn(y, z))
p/2
∫ ∞

0
e−c2λ1/pdλ ≤ c3(r(Tn)−1dTn(y, z))

p/2,

where c3 is a constant depending only on p. Therefore,

E
Tn
ρn

∣∣∣∣∣∣r(Tn)−1
(
Lnr(Tn)m(Tn)·(y)− Lnr(Tn)m(Tn)·(z)

)∣∣∣∣∣∣p∞,[0,T]
≤ c3(r(Tn)−1dTn(y, z))

p/2. (5.8)

Conditioned on the event that vn satisfies (5.7), the total length of the path between y and z is
bounded above by

2Kn1/2|t1 − t2|α ,
and consequently the diameter of Tn is bounded above by a multiple of n1/2. More specifically,

r(Tn)≤ 2Kn1/2.
Moreover, m(Tn)= 2n. Hence, by (5.8), we have shown that, conditioned on vn satisfying (5.7),
for any fixed p≥ 2,

E
Tn
ρn
∣∣∣∣n−1/2 (Lnn3/2·(y)− Lnn3/2·(z)

)∣∣∣∣p∞,[0,T] ≤ c4(n−1/2dTn(y, z))
p/22−αp

≤ c5 |t1 − t2|αp/2 .
Choosing p such that αp≥ 4, this is at most, except in the trivial case t1 = t2,

c5|t1 − t2|2.
This holds for all t1 and t2, with 2nt1 and 2nt2 integers, such that pvn(t1)= y and pvn(t2)= z. Since
the local time process is interpolated linearly between these time points, it also holds for every t1,
t2 ∈ [0, 1]. Using the moment condition (13.14) of [11, Theorem 13.5] yields that, on the event
that vn satisfies (5.7), the sequence∣∣∣∣n−1/2Lnn3/2·

(
pn(t1)

) ∣∣∣∣∞,[0,T]

is tight in C([0, 1]; C[0, T]). This gives subsequential convergence of the discrete tours (vn, rn)
associated with (n−1/2Tn, n−1/2Lnn3/2·), to (v, r), where

rn(t) := n−1/2Lnn3/2·
(
pn(t)

)
,
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and r is a continuous C[0, T]-valued function. This convergence is as functions on C[0, 1]×
C([0, 1]; C[0, T]). By a straightforward extension of [14, Proposition 2.4] (there the tours were
of the form C(R+,R+)× C(R+,Rd)), it implies, along the relevant subsequence, the convergence
of (n−1/2Tn, n−1/2Lnn3/2·) to (Te, r), which in turn deduces that (3.2) holds along that subsequence.
Moreover, since the first part of Assumption 2 holds, we can obtain that the limit of the rescaled
local times on Tn is indeed the local time process of the Brownian motion on the CRT, see
Lemma 3.3. This classifies the limit, and so we can extend from subsequential to full convergence
to conclude the proof of the proposition. �

5.1.1 Itô’s excursion theory of Brownianmotion
We recall some key facts of Itô’s excursion theory of reflected Brownian motion. Our main inter-
est here lies on the scaling property of the Itô excursion measure. Let (L0t )t≥0 denote the local
time process at level 0 of the reflected Brownian motion (|Bt|)t≥0, which can be defined by the
approximation

L0t = lim
ε→0

1
2ε

∫ t

0
1[0,ε](|Bs|)ds,

for every t ≥ 0, a.s.
The local time process at level 0 is increasing, and its set of points of increase coincides with

the set of time points for which the reflected Brownian is identical to zero. Now, introducing the
right-continuous inverse of the local time process at level 0, i.e.

τk := inf{t ≥ 0 : L0t > k},
for every k≥ 0, we have that the set of points of increase of (L0t )t≥0 alternatively belong to the set

{τk : k≥ 0} ∪ {τk− : k ∈D},
where D is the set of countable discontinuities of the mapping k �→ τk. Then, for every k ∈D we
define the excursion (ek(t))t≥0 with excursion interval (τk−, τk) away from 0 as

ek(t) :=
{|Bt+τk−| if 0≤ t ≤ τk − τk−,

0 if t > τk − τk−.
Let E denote the space of excursions, namely the space of functions e ∈ C(R+,R+), satisfying
e(0)= 0 and ζ (e) := sup{s> 0 : e(s)> 0} ∈ (0,∞). By convention sup ∅ = 0. Observe here that
for every k ∈D, ek ∈ E, and moreover ζ (ek)= τk − τk−.

The main theorem of Itô’s excursion theory adapted in our setting is the existence of a σ -finite
measure N(de) on the space of positive excursions of linear Brownian motion, such that the point
measure ∑

k∈D
δ(k,ek)(ds de)

is a Poisson measure on R+ × E, with intensity ds⊗N(de). The Itô excursion measure has the
following scaling property. For every a> 0 consider the mapping �a : E→ E defined by setting
�a(e)(t) := √

ae(t/a), for every e ∈ E, and t ≥ 0. Then, we have that

N ◦ �−1
a = √

aN (5.9)

Versions of the Itô excursionmeasureN(de) under different conditionings are possible. For exam-
ple one can define conditionings with respect to the height or the length of the excursion. For
our purposes we focus on the fact that there exists a unique collection of probability measures
(Ns : s> 0) on E, such thatNs(ζ = s)= 1, for every s> 0, andmoreover for everymeasurable event
A ∈ E,
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N(A)=
∫ ∞

0
Ns(A)

ds
2
√
2πs3

. (5.10)

In other words Ns(de) is the Itô excursion measure N(de), conditioned on the event {ζ = s}.
We might write N1 =N( · |ζ = 1) to denote law of the normalized Brownian excursion. It is
straightforward from (5.9) and (5.10) to check that Ns satisfies the scaling property

Ns ◦ �−1
a =Nas, (5.11)

for every s> 0 and a> 0.
To conclude our recap on Itô’s excursion theory we highlight the fact that for every t > 0 the

process (e(t + r))r≥0 is Markov under the conditional probability measure N( · |ζ > t). The tran-
sition kernel of the process is the same with the one of a Brownian motion killed upon the first
time it hits zero.

5.1.2 Continuity of blanket times of Brownianmotion on the CRT
We are primarily interested in proving continuity of the ε-blanket time variable of the Brownian
motion on the CRT. The mapping ε �→ τ ebl(ε) is increasing in (0, 1), so it posseses left-hand and
right-hand limits. We let

Aε :=
{
(Te)e∈E : Pe

ρ

(
τ ebl(ε−)= τ ebl(ε+)

)= 1
}

denote the collection of random trees coded by positive excursions that have continuous blanket
time variable at ε ∈ (0, 1) almost-surely with respect to Pe

ρ , the law of the corresponding Brownian
motion on Te.

