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The shape gradient quantifies the change in some figure of merit resulting from
differential perturbations to a shape. Shape gradients can be applied to gradient-based
optimization, sensitivity analysis and tolerance calculation. An efficient method for
computing the shape gradient for toroidal three-dimensional magnetohydrodynamic
(MHD) equilibria is presented. The method is based on the self-adjoint property of
the equations for driven perturbations of MHD equilibria and is similar to the Onsager
symmetry of transport coefficients. Two versions of the shape gradient are considered.
One describes the change in a figure of merit due to an arbitrary displacement of the
outer flux surface; the other describes the change in the figure of merit due to the
displacement of a coil. The method is implemented for several example figures of
merit and compared with direct calculation of the shape gradient. In these examples
the adjoint method reduces the number of equilibrium computations by factors of
O(N), where N is the number of parameters used to describe the outer flux surface
or coil shapes.
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1. Introduction
The design of stellarator magnetohydrodynamic (MHD) equilibria requires

optimizing within a high-dimensional space due to the fully three-dimensional nature
of the magnetic field configuration and the sensitive dependence of charged particle
trajectories in such field configurations (Boozer 2015). While there are many possible
choices for the space in which to optimize, a common choice is the space of the
shape of the outer boundary of the plasma (Hirshman et al. 1999; Drevlak et al.
2018). The confining electromagnetic coils must then be designed to reproduce the
desired plasma boundary. This approach was used to design Wendelstein 7-X (Grieger
et al. 1992) and the Helically Symmetric Experiment (HSX) (Anderson et al. 1995).
An alternative approach is to optimize the shape of electromagnetic coils directly to
minimize an objective function which includes functions of the equilibria (Hanson
& Cary 1984). This can be performed with the merged STELLOPT/COILOPT code,
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which was used in the late stages of the National Compact Stellarator Experiment
(NCSX) design (Strickler et al. 2004). To navigate such spaces, it is often useful
to employ gradient-based optimization techniques. For this reason, it is desirable to
compute derivatives with respect to shape.

As the target optimized configuration can never be realized exactly, an analysis
of the sensitivity to perturbations, such as errors in coil fabrication or assembly, is
central to the success of a stellarator. Tight tolerances have proven to be a significant
driver of the cost of stellarator experiments (Strykowsky et al. 2009; Klinger et al.
2013); thus an improvement to the algorithms used to conduct sensitivity studies
can have great impact on the field. To quantify the coil tolerances for flux surface
quality of Large Helical Device (LHD) (Yamazaki et al. 1993) and NCSX (Brooks
& Reiersen 2003; Williamson et al. 2005), perturbations of several distributions were
manually applied to each coil. Sensitivity analysis can also be performed with analytic
derivatives. Numerical derivatives with respect to tilt angle and coil translation of the
Columbia Non-neutral Torus (CNT) coils have been used to compute the sensitivity
of the rotational transform on axis (Hammond et al. 2016). Analytic derivatives have
recently been applied to study coil sensitivities of the CNT stellarator by considering
the eigenvectors of the Hessian matrix (Zhu et al. 2018). Thus, in addition to
gradient-based optimization, derivatives with respect to shape can be applied to
sensitivity analysis.

The gradients of figures of merit with respect to shape have often been represented
as derivatives with respect to whichever quantities parameterize the shape. Examples
of such quantities are the toroidal flux dependent amplitudes (Rc

mn, Zs
mn) in the double

Fourier series for the cylindrical coordinates (R, Z) of a toroidal flux surface. Here
superscripts c and s refer to cosine and sine, while integers m and n denote the
poloidal and toroidal mode numbers. Another way to represent derivatives with respect
to shape is the shape gradient (Landreman & Paul 2018), which provides a local
and coordinate-independent form. Consider any scalar figure of merit, f , that depends
on a three-dimensional (3-D) MHD equilibrium solution. We can consider f to be
a functional of the shape of the outer boundary of the plasma, SP. In this case, a
differential change to the boundary, δr, causes a corresponding change to the figure
of merit, δf ,

δf (SP; δr)=
∫

SP

d2x Sδr · n. (1.1)

Here n is the outward unit normal and S is the shape gradient. The shape gradient
quantifies the local linear sensitivity of a figure of merit to differential perturbations of
the shape. As tangential displacements to SP do not cause any changes to f , δf only
depends on the normal component of δr. The Hadamard–Zolésio structure theorem
(Delfour & Zolésio 2011) states that under certain assumptions of smoothness, the
shape derivative of a functional can be written in the form of (1.1). This can be
thought of an instance of the Riesz representation theorem, which states that any linear
functional, such as δf (δr), can be written as an inner product over the appropriate
space (Rudin 2006). The motivation for the form of (1.1) is discussed in more detail
in section 2 of Landreman & Paul (2018).

