
DERIVATIVE OF SINGULAR SET-FUNCTIONS 

MORTEZA ANVARI 

The purpose of this paper is to prove that the general derivative of a 
completely additive singular set-function defined on certain measurable 
subsets of an abstract measure space is zero almost everywhere. As a corollary 
the celebrated Lebesgue decomposition theorem has been sharpened. 

This result is well known for set-functions defined on measurable subsets of 
an n-dimensional Euclidean space (2, p. 119). The proof in this setting depends 
on two things: Vitali's covering theorem and the fact that for every measurable 
set A there exists an open set 0 which contains A and the images of 0 and A 
under the set-function can be made arbitrarily close. Here the covering 
theorem is due to Trjitzinsky and the open set is replaced by an envelope, an 
entirely measure-theoretic concept. 

Let 0 be a measure defined on a c-field 2 of subsets of an abstract space S. 
A subset A C «S is said to be indefinitely covered by a family H of measurable 
sets if for every x (z A there exists a sequence {yn} contained in H, containing 
x for each n, and $(yn) —» 0 as n —» œ. A family G C 2 of measurable sets is 
said to be regular in the sense of the measure <j> if the following conditions are 
satisfied : 

(i) <j>e(D) < oo) where D = \JyeGy and <t>e denotes the outer measure. 

(ii) Denote by p(y) the set of points outside y and indefinitely covered by 
those y' £ G which have points in common with y, and let a(u) be a real-valued 
function with the following property: given an e > 0, there exists a sequence 
{r)n) of positive numbers converging to zero such that whenever 0 < uitn < rjn 

and 
n 

X) ut,n < <j>e{D) for n = 1 , 2 , . . . , 

then 
oo 

S a(ui,n) < e; 
n, i=l 

we postulate that <t>e(p(y)) < « ( 0 ( T ) ) -

(iii) Let tla(y) denote the union of the sets y' which have points in common 
with y and <j>(yf) < a<j>{y). We postulate that there exist two numbers a and b 
(b > a > 1) such that <t>e[®a(y)] < b<f>(y) for each 7. 

As an example of the function a mentioned in (ii) we may take a(u) — uc 

(c > 1). In this case 
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n,i n,i n,i 

< ] C Vn~ Ut,n = X Vt"l YJ Ui,n < 4>e(P) ^ Vn~ . 
n, i n È i n 

It suffices to choose 

C-l _ * 

The following theorem has been proved by W. J. Trjitzinsky (3, p. 16). 

THEOREM 1. Let A(G) (or simply A) denote the set of points indefinitely covered 
(in the sense of measure </>) by the regular family G. Then 

(a) A is (^-measurable-, 

(b) there exists a sequence {ji} of disjoint sets in G such that </>(A — A Pi T) < s, 
where 

CO CO 

s = £ a(<t>(y,)), r = U yt, 

and s can be made less than any positive number e; 

(c) given e > 0, the sequence {yt} can be chosen in such a way that s < e and 

0 ( A ) - t < 0 ( r ) < 0 ( A ) + €. 

A set-function \p, finite and real valued, defined on subsets of A is said to be 
completely additive if 

(i) J U EJ = Ê HEn) 

for every sequence {En\ of disjoint subsets of A for which 

CO 

and 

(ii) ^ ( £ i - E2) = iA(Ei) - ^ ( £ 2 ) for all £ 2 C £ i C A. 
In the following \j/ shall denote a non-negative completely additive set-

function. For, if it is not non-negative, it can be expressed as the difference of 
two non-negative completely additive set-functions (2, p. 11). Let G(E) 
denote the subfamily of G whose elements intersect the set E and A[G(E)] 
denote the set indefinitely covered by G(E). E is said to be a kernel if 
<j)(A[G(E)] — E) = 0. I t is said to be an envelope if its complement with 
respect to A(G) is a kernel. 

Kernel and envelope are roughly equivalent to closed and open set, respec­
tively. A[G(E)] — E represents the boundary of a kernel E; hence the assump­
tion that it has measure zero. 