Moreover, ε �→ τ ebl(ε) has at most a countably infinite number of discontinuities Pe
ρ-a.s

as a real-valued monotone function defined on an interval. Recalling the definition of Itô’s
(unconditioned) excursion measure N in (5.10), by Fubini, we immediately get∫ 1

0

∫
E
Pe

ρ

(
τ ebl(ε−) �= τ ebl(ε+)

)
N(de)dε =EPρ

[∫ 1

0
1
{
τ ebl(ε−) �= τ ebl(ε+)

}
dε
]

= 0,

where by EPρ
, we denoted the expectation with respect to the annealed law, which is formally

defined for suitable events as

Pρ(·) :=
∫
E
Pe

ρ(·)N(de). (5.12)

Therefore, denoting the Lebesgue measure on the real line by λ as usual, we deduce that for λ-a.e.
ε ∈ (0, 1), ∫

E

(
1− Pe

ρ

(
τ ebl(ε−)= τ ebl(ε+)

))
N(de)= 0.

The fact that N(de) is a sigma-finite measure on E yields that for λ-a.e. ε ∈ (0, 1), N-a.e. e ∈ E,

Pe
ρ

(
τ ebl(ε−)= τ ebl(ε+)

)= 1. (5.13)

Thus, we inferred that for λ-a.e. ε ∈ (0, 1), N-a.e. e ∈ E, Te ∈Aε . To be satisfactory for our
purposes, we need to improve this statement to hold for every ε ∈ (0, 1).

For a fixed positive excursion e compactly supported on [0, ζ ], consider the random real
tree ((Te, dTe), π e), where dTe is defined as in (5.2) and π e is the image measure on Te of the
Lebesgue measure on [0, ζ ] by the canonical projection pe of [0, ζ ] onto Te. Recalling the mapping
introduced in Section 5.1.1,

�a(e)(t)= √
ae(t/a), t ∈ [0, aζ ],
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applied to e for some a> 1, results in perturbing dTe by a factor of
√
a and π e by a factor of a. To

be more precise, consider the set A∩ Sk(T�a(e)), where Sk(T�a(e)) := ∪x,y∈T�a(e) [x, y],

[x, y] := {z ∈ T�a(e) : dT�a(e) (x, y)= dT�a(e) (x, z)+ dT�a(e) (z, y)} \ {x, y}
is the path interval, and A ∈ B(T�a(e)). In particular, if T ′ ⊆ T�a(e) is a countable dense subset, we
have that {

A∩ Sk(T�a(e)) :A ∈ B(T�a(e))
}= σ ({[x, y] : x, y ∈ T ′}) (5.14)

For s, t ∈ p−1
�a(e)(T

′)⊆ [0, aζ ], such that p�e(a)(x)= s and p�e(a)(y)= t, observe that

dT�a(e) (s, t)=
√
adTe(x̃a, ỹa), (5.15)

where x̃a, ỹa ∈ Te are in such a way that pe(s/a)= x̃a and pe(t/a)= ỹa. Using the scaling property
of the Lebesgue measure implies

π�a(e)([x, y])= λ({r ∈ [0, aζ ] : p�a(e)(r) ∈ [x, y]})
= λ({r ∈ [0, aζ ] : pe(r/a) ∈ [x̃a, ỹa]})
= aλ({r ∈ [0, ζ ] : pe(r) ∈ [x̃a, ỹa]}).

Therefore,

π�a(e)([x, y])= aπ e([x̃a, ỹa]). (5.16)

For simplicity, for the random real tree T = ((Te, dTe), π e), we write �aT to denote the result-
ing random real tree ((T�a(e), dT�a(e) ), π

�e(a)), where dT�a(e) and π�e(a) satisfy (5.15) and (5.16)
respectively.

Next, if the Brownian motion (Xe
t )t≥0 on T admits local times (Let (x))x∈T ,t≥0 that, Pe

ρ-a.s., are
jointly continuous in (x, t), then it is the case that the Brownianmotion on�aT admits local times
distributed as

(
√
aLea−3/2t(x))x∈T ,t≥0

that, P�a(e)
ρ -a.s., are jointly continuous in (x, t). To justify this, it takes two steps to check that they

satisfy, P�a(e)
ρ -a.s., the occupation density formula (see [20, Lemma 2.4] and the references that lie

in the proof of (b) and (2.6)):∫
[x,y]

√
aLea−3/2u(z)π

�a(e)(dz)=
∫
[x̃a,yã]

a3/2Lea−3/2u(z)π
e(dz)

=
∫ a−3/2u

0
a3/21[x̃a,ỹa](X

e
k)dk

=
∫ u

0
1[x̃a,ỹa](X

e
a−3/2k)dk,

for every t ≥ 0, where the first equality is obtained by (5.16), and the second holds, Pe
ρ-a.s., by the

occupation density formula applied to (Let (x))x∈T ,t≥0. In addition, for a> 1,

{Xe
a−3/2t , P

e
ρ(; [x̃a, ỹa])} (d)= {X�a(e)

a−3/2t , P
�a(e)
ρ (; [x, y])},

where (d)= means equality in distribution (to justify why the processes are equal in law, see the
definition of a speed motion on a compact real tree after Proposition 1.9 in [6]), which brings us
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to our second step, confirming that, P�a(e)
ρ -a.s.,∫

[x,y]

√
aLea−3/2u(z)π

�a(e)(dz)=
∫ u

0
1[x̃a,ỹa](X

e
a−3/2k)dk=

∫ u

0
1[x,y](X�a(e)

k )dk,

for every open line segment [x, y]⊆ T�a(e), with x, y ∈ T ′, and t ≥ 0. In view of (5.14), this can be
seen to hold for any A∩ Sk(T�a(e)) with A ∈ B(T�a(e)).

Now, for every ε ∈ (0, 1) fraction of time and every scalar parameter a> 1, for the ε-blanket
time variable of the Brownian motion on �aT as defined in (1.5), we have that

τ
�a(e)
bl (a−1ε) (d)= inf{t ≥ 0 :

√
aLea−3/2t(x)≥ εa−1t, ∀x ∈ Te}

(d)= inf{t ≥ 0 : Lea−3/2t(x)≥ εa−3/2t, ∀x ∈ Te} (d)= a−3/2τ ebl(ε).

This implies that T ∈Aε if and only if �aT ∈Aa−1ε . In other words, τ ebl(ε) is continuous at ε,
Pe

ρ-a.s. if and only if τ
�a(e)
bl (a−1ε) is continuous at ε, Pe

ρ-a.s. Using the precise way in which the
blanket times above relate as well as the scaling properties of the usual and the normalized Itô
excursion we prove the following proposition.

Proposition 5.6. For every ε ∈ (0, 1), N-a.e. e ∈ E, τ ebl(ε) is continuous at ε, Pe
ρ-a.s. Moreover, N1-

a.e. e ∈ E, τ ebl(ε) is continuous at ε, Pe
ρ-a.s.