If we consider f to be a functional of the shape of the electromagnetic coils, a
differential change to the coils, δrC, will cause a corresponding change to the figure
of merit, δf ,

δf (C; δrC)=
∑

k

∫
Ck

dl Sk · δrCk . (1.2)
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Here the sum is taken over the coils, Ck is a curve describing the filamentary shape of
each coil, C={Ck}, and δrC={δrCk}. The shape gradient for coil k is Sk. As tangential
displacements to the coil do not change f , Sk must be perpendicular to the tangent
vector along Ck.

As the shape gradient provides local sensitivity information, it can be used to
quantify engineering tolerances with respect to the displacement of coils or magnetic
perturbations. The shape gradient representation can be computed from parameter
derivatives by solving a small linear system (Landreman & Paul 2018).

However, computing parameter derivatives can often be computationally expensive,
as numerical derivatives require evaluating the objective function at least N + 1
times for N parameters if one-sided finite differences are used, or 2N times for
centred differences. As computing the objective function often involves solving a
linear or nonlinear system, such as the MHD equilibrium equations, this implies
solving the system of equations >N + 1 times. Numerical derivatives also introduce
additional noise, and the finite difference step size must be chosen carefully. To
avoid these difficulties, it is advantageous to compute shape gradients using adjoint
methods (Pironneau 1974; Glowinski & Pironneau 1975; Dekeyser, Reiter & Baelmans
2012, 2014a,b). Adjoint methods allow the analytic derivative with respect to all N
parameters to be computed with only two solutions to the system of equations.
Adjoint methods are thus much more efficient for computing derivatives with respect
to many parameters, and they do not introduce the noise of numerical derivatives.
Adjoint methods were recently used in the context of stellarator design by Paul et al.
(2018) for shape optimization of coil winding surfaces.

Rather than use parameter derivatives, in this work we will use an adjoint method to
compute the shape gradient directly. This is sometimes termed adjoint shape sensitivity
or adjoint shape optimization, which has its origins in aerodynamic engineering and
computational fluid dynamics (Pironneau 1974; Glowinski & Pironneau 1975). As
with adjoint methods for parameter derivatives, this technique only requires the
solution of two linear or nonlinear systems of equations. This technique has been
applied to magnetic confinement fusion for the design of tokamak divertor shapes
by solving forward and adjoint fluid edge equations (Dekeyser et al. 2012, 2014a,b).
As stellarators require many parameters to fully describe their shape, adjoint shape
sensitivity could significantly decrease the cost of computing the shape gradient. If
one is optimizing in the space of parameters describing the boundary of the plasma
or the shape of coils, the shape gradient representation obtained from the adjoint
method can be converted to parameter derivatives upon multiplication with a small
matrix (Landreman & Paul 2018).

In § 2, the fundamental adjoint relations for perturbations to MHD equilibria are
derived and discussed. These relations take a form that is similar to that of transport
coefficients that are related by Onsager symmetry (Onsager 1931). Specifically,
perturbations to the equilibrium are characterized as a set of generalized responses to
a complementary set of generalized forces. The responses and forces can be thought
of as being related by a matrix operator, which is symmetric. The resulting relations
among forces and responses can be used to compute the shape gradient of functions
of the equilibria with respect to displacements of the plasma boundary, as in (1.1),
or the coil shapes, as in (1.2), Several applications to stellarator figures of merit will
be demonstrated in § 3. While the primary application considered in this work will
be stellarator optimization, the relations we obtain are equally applicable for 2-D
equilibria.
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2. Driven linear perturbations of 3-D MHD equilibria

The goal is to find a relation between small perturbations to a 3-D magnetic
confinement equilibrium configuration and the resulting change in a figure of merit
of interest. As mentioned, the perturbations may be prescribed in one of two ways:
either as a change in the shape of the outermost flux surface (fixed boundary) or as
a change in the position, shape or current strength in the coils confining the plasma
(free boundary). (Even though the boundary shape changes in the former case, we
refer to it as ‘fixed boundary’ since the equilibrium code is run in fixed-boundary
mode, and since the associated adjoint problem will turn out to have no boundary
perturbation.) These perturbations will be referred to as the ‘true’ perturbations and
their direct calculation needs to be repeated many times for each possible change in
shape of the outer flux surface or each change in the coil configuration to determine
fully the sensitivity of the equilibrium.

The approach we use is to instead calculate a different change in the equilibrium,
which we refer to as the ‘adjoint’ perturbation. The adjoint perturbation will
correspond to the change in the equilibrium when an additional bulk force acts
on the plasma, or the toroidal current profile is changed. For the adjoint perturbation
there is no change to the outer flux surface in the fixed-boundary case or to the coil
currents in the free boundary case. In this section we will show that aspects of the
true and adjoint changes are related to each other in a manner similar to Onsager
symmetry. Thus, it will be shown that by calculating the adjoint perturbation, with a
judiciously chosen added force or change in the toroidal current profile, the solution
to the true problem can be determined.