As an additional property of the set-function yp we assume that 
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HYPOTHESIS H. For every measurable set A C A and every e > 0, there exists 
an envelope 0 such that A C 0 C A and \(/(0 — A) < e; also x £ A, x £ y (i G, 
and 4> (y) sufficiently small imply 7 C 0. 

By the upper derivative of ^ at a point ikf G A with respect to a regular 
family £ we shall mean the least upper bound of the ratio \p(y C\ A)/<l>(y) over 
all 7 which contain M and whose measures tend to zero. The upper derivative 
is denoted by fi(V'> M, G). The lower derivative is defined dually. When 
these two derivatives are equal, the common value is denoted by D(\//, M, G) 
and is called the general derivative. 

THEOREM 2. For every non-negative \f/ that satisfies Hypothesis H, if 
D(f, M, G) > ix for every M £ A C A, then \(/(A) > ix<t>(A). 

Proof. Let X denote a subfamily of G whose elements 7 are contained in an 
envelope 0 D A and satisfy the inequality \p(y C\ A)/<f>(y) > X for some 
X < /z. If 

1(7 n A) 

0(7)-»0 

for every M £ A, then X covers A indefinitely. Hence, by Theorem 1(c), there 
exists a sequence {71) of disjoint sets belonging to X for which 

4\A-AC\ ( U 7<)) < £ or ^ H ( 0 7 i ) ) > *04) - É 

for any preassigned £ > 0. Because of Hypothesis H, 0 can be chosen such that 
for any e > 0, ${A) > ^(0) — e; and since the yt are disjoint and all contained 
in 0, 

00 

HO) > T, *(Y.). 
2 = 1 

Therefore 

+ (A)> W) ~ e > Ë *(y<) - e > X I ) *(7 , ) - € 
i= i t=i 

= x*( û 7<) - ^ > X0Ç4 n ( 0 yt)) - e > x*(4) - x? - e. 

Since J and e can be made arbitrarily small, by letting X —» JJL, one finds 
f (A) > v4>(A). 

\f/ is said to be singular on A if there exists a null-set £ 0 C A such that for 
all i C A , f(A) = t(E0 H 4 ) . 

THEOREM 3. If ^ is singular on A and satisfies Hypothesis Hy then 
D(\//, M, G) = 0 almost everywhere. 
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Proof. Since ^ is singular, there exists a set of measure zero £ 0 C A such that 
for every measurable A C A, ̂ (^4 C\ (A — £0)) = 0. Let 

F = { I f A|£>0/s Af,G) > 0). 

We shall prove that 4>{F) = 0. Otherwise there exists a positive integer N for 
which the set 

EN = {M e A- Eo\Dtt, M, G) > 1/N] 

will have a positive measure and <t>(EN C\ y) > 0 for some y. Since 
EN C A - £ 0 and £>0, Af, G) > 1/iV on £ iV H T, Theorem 2 yields 

^[(A - Eo)] > ^ ( £ ^ n T ) > 0(£^n7)I /JV > o. 
But this contradicts the assumption that $ is singular, for it shows that \p is 
positive on a subset of A — EQ. 

COROLLARY. Let yp be a completely additive set-function defined on subsets of A 
and satisfying the Hypothesis H. Then there exists a unique decomposition of 4/ in 
the form 

4,{E) =JBD(^fMfG)d4> + S(E)t 

where E C A is measurable and S(E) is singular. 

Proof. Every completely additive set-function defined on measurable subsets 
of A can be expressed as the sum of an absolutely continuous and a singular 
set-function (2, p. 33), denoted by A(E) and S(E), respectively. Trjitzinsky 
has proved (3, p. 26) that there exists an integrable function / such that 
A(E) = fEfd<f) and D {A, M, G) = f almost everywhere. Therefore 

£>0, M,G) = f + D(S, M, G) almost everywhere. 

By the previous theorem the second term on the right-hand side is zero almost 
everywhere, and the proof is complete. 
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