Proof. Fix ε ∈ (0, 1). We choose a> 1 in such a way that a−1ε ∈ �0, where�0 is the set for which
the assertion in (5.13) holds λ almost everywhere. Namely, N-a.e. e ∈ E, T ∈Aa−1ε . Using the
scaling property of Itô’s excursion measure as quoted in (5.9) yields

√
aN-a.e. e ∈ E,�aT ∈Aa−1ε ,

and consequently N-a.e. e ∈ E, T ∈Aε , where we exploited the fact that �aT ∈Aa−1ε if and only
if T ∈Aε . Since ε was arbitrary, this establishes our first conclusion.

What remains now is to prove a similar result but with N(de) replaced with its version condi-
tioned on the length of the excursion. Following the same steps we used in order to prove (5.13),
we infer that for λ-a.e. ε ∈ (0, 1), N( · |ζ ∈ [1, 2])-a.e. e ∈ E, T ∈Aζ−1ε , and consequently λ-a.e.
ε ∈ (0, 1), N( · |ζ ∈ [1, 2])-a.e. e ∈ E, �ζT ∈Aε . Using the scaling property of the normalized Itô
excursion measure quoted in (5.11), we deduce that λ-a.e. ε ∈ (0, 1), N1-a.e. e ∈ E, T ∈Aε , where
N1 is the law of the normalized Brownian excursion. To conclude, we proceed using the same
argument as in the first part of the proof. Fix an ε ∈ (0, 1) and choose a> 1 such that a−1ε ∈ �0,
where �0 is the set for which the assertion N1-a.e. e ∈ E, T ∈Aε holds λ almost-equally. Namely,
N1-a.e. e ∈ E, T ∈Aa−1ε , which from the scaling property of the normalized Itô excursion mea-
sure yields aN1-a.e. e ∈ E, �aT ∈Aa−1ε . As before this gives us that N1-a.e. e ∈ E, T ∈Aε , or in
other words that N1-a.e. e ∈ E, τ ebl(ε) is continuous at ε, P

e
ρ-a.s. �

Since the space in the convergence in (5.3) is separable, we can use Skorohod’s coupling to
deduce that there exists a common metric space (F, dF) and a joint probability measure P̃ such
that, as n→ ∞,

dFH(V(T̃n), T̃e)→ 0, dFP(π̃
n, π̃ e)→ 0, dF(ρ̃n, ρ̃)→ 0, P̃ -a.s.,

where ((V(Tn), dTn , ρn), πn) (d)= ((V(T̃n), dT̃n , ρ̃
n), π̃n) and ((Te, dTe , ρ), π e) (d)= ((T̃e, dT̃e , ρ̃), π̃

e).

Moreover, Xn under P
T̃n
ρ̃n converges weakly to the law of Xe under Pẽ

ρ̃
on D([0, 1], F). In

Proposition 5.5, we proved equicontinuity of the local times with respect to the annealed law.
Reexamining the proof of Lemma 3.3, one can see that in this case Ln under Pρ̃n(·) := ∫

P
T̃n
ρ̃n(·)dP̃

will converge weakly to L under Pρ̃(·) :=
∫
Pẽ

ρ̃
(·)dP̃ in the sense of the local convergence as

stated in (3.3). It was this precise statement that was used extensively in the derivation of asymp-
totic distributional bounds for the rescaled blanket times in Section 4.1. Then, the statement of
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Theorem 1.2 translates as follows. For every ε ∈ (0, 1), δ ∈ (0, 1) and t ∈ [0, 1],

lim sup
n→∞

∫
P
T̃n
ρ̃n
(
n−3/2τnbl(ε)≤ t

)
dP̃≤

∫
Pẽ

ρ̃

(
τ ebl(ε(1− δ))≤ t

)
dP̃,

lim inf
n→∞

∫
P
T̃n
ρ̃n
(
n−3/2τnbl(ε)≤ t

)
dP̃≥

∫
Pẽ

ρ̃

(
τ ebl(ε(1+ δ))< t

)
dP̃.

From Proposition 5.6 and the dominated convergence theorem we have that for every ε ∈ (0, 1)
and t ∈ [0, 1],

lim
δ→0

∫
Pẽ

ρ̃

(
τ ebl(ε(1± δ))≤ t

)
dP̃= lim

δ→0

∫
Pẽ

ρ̃

(
τ ebl(ε)< t

)
dP̃

=
∫

Pe
ρ

(
τ ebl(ε)≤ t

)
N(de)= Pρ

(
τ ebl(ε)≤ t

)
.

Therefore, we deduce that for every ε ∈ (0, 1) and t ∈ [0, 1],

lim
n→∞ Pρn

(
n−3/2τnbl(ε)≤ t

)= lim
n→∞

∫
P
Tn
ρn
(
n−3/2τnbl(ε)≤ t

)
P(dTn)

= Pρ

(
τ ebl(ε)≤ t

)
.

In the theorem below we state the ε-blanket time variable convergence result we have just proved,
which is a restatement of Theorem 1.5.

Theorem5.7. Fix ε ∈ (0, 1). If τnbl(ε) is the ε-blanket time variable of the randomwalk on Tn, started
from its root ρn, then

Pρn
(
n−3/2τnbl(ε)≤ t

)→ Pρ

(
τ ebl(ε)≤ t

)
,

for every t ≥ 0, where τ ebl(ε) ∈ (0,∞) is the ε-blanket time variable of the Brownian motion on Te,
started from ρ. Equivalently, for every ε ∈ (0, 1), n−3/2τnbl(ε) under Pρn converges weakly to τ ebl(ε)
under Pρ .

5.2 The critical ErdőHs-Rényi random graph
Our interest in this section shifts to the Erdős-Rényi random graph at criticality. Take n vertices
labelled by [n] and put edges between any pair independently with fixed probability p ∈ [0, 1].
Denote the resulting random graph by G(n, p). Let p= c/n for some c> 0. This model exhibits a
phase transition in its structure for large n, as it was discovered in the groundbreaking work of
Erdős and Rényi in [25]. With probability tending to 1, when c< 1, the largest connected compo-
nent has sizeO( log n). On the other hand, when c> 1, we see the emergence of a giant component
that contains a positive proportion of the vertices. In the critical case, when c= 1, they showed that
the largest components of G(n, p) have size of order n2/3.

We will focus here on the critical case c= 1, and more specifically, on the critical window
p= n−1 + λn−4/3, λ ∈R. The most significant result in this regime was proven by Aldous [5].
Fix λ ∈R and let (Cn

i )i≥1 denote the sequence of the component sizes of G(n, n−1 + λn−4/3). For
reasons that are inherent in understanding the structure of the components, we track the surplus
of each one, that is the number of vertices that have to be removed in order to obtain a tree. Let
(Sni )n≥1 be the sequence of the corresponding surpluses.