We consider equilibria in which the magnetic field in the plasma can be expressed
in terms of scalar of functions ψ(x), Φ(ψ), θ(x) and ζ (x),

B=∇ψ ×∇θ −∇Φ ×∇ζ =∇ψ ×∇α. (2.1)

We will regard ψ as labelling the flux surfaces and consider toroidal geometries for
which

α = θ − ι(ψ)ζ , (2.2)

label field lines in a flux surface, where θ is a poloidal angle, ζ is a toroidal angle
and ι(ψ)=dΦ/dψ is the rotational transform, with Φ being the poloidal flux function.
(Any straight-field-line angles may be used.) With these definitions the magnetic flux
passing toroidally through a poloidally closed curve of constant ψ is 2πψ . The
flux passing poloidally between the magnetic axis and the surface of constant ψ is
2πΦ(ψ). Thus, we assume that good flux surfaces exist and leave aside the issues
of islands and chaotic field lines.

In addition to the representation of the magnetic field, we assume that MHD force
balance is satisfied with a scalar pressure, p(ψ),

0=−∇p(ψ)+
J×B

c
, (2.3)

where the current density, J, satisfies Ampere’s law,

∇×B=
4π

c
J, (2.4)
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and c is the speed of light. As mentioned, we will consider two cases, a fixed-
boundary case in which the shape of the outer flux surface is prescribed, and a free
boundary case for which outside the plasma, whose surface is defined by a particular
value of toroidal flux, the force balance equation (2.3) does not apply, but rather, the
magnetic field is determined by Ampere’s law (2.4) with a given current density Jc,
representing current flowing in a set of coils.

From (2.3) it follows that current density streamlines also lie in the ψ = constant
surfaces. The toroidal current passing through a surface, ST(ψ), whose perimeter is a
closed poloidal loop at constant ψ is given by

IT(ψ)=

∫
ST (ψ)

d2x n · J=
∫

ST (ψ)

dψ dθ
√

g∇ζ · J, (2.5)

where
√

g−1
=∇ζ · ∇ψ ×∇θ .

Equations (2.1)–(2.5) describe our base equilibrium configuration. We now
consider small changes in the equilibrium that are assumed to yield a second
equilibrium state of the same form as (2.1), but with new functions such that
B′ =∇ψ ′ ×∇θ ′ −∇Φ ′(ψ ′)×∇ζ ′. Each of the primed variables is assumed to differ
from the corresponding unprimed variables by a small amount (e.g. ψ ′=ψ + δψ(x)).
The perturbed magnetic field can then be expressed B′ =B+ δB, where

δB=∇δψ ×∇θ +∇ψ ×∇δθ −∇Φ ×∇δζ −∇(ιδψ + δΦ)×∇ζ . (2.6)

We write the perturbed poloidal flux as the sum of a term resulting from the
perturbation of toroidal flux at fixed rotational transform, ιδψ , and a term representing
the perturbed rotational transform, δΦ(ψ). Thus, we can regroup the terms in (2.6)
as follows

δB=∇× (δψ∇θ − ιδψ∇ζ − δθ∇ψ + δζ∇Φ)−∇δΦ(ψ)×∇ζ . (2.7)

The group of terms in parentheses in (2.7) corresponds to perturbations of the
magnetic field allowed by ideal MHD, which is constrained by the ‘frozen in law’,
and which preserves the rotational transform, (δι= 0). The last term in (2.7) allows
for changes in the rotational transform, (δι= dδΦ/dψ). Note also that the expression
in parentheses in (2.7) can be written as a sum of terms parallel to ∇ψ and ∇α,
and hence it is perpendicular to B. The group of terms in parentheses in (2.7)
can thus be expressed in terms of a vector potential that is perpendicular to the
equilibrium magnetic field, while the last term in (2.7) can be represented in terms
of a vector potential in the toroidal direction, which thus has a component parallel
to the equilibrium field. We can therefore write δB=∇× δA, where

δA= ξ ×B− δΦ∇ζ . (2.8)

Here, the variable ξ can be taken to be perpendicular to the applied magnetic field,
and can be thought of as a displacement of the equilibrium magnetic field line. Using
(2.6) we write

ξ ×B= δψ(∇θ − ι∇ζ )− δθ∇ψ + δζ∇Φ, (2.9)

and from this we can see that perturbations of the toroidal and poloidal angles
correspond to displacements in the flux surface, and the perturbation δψ gives a
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displacement out of the flux surface. A surface containing a prescribed toroidal flux
2πψ0 in the unperturbed field is defined by ψ(x)=ψ0. From (2.9), the perturbation to
ψ at fixed position is δψ =−ξ · ∇ψ . When the field is perturbed the surface moves.
As ξ is a vector which describes the motion of field lines, the perturbed toroidal flux
label moving with the ψ surface, as measured in the unperturbed coordinate system,
is given by ψ(x)=ψ0 + ξ · ∇ψ(x).