Theorem 5.8. (Aldous [5]). As n→ ∞,(
n−2/3(Cn

i )i≥1, (Sni )i≥1
)−→ (

(Ci)i≥1, (Si)i≥1
)

(5.17)
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in distribution, where the convergence of the first sequence takes place in �2↓, the set of positive,
decreasing sequences (xi)i≥1 with

∑∞
i=1 x2i < ∞. For the second sequence it takes place in the product

topology.

The limit is described by stochastic processes that encode various aspects of the structure of the
random graph. Consider a Brownian motion with parabolic drift, (Bλ

t )t≥0, where

Bλ
t := Bt + λt − t2

2
(5.18)

and (Bt)t≥0 is a standard Brownian motion. Then, the limiting sequence (Ci)i≥1 has the distri-
bution of the ordered sequence of lengths of excursions of the process Bλ

t − inf0≤s≤t Bλ
s , that is

the parabolic Brownian motion reflected upon its minimum. Finally, (Si)i≥1 is recovered as fol-
lows. Draw the graph of the reflected process and scatter points on the place according to a rate
1 Poisson process and keep those that fall between the x-axis and the function. Then, Si are the
Poisson number of points that fell in the corresponding excursion with length Ci. Observe that
the distribution of the limit (Ci)i≥1 depends on the particular value of λ chosen.

The scaling limit of the largest connected component of the Erdős-Rényi random graph on the
critical window arises as a tilted version of the CRT following a procedure introduced in [2]. Given
a P , a subset of the upper half plane that contains only a finite number of points in any compact
subset, and a positive excursion e, we define P ∩ e as the set of points from P that fall under the
graph of e. We construct a “glued” metric space Me,P as follows. For each point (t, x) ∈P ∩ e,
let u(t,x) be the unique vertex pe(t) ∈ Te and v(t,x) be the unique vertex on the path from the root
to u(t,x) at a distance x from the root. Let EP = {(u(t,x), v(t,x)):(t, x) ∈P ∩ e} be the finite set that
consists of the pairs of vertices to be identified. Let {ui, vi}ki=1 be k pairs of points that belong to
EP . We define a quasi-metric on Te by setting:

dMe,P (x, y) := min

⎧⎨
⎩dTe(x, y), inf

i1,...,ir

⎧⎨
⎩dTe(x, ui1 )+

r−1∑
j=1

dTe(vij , uij+1 )+ dTe(vr , y)

⎫⎬
⎭
⎫⎬
⎭ , (5.19)

where the infimum is taken over r positive integers, and all subsets {i1, . . . , ir} ⊆ {1, . . . , k}.
Moreover, note that the vertices i1, . . . , ik can be chosen to be distinct. The metric defined above
gives the shortest distance between x, y ∈ Te when we glue the vertices vi and ui for i= 1, . . . , k. It
is clear that dMe,P defines only a quasi-metric since dMe,P (ui, vi)= 0, for every i= 1, . . . , k, but
ui �= vi, for every i= 1, . . . , k. We define an equivalence relation on Te by setting x∼EP y if and
only if dMe,P (x, y)= 0. This makes the vertex identification explicit andMe,P is defined as

Me,P := (Te/ ∼EP , dMe,P ).

To endow Me,P with a canonical measure let pe,P denote the canonical projection from Te to
the quotient space Te/ ∼EP . We define πe,P := π e ◦ p−1

e,P , where π e is the image measure on Te
of the Lebesgue measure λ on [0, ζ ] by the canonical projection pe of [0, ζ ] onto Te. So, πe,P =
(λ ◦ p−1

e ) ◦ p−1
e,P . We note that the restriction of pe,P to Te is pe.

For every ζ > 0, as in [2], we define a tilted excursion of length ζ to be a random variable that
takes values in E whose distribution is characterized by

P(ẽ ∈ E)=
E
(
1{e∈E} exp

(∫ ζ

0 e(t)dt
))

E

(
exp

(∫ ζ

0 e(t)dt
)) ,

for every measurable E ⊆ E. We note here that the σ -algebra on E is the one generated by the open
sets with respect to the supremum norm on C(R+,R+). Write M(ζ ) for the random compact
metric space distributed as (Mẽ,P , 2dMẽ,P ), where ẽ is a tilted Brownian excursion of length ζ
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and the random set of points of interest P is a Poisson point process on R2+ of unit intensity with
respect to the Lebesgue measure independent of ẽ.

We now give an alternative description of Mẽ,P for which the full details can be found in
[2, Proposition 20]. From the construction, it is easy to prove that the number |P ∩ ẽ| of vertex
identifications is a Poisson random variable with mean

∫ ζ

0 ẽ(u)du. Given that |P ∩ ẽ| = k, the
co-ordinate u(t,x) has density

ẽ(u)∫ ζ

0 ẽ(t)dt

on [0, ζ ], and given u(t,x), its pair v(t,x) is uniformly distributed on [0, ẽ(u(t,x))]. The other k− 1
vertex identifications are distributed accordingly and independently of the pair (u(t,x), v(t,x)).

After introducing notation, we are in the position to write the limit of the largest connected
component, say Cn1 , asM(C1), where C1 has the distribution of the length of the longest excursion
of the reflected upon its minimum parabolic Brownian motion as defined in (5.18). Moreover, the
longest excursion, when conditioned to have length C1, is distributed as a tilted excursion ẽ with
length C1. The following convergence is a simplified version of [2, Theorem 2]. As n→ ∞,(

n−2/3Cn
1 ,
(
V(Cn1 ), n−1/3dCn

1

))
−→ (

C1,
(
M, dM

))
, (5.20)

in distribution, where conditional on C1,M
(d)= M(C1). The convergence of the associated station-

ary probability measures, say πn, was not directly proven in [16], although the hard work to this
direction has been done. More specifically, see [16, Lemma 6.3]. Moreover, it was shown in [16],
that the discrete-time simple random walks XCn

1 on Cn1 , started from a distinguished vertex ρn

satisfy a distributional convergence of the form(
n−1/3XCn

1�nt�
)
t≥0

→
(
XM
t

)
t≥0

, (5.21)

where XM is a diffusion on M, started from a distinguished point ρ ∈M. To describe the scal-
ing limit of the associated random walks, the process on M is being built in terms of a “fused”
resistance form, i.e. viewing Tẽ as an electrical network equipped with the natural resistance form
(ETẽ ,FTẽ), and then “fusing” the disjoint pairs of vertices {ui, vi}Ji=1. (Note that J is a random vari-
able.) For a concise construction, we follow the two steps briefly described above. The unique
resistance form (ETẽ ,FTẽ) on Tẽ satisfies

d−1
Tẽ (x, y)= inf{ETẽ(f , f ) : f ∈FTẽ , f (x)= 0, f (y)= 1}.

Moreover, the result in [30, Theorem 5.4] yields that (ETẽ ,FTẽ) is a regular Dirichlet form on
L2(Tẽ, π ẽ). Recall that the canonical projection from Tẽ into the quotient space Tẽ/ ∼EP was
denoted by pẽ,P . Then, define

EM(f , f ) := ETẽ(f ◦ pẽ,P , f ◦ pẽ,P ), ∀f ∈FM, (5.22)

where FM := {f : f ◦ pẽ,P ∈FTẽ} = {f ◦ p−1
ẽ,P : f ∈ Tẽ, f |{ui,vi} constant, ∀i= 1, . . . , J}. The form

(EM,FM) is the “fused” form, and [16, Proposition 2.1] ensures it is indeed a resistance form
on M. Eventually, it is shown that (EM,FM) is a regular Dirichlet form on L2(M, πẽ,P ). Given
that (EM,FM) is a resistance form, the function RM defined by setting RM(x̂, ŷ) to be equal to
the supremum in (3.1), is the associated resistancemetric onM, where we have also used the nota-
tion x̂ := pẽ,P (x) for x ∈ Tẽ. In [16, Lemma 2.2], it was shown that RM and dM are equivalent, i.e.

dM(x̂, ŷ)
(4J + 1)! ≤ RM(x̂, ŷ)≤ dM(x̂, ŷ), ∀x̂, ŷ ∈M. (5.23)
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Now, we describe how to generate a connected component on a fixed number of vertices, for
which the full details can be found in [2, Lemma 6] and [2, Lemma 7]. To any such component we
can associate a spanning subtree, the depth-first tree by considering the following algorithm. The
initial step places the vertex with label 1 in a stack and declares it open. In the next step vertex 1 is
declared as explored and is removed from the top of the stack, where we place in increasing order
the neighbours of 1 that have not been seen (open or explored) yet, while declaring them open.
We proceed inductively. When the set of open vertices becomes empty the algorithm finishes. It is
obvious that the resulting graph that consists of edges between a vertex that was explored at a given
step and a vertex that has not been seen yet at the same step, is a tree. For a connected graphGwith
m vertices, we refer to this tree as the depth-first tree and write T(G). For i= 0, . . . ,m− 1, let X(i)
be the number of vertices seen but not yet fully explored at step i. The process (X(i) : 0≤ i<m) is
called the depth-first walk of the graph G.

Let Tm be the set of (ordered) tree labelled by [m]. For T ∈Tm, its associated depth-first tree is
T itself. We call an edge permitted by the depth-first procedure run on T if its addition produces
the same depth-first tree. Exactly X(i) edges are permitted at step i, and therefore the total number
of permitted edges is given by

a(T) :=
m−1∑
i=0

X(i),

which is called the area of T. Given a tree T and a connected graphG, T(G)= T if and only ifG can
be obtained from T by adding a subset of permitted edges by the depth-first procedure. Therefore,
writing GT for the set of connected graphs G that satisfy T(G)= T, we have that {GT : T ∈Tm}
is a partition of the connected graphs on [m], and that the cardinality of GT is 2a(T), since every
permitted edge is included or not.

Back to the question on how to generate a connected component, write Gp
m for the graph with

the same distribution as G(m, p) conditioned to be connected. Thus, we focus on generating Gp
m

instead.

Lemma 5.9. (Addario-Berry, Broutin, Goldschmidt [2]). Fix p ∈ (0, 1). Pick a random tree T̃p
m that

has a “tilted” distribution which is biased in favour of trees with large area. Namely, pick T̃p
m in such

a way that

P(T̃p
m = T)∝ (1− p)−a(T), T ∈Tm.

Use ρm to denote the root of T̃p
m. Add to T̃p

m each of the a(T̃p
m) permitted edges independently with

probability p. Call the graph generated G̃p
m. Then, G̃

p
m has the same distribution as Gp

m.

Given Pn, a random subset of N×N in which every point is contained independently of the
others with probability p, we define Pn ∩ Xn as the set of points from Pn that fall under the graph
of Xn, where conditional on Cn

1 , (Xn(i) : 0≤ i< Cn
1) is the depth-first walk of T̃

p
n in such a way that

|T̃p
n| has the same distribution as Cn

1 . We write

Pn ∩ Xn :=
{
(i, k) ∈Pn : i< Cn

1 , k≤ Xn(i)
}
.

For each point (i, k) ∈Pn ∩ Xn, let un(i,k) be the unique vertex visited by the depth-first walk of T̃p
n

at time i and vn(i,k) be the unique vertex that is lying in the (Xn(i)− k+ 2)-th of the stack at time
i. Let EPn = {(un(i,k), vn(i,k)) : (i, k) ∈Pn ∩ Xn} be the finite set of the pairs of vertices to be added.
Lemma 5.9 implies that

Cn1
(d)= (V(T̃p

n), E(T̃
p
n)∪ EPn),
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which permits us to suppose that the objects T̃p
n, Pn and Cn1 belong to the same probability space

such that the equality that precedes holds in the almost-sure sense as ordered graphs labelled by
[Cn

1 ]. (Note that in this case |T̃p
n| = Cn

1 , almost-surely.)
Based on [2, Lemma 19], for the random set of points introduced above, we have that

{(n−2/3i, n−1/3k) : (i, k) ∈Pn} ∩ (n−1/3Xn(�n2/3·�))→P ∩ ẽ,

(n−1/3Xn(�n2/3t�))t∈[0,1] → (ẽ(t))t∈[0,1],

simultaneously in distribution, where ẽ is defined as the tilted excursion with length C1 and P as
the Poisson process with intensity measure the Lebesgue measure on R2+, independent of ẽ. The
first convergence is with respect to the Hausdorff convergence between compact sets. Since the
random variables involved are integer-valued, there exists a random variable N such that for all
n≥N, ∣∣{(n−2/3i, n−1/3k) : (i, k) ∈Pn} ∩ (n−1/3Xn(�n2/3·�))

∣∣= |P ∩ ẽ| = J,

for a J ≥ 0. However we will not present the full details here, [2] (see the proof of Lemma 2.2 from
that article) gives the distributional convergence:(

V(Cn1 ), n−1/3dCn
1
, ρn, {uni , vni }Ji=1

)
−→

(
M, dM, ρ, {ui, vi}Ji=1

)
, (5.24)

in the pointed extended Gromov-Hausdorff topology with marked points (add∑J
i=1 (dZ(φ(u

n
i ), φ′(ui))+ dZ(φ(vni ), φ′(vi))) inside the infimum at the definition of dK in Section

2), where {uni , vni }Ji=1, n≥ 1, are elements of {(un
(î,k̂)

, vn
(î,k̂)

) : (î, k̂) ∈ {(n−2/3i, n−1/3k) : (i, k) ∈
Pn} ∩ (n−1/3Xn(�n2/3·�))} that have been identified instead, and {u1, vi}Ji=1 ∈ {(u(t,x), v(t,x)):(t, x) ∈
P ∩ ẽ} are distinct. In [18], it was shown that “fusing” resistance forms at disjoint pairs of points
is continuous with respect to the Gromov-Hausdorff topology. Consequently, regarding (5.24)
which gives the convergence of spaces and marked points, we apply [18, Proposition 8.4] to
obtain that Assumption 2 is verified:((

V(Cn1 ), n−1/3RCn
1
, ρn
)
, πn,

(
n−1/3XCn

1�nt�
)
t≥0

)
−→

(
(M, RM, ρ) , πM, XM

)
, (5.25)

where RCn
1
(see (1.3)) and RM (see (5.23)) are the resistance metrics on Cn1 andM respectively.

In what follows we give a detailed description on how we can transfer the results proved in
Section 5.1. We denote by Ṽm = (Ṽm(i) : 0≤ i≤ 2m) the contour process of T̃p

m, and by ṽm =
(((m/ζ )−1/2Ṽm(2(m/ζ )s) : 0≤ s≤ ζ ) the rescaled contour process of positive length ζ . We start
by showing that, for some α > 0, the sequence ||ṽm||Hα of Hölder norms is tight.

Lemma 5.10. Suppose that p= p(m) in such a way that mp2/3 → ζ , as m→ ∞. There exists α > 0,
such that

lim
M→∞ lim inf

m→∞ P

(
sup

0≤�=t≤1

|ṽm(s)− ṽm(t)|
|t − s|α ≤M

)
= 1. (5.26)

Proof. It will suffice to prove the lemma in the case ζ = 1, since the general result follows by
Brownian scaling. The general result follows by Brownian scaling. Let Tm be a tree chosen uni-
formly from [m]. Write Vm and vm for its associated contour process and normalized contour
process respectively. We note here that Theorem 5.3 is stated in the more general framework of
size-conditioned Galton-Watson trees with critical offspring distribution that has finite variance
and exponential moments. If the offspring is distributed according to a Poisson with mean 1, then
the conditioned tree is a uniformly distributed labelled tree (e.g. [28, Proposition 2.3]). Then, by
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Lemma 5.9,

P

(
sup

0≤s �=t≤1

|ṽm(s)− ṽm(t)|
|t − s|α ≥M

)
=

E

[
1{sup0≤s�=t≤1

|vm(s)−vm(t)|
|t−s|α ≥M

}(1− p)−a(Tm)
]

E
[
(1− p)−a(Tm)

] .

Using the Cauchy-Schwarz inequality, we have that

P

(
sup

s,t∈[0,1]
|ṽm(s)− ṽm(t)|

|t − s|α ≥M

)

≤
P
(
sups,t∈[0,1]

|vm(s)−vm(t)|
|t−s|α ≥M

)1/2 (
E
[
(1− p)−2a(Tm)

])1/2
E
[
(1− p)−a(Tm)

] . (5.27)

Since mp2/3 → 1, as m→ ∞, there exists c> 0 such that p≤ cm−3/2, for every m≥ 1. Since Tm
is a uniform random tree on [m], from [2, Lemma 14] we can find universal constants K1, K2 > 0
such that

E

[
(1− p)−ξa(Tm)

]
<K1eK2c2ξ2 , (5.28)

for fixed ξ > 0. Recall that a(Tm)=∑m−1
i=0 Xm(i), where (Xm(i) : 0≤ i≤m) is the depth-first walk

associated with Tm (for convenience we have put Xm(m)= 0). From [35, Theorem 3] we know
that, asm→ ∞

(m−1/2Xm(�mt�))t∈[0,1] → (e(t))t∈[0,1],

in distribution in D([0, 1],R+), where (e(t))t∈[0,1] is a normalized Brownian excursion. Writing

(1− p)−a(Tm) = (1− p)−
∑m−1

i=0 Xm(i) = (1− p)−m3/2 ∫ 1
0 m−1/2Xm(�mt�)dt

and using that the sequence (1− p)−a(Tm) is uniformly integrable, we deduce that

E
[
(1− p)−a(Tm)

]
→E

[
exp

(∫ 1

0
e(u)du

)]
> 0, (5.29)

as m→ ∞. Thus, for m large enough, (E[(1− p)−2a(Tm)])1/2/E[(1− p)−a(Tm)] is bounded by a
universal constant, see (5.28) and (5.29). To conclude, taking firstm→ ∞ and thenM → ∞, the
desired result follows from (5.27) and Theorem 5.3. �

It is now immediate to check that the local times (Lmt (x))x∈V(Gp
m),t≥0 of the corresponding sim-

ple random walk on Gp
m are equicontinuous under the annealed law. The proof of the next lemma

relies heavily on the same methods used to establish Proposition 5.5, and therefore we will make
use of the parts that remain unchanged.

Recall that the graph generated by the process of adding Bin(a(T̃p
m), p) number of surplus edges

to T̃p
m was denoted by G̃p

m. We view G̃p
m as the metric space T̃p

m that includes the edges (of length
1) that have been added and we equip it with the resistance metric RG̃p

m
defined by (1.3).

Lemma 5.11. Suppose that p= p(m) in such a way that mp2/3 → ζ , as m→ ∞. For every ε > 0
and T > 0,

lim
δ→0

lim sup
m→∞

Pρm

(
sup

y,z∈V(Gp
m):

m−1/2RGpm
(y,z)<δ

sup
t∈[0,T]

m−1/2∣∣Lmm3/2t(y)− Lmm3/2t(z)
∣∣≥ ε

∣∣∣∣ s(Gp
m)= s

)
= 0.
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Proof. It will suffice to prove the lemma in the case ζ = 1, since the general result follows by
Brownian scaling. From Lemma 5.10, given t1, t2 ∈ [0, 1], with 2mt1 and 2mt2 integers, such that
pṽm(t1)= y and pṽm(t2)= z there existM > 0 and α > 0, such that

dṽm(t1, t2)= ṽm(t1)+ ṽm(t2)− 2 min
r∈[t1∧t2,t1∨t2]

ṽm(r)≤ 2M|t1 − t2|α (5.30)

with probability arbitrarily close to 1, cf. (5.7). Conditioned on ṽm satisfying (5.30), the resis-
tance between y and z on G̃p

m is smaller than the total length of the path between y and z on T̃p
m.

Therefore,

RG̃p
m
(y, z)≤ dT̃p

m
(y, z)=m1/2dṽm(t1, t2)≤ 2Mm1/2|t1 − t2|α ,

which indicates that, on the event that (5.30) holds, the maximum resistance of G̃p
m is bounded

above by a multiple of m1/2. More specifically, r(G̃p
m)≤Mm1/2. Moreover, m(G̃p

m)= 2E(G̃p
m)=

2(s(G̃p
m)+m− 1). An application of Theorem 5.2, which was originally formulated for the local

times of random walks on weighted graphs in terms of the resistance metric, yields

E
G̃p
m

ρm

[∣∣∣∣m−1/2 (Lmm3/2·(y)− Lmm3/2·(z)
)∣∣∣∣p∞,[0,T]

∣∣∣∣s(G̃p
m)= s

]
≤ c̃5 |t1 − t2|αp/2 ,

conditional on ṽm satisfying (5.30), for any fixed p≥ 2, cf. (5.8). Since the discrete local times
process is interpolated linearly between the integer time points 2mt1 and 2mt2, the statement is
also valid for every t1, t2 ∈ [0, 1]. The rest of proof is finished in the manner of Proposition 5.5,
and therefore we omit it. �

For notational simplicity, the next result is stated for the largest connected component on the
critical window. In fact, it holds for the family of the i-th largest connected components, i≥ 1.
In this case, let us denote by Cn1 the largest connected component of G(n, n−1 + λn−4/3), and by
(Lnt (x))x∈V(Cn

1 ),t≥0 the local times of the simple random walk on Cn1 .

Proposition 5.12. For every ε > 0 and T > 0,

lim
δ→0

lim sup
n→∞

Pρn

⎛
⎜⎜⎜⎝ sup

y,z∈V(Cn
1 ):

n−1/3RCn1 (y,z)<δ

sup
t∈[0,T]

n−1/3|Lnnt(y)− Lnnt(z)| ≥ ε

⎞
⎟⎟⎟⎠= 0.

Proof. Fix ε > 0, δ > 0 and T > 0. In the random graph G(n, p), conditional on Cn
1 ,

Cn1
(d)= Gp

Cn
1
,

where as above p= n−1 + λn−4/3, for fixed λ ∈R. Note that np→ 1, as n→ ∞. By (5.20) and
Skorohod’s representation theorem, there exists a probability space and random variables C̃n

1 , C̃n1 ,
n≥ 1 and C̃1, M̃ defined on that space, such that (C̃n

1 , C̃n1 )
(d)= (C̃1, M̃) with n−3/2C̃n

1 → C̃1, as
n→ ∞, in the almost-sure sense. Conditioning on the size and the surplus of Cn1 , if we denote by
Bδ
n the measurable event

Bδ
n := sup

y,z∈V(Cn
1 ):

n−1/3RCn1 (y,z)<δ

sup
t∈[0,T]

n−1/3|Lnnt(y)− Lnnt(z)| ≥ ε,
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for large enough constant A (appears in (5.31)) and S (appears in (5.32)), note that

Pρn(Bδ
n)≤

∫
P
Cn
1

ρn (Bδ
n;A

−1n2/3 ≤ Cn
1 ≤An2/3)P(dCn1 )

+ P(Cn
1 /∈ [A−1n2/3,An2/3]) (5.31)

Since C̃n
1 and p= p(n) are in such a way that C̃n

1p2/3 → C̃1, as n→ ∞, in the almost-sure sense,
we can bound (5.31) by

Pρn

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

sup
y,z∈V(Gp

Cn1
):

(Cn
1 )

−1/2RGpCn1
(y,z)<δ

′

sup
t∈[0,T′]

(Cn
1)

−1/2|Ln(Cn
1 )3/2t

(y)− Ln(Cn
1 )3/2t

(z)| ≥ ε′
∣∣∣∣s(Gp

Cn
1
)≤ S

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ P(Cn
1 /∈ [A−1n2/3,An2/3])+ P(Sn1 > S), (5.32)

for appropriate ε′ > 0, δ′ > 0 and T′ > 0 that only depend on ε, δ, T and A. By Theorem 5.17,

lim
A→∞ lim sup

n→∞
P(Cn

1 /∈ [A−1n2/3,An2/3])= 0. (5.33)

Furthermore, as n→ ∞,

Sn1
(d)−→ Poi

(∫ ζ

0
ẽ(u)du

)
,

where Poi(
∫ ζ

0 ẽ(t)dt) denotes a Poisson random variable with mean the area under a tilted excur-
sion of length ζ (see [2, Corollary 23]). As a consequence tightness of process that encodes the
surplus of Cn1 follows:

lim
S→∞ lim sup

n→∞
P(Sn1 > S). (5.34)

The proof is finished by combining (5.33) and (5.34) with the equicontinuity result of
Lemma 5.11, see (5.32). �

5.2.1 Continuity of blanket times of Brownianmotion onM
To prove continuity of the ε-blanket time of the Brownian motion onM, we first define a σ -finite
measure on the product space of positive excursions and random set of points ofR2+. Throughout
this section we denote the Lebesgue measure on R2+ by �. We define N(d(e,P)) by setting:

N(de, |P| = k, (dx1, . . . , dxk) ∈A1 × . . . ×Ak) :=
∫ ∞

0
fL(l)Nl(de)

e−1

k!
k∏

i=1

�(Ai ∩Ae)
�(Ae)

, (5.35)

where fL(l) := dl/
√
2π l3, l≥ 0 gives the density of the length of the excursion e and Ae :=

{(t, x) : 0≤ x≤ e(t)} denotes the area under its graph. In other words, the measure picks first
an excursion length according to fL(l) and, given L= l, it picks a Brownian excursion of that
length. Then, independently of e it chooses k points according to a Poisson with unit mean, which
distributes uniformly on the area under the graph of e.

It turns out that this is an easier measure to work with when applying our scaling argument to
prove continuity of the blanket times. Also, as will see later,N is absolutely continuous with respect
to the canonical measure Nt,λ(d(e,P)) that first at time t picks a tilted Brownian excursion e of a
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randomly chosen length l, and then independently of e chooses k points distributed as a Poisson
random variable with mean

∫ l
0 e(t)dt, which as before are distributed uniformly on the area under

the graph of e. To fully describe this measure let Nt,λ denote the measure (for excursions starting
at time t) associated to Bλ

t − inf0≤s≤t Bλ
s , first stated by Aldous in [5]. We note that Nt,λ =N0,λ−t

and thus it suffices to write N0,λ for every λ ∈R. For every measurable subset A,

N0,λ(A)=
∫ ∞

0
N
0,λ
l (A)fL(l)Fλ(l)Nl

(
exp

(∫ l

0
e(u)du

))
,

where N0,λ
l is a shorthand for the excursion measure N0,λ, conditioned on the event {L̃= l} and

Fλ(l) := exp (−1/6(λ3 + (l− λ)3)). For simplicity, let

gL̃(l, λ) := fL(λ)Fλ(l)Nl

(
exp

(∫ l

0
e(u)du

))
.

In analogy with (5.35) we characterize Nt,λ(d(e,P)) by setting:

Nt,λ(de, |P| = k, (dx1, . . . , dxk) ∈A1 × . . . ×Ak)

:=
∫ ∞

0
gL̃(l, λ − t)Nt,λ

l (de) exp

(
−
∫ l

0
e(u)du

) (∫ l
0 e(u)du

)k
k!

k∏
i=1

�(Ai ∩Ae)
�(Ae)

. (5.36)

After calculations that involve the use of the Cameron-Martin-Girsanov formula [38, Chapter IX,
(1.10) Theorem] (for the entirety of those calculations one can consult [2, Section 5]), one deduces
that

N
t,λ
l (de)= exp

(∫ l

0
e(u)du

)
Nl(de)

Nl
(
exp

(∫ l
0 e(u)du

)) ,
and as a consequence the following expression for the Radon-Nikodym derivative is valid:

dNt,λ

dN
=

Fλ−t(l)
(∫ l

0 e(u)du
)k

/k!
e−1/k! = exp

(
1− 1

6
(
λ3 + (l− λ + t)3

)) (∫ l

0
e(u)du

)k

. (5.37)

Recall that for every b> 1, the mapping �b : E→ E is defined by setting

�b(e)(t) :=
√
be(t/b), t ∈ [0, bζ ],

for every e ∈ E. As we saw in Subsection 5.1.2, it acts on the real tree coded by e scaling its distance
and measure appropriately, see (5.15) and (5.16). Recall the alternative description of the “glued”
metric spaceMe,P , where e is a Brownian excursion of length ζ and P is a Poisson point process
on R2+ of unit intensity with respect to the Lebesgue measure independent of e. The number
|P ∩ e| of vertex identifications is a Poisson random variable with mean

∫ ζ

0 e(u)du. As a result, the
number of vertex identifications |P ∩ �b(e)| has law given by a Poisson distribution with mean∫ bζ

0

√
be(u/b)du= b3/2

∫ ζ

0
e(u)du.

Moreover, conditioned on |P ∩ e|, the coordinates of a point (u(t,x), v(t,x)) in P ∩ e have den-
sities proportional to e(u) for u(t,x) and, conditioned on u(t,x), v(t,x) is uniformly distributed
on [0, e(u(t,x))]. Then, conditioned on |P ∩ �b(e)|, the coordinates of a point (ub(t,x), v

b
(t,x)) in
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P ∩ �b(e) are equal in law to bu(t,x) in the case of ub(t,x), and conditioned on ub(t,x), v
b
(t,x) is uni-

formly distributed on [0,
√
bu(t,x)]. From now on, we use �b(e,P) to denote the mapping from

the product space of positive excursions and set of points of the upper half plane onto itself that
applies �b(e) to e and repositions the collection of points in P as described above.

From the definition of the quasi-metric dMe,P in (5.19), we have that under the application of
�b, it rescales like b1/2dMe,P , a statement that should be understood in accordance with (5.15). Let
L(Te) denote the set of leaves of Te, that is the set of points σ ∈ Te, such that Te \ {σ } is connected,
i.e. the complement of the set of leaves is the skeleton of Te. In particular, L(Te) is uncountable,
and π e(L(Te))= ζ . Consider the set

I = {σ ∈L(Te) : pe,P (σ ) ∈ B},
for a measurable subset B ofMe,P , where pe,P is the canonical projection from Te to the resulting
quotient space after the vertex identifications, made explicit by the equivalence relation ∼EP . We
endowed Me,P with the measure πe,P , that is the image measure on Me,P of π e on Te by the
canonical projection pe,P of Te ontoMe,P . Then, by definition πe,P (B)= π e(I), and consequently
π�b(e,P)(B)= π�b(e)(I). As we examined before, under the application of �b, π�b(e) rescales like
bπ e, where once again this should be understood according to (5.16) and the notation that was
introduced in the course of its derivation. Finally, since N ◦ �−1

b = √
bN, see (5.9), and using the

fact that �(Ai ∩Ae)/�(Ae) in (5.35) is scale invariant under �b, we have that

N ◦ �−1
b = √

bN,

Therefore, considering N instead of Nt,λ is advantageous as it could easily be seen to enjoy the
same scaling property as N.

We now have all the ingredients to prove continuity of the blanket times of the Brownian
motion onM. We describe the arguments that have been already used in establishing Proposition
5.6. Let τ

e,P
bl (ε) denote the ε-blanket time of the Brownian motion Xe,P on Me,P started from a

distinguished vertex ρ̄, for some ε ∈ (0, 1). Taking the expectation of the law of τ
e,P
bl (ε), ε ∈ (0, 1)

against the σ -finite measure N as in (5.12), using Fubini and the monotonicity of the blanket
times, yields

P
e,P
ρ̄

(
τ
e,P
bl (ε−)= τ

e,P
bl (ε+)

)
= 1,

λ-a.e. ε,N-a.e. (e,P), where Pe,P
ρ̄ denotes the law of Xe,P started from ρ̄. The rest of the argument

relies on improving such a statement to hold for every ε ∈ (0, 1).
In the transformed “glued” metric space M�b(e,P), the Brownian motion admits P�b(e,P)

ρ̄ -a.s.
jointly continuous local times (

√
bLb−3/2t(x))x∈Me,P ,t≥0. This enough to infer that, for every ε ∈

(0, 1) and b> 1, the continuity of the ε-blanket time variable of Me,P is equivalent (in law) to
the continuity of the b−1ε-blanket time variable ofM�b(e,P), and consequently as in the proof of
Proposition 5.6, applying our scaling argument implies

P
e,P
ρ̄

(
τ
e,P
bl (ε−)= τ

e,P
bl (ε+)

)
= 1,

N-a.e. (e,P). Recall that, conditional on C1, M
(d)= M(C1), where C1 is the length of the longest

excursion of the process defined in (5.18), which is distributed as a tilted excursion of that
length. Then, applying again our scaling argument as in the end of the proof of Proposition 5.6,
conditional on C1, we deduce

PMρ
(
τMbl (ε−)= τMbl (ε+)

)
= 1,
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NC1 -a.e. (e,P), where Nl is the version of N defined in (5.35) conditioned on the event {L= l}.
Since the canonical measure N0,λ

C1
is absolutely continuous with respect to NC1 as it was shown

in (5.37), the above also yields that conditional on C1, N0,λ
C1

-a.e. (e,P), τMbl (ε) is continuous at ε,
PMρ -a.s.

Fix ε ∈ (0, 1). Here, for a particular real value of λ and conditional on C1,

Pρ(·) :=
∫

PMρ (·)N0,λ
C1

(d(e,P)), (5.38)

formally defines the annealed measure for suitable events. Given the continuity of τMbl (ε)
at ε, PMρ -a.s. and Proposition (5.12), the desired annealed convergence follows by applying
Theorem 1.2 exactly in the same manner as we did in the proof of Theorem 5.7 in the end of
Subsection 5.1.2. For clarity, we restate Theorem 1.7.

Theorem 5.13. Fix ε ∈ (0, 1). If τnbl(ε) is the ε-blanket time variable of the random walk on Cn1 ,
started from its root ρn, then

Pρn
(
n−1τnbl(ε)≤ t

)→ Pρ

(
τMbl (ε)≤ t

)
,

for every t ≥ 0, where τMbl (ε) ∈ (0,∞) is the ε-blanket time variable of the Brownian motion onM,
started from ρ.
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