The change in toroidal current flowing through the perturbed surface is

δIT(ψ)=

∫
∂ST (ψ)

dθ
√

gξ · ∇ψJ · ∇ζ +
∫

ST (ψ)

dψdθ
√

gδJ · ∇ζ , (2.10)

where ST(ψ) is a surface at constant toroidal angle bounded by the ψ surface and
∂ST(ψ) is the boundary of such surface, a closed poloidal loop. Here the first term
accounts for the displacement of the flux surface and the second term accounts for
the change in toroidal current density.

We now consider two distinct perturbations of the equilibrium of the type described
by (2.8)–(2.10), which we denote with subscripts 1 and 2. In general, variables with
subscript 1 will be associated with the true perturbation, and those with subscripts 2
will be associated with the adjoint perturbation. We then form the quantity

UT =
1
c

∫
VT

d3x (δJ1 · δA2 − δJ2 · δA1)= 0, (2.11)

where the variables δJ and δA are the changes in current density and vector potential
associated with the two perturbations, and the integral is, for the time being, over all
space. That UT = 0 follows from expressing the change in current densities in terms
of the change in magnetic fields via Ampere’s law. This turns the integrand in (2.11)
into a divergence, which in turn becomes a surface integral, which we take to be at
infinity where fields vanish sufficiently fast.

We now express the volume integral in (2.11) as the sum of three terms,

UT =UP +UB +UC = 0. (2.12)

Here UP is the contribution from volume in the plasma, integrated just up to the
plasma–vacuum boundary. For this term we represent the vector potentials using (2.8)

UP =
1
c

∫
VP

d3x (δJ1 · (ξ2 ×B− δΦ2∇ζ )− δJ2 · (ξ1 ×B− δΦ1∇ζ )). (2.13)

To evaluate (2.13) we use the perturbed force balance relation

0= δF+∇(ξ · ∇p)+
δJ×B+ J× δB

c
, (2.14)

where δF is an additional perturbed force to be prescribed. The term ∇(ξ · ∇p)
represents the perturbed force associated with the perturbed pressure in the case of a
true solution for which the dependence of the pressure on flux is preserved. As the
perturbation to the flux label at fixed position is δψ =−ξ · ∇ψ and the pressure is
assumed to be a fixed function p(ψ), then the perturbation to the pressure at fixed
position is δp=−ξ ·∇p(ψ). If the equilibrium calculation is performed with specified
p(ψ), this does not imply any additional restrictions.
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The term UB comes from integrating over a thin layer at the plasma–vacuum
boundary. At the boundary the difference between the perturbed and unperturbed
current density has the character of a current sheet due to the displacement of the
outermost flux surface. This effective current sheet causes a jump in the tangential
components of the perturbation to the magnetic fields at the surface. This jump
implies that care must be taken in evaluating the perturbed magnetic fields at the
surface as they have different values on either side of the plasma–vacuum surface.
However, the vector potential is continuous at the plasma–vacuum boundary. Thus,
we write

UB =
1
c

∫
Sp

d2x
|∇ψ |

(ξ1 · ∇ψJ · δA2 − ξ2 · ∇ψJ · δA1), (2.15)

where the vector potentials are expressed as in (2.8). Using this expression for the
vector potentials and expressing the surface integral as an integral over the toroidal
and poloidal angles gives

UB =
1
c

∫
Sp

dθ dζ
√

gJ · ∇ζ (−ξ1 · ∇ψδΦ2 + ξ2 · ∇ψδΦ1). (2.16)

Here we note the terms in the vector potential coming from the MHD displacement
cancel.

Last, the quantity UC represents the contribution from the integral over the volume
outside the plasma where only the coil currents need to be included

UC =
1
c

∫
VV

d3x (δJC1 · δAV2 − δJC2 · δAV1), (2.17)

where δAV1,2 is the change in the vacuum vector potential, and δJC1,2 is the change in
the coil current density.

Combining UP, UB and UC gives the following relation appropriate to the free
boundary case UT =UP +UB +UC = 0, or∫

VP

d3x(−ξ1 · δF2 + ξ2 · δF1)+
2π

c

∫
VP

dψ
(
δΦ1

dδIT,2

dψ
− δΦ2

dδIT,1

dψ

)
+

1
c

∫
VV

d3x (δJC1 · δAV2 − δJC2 · δAV1)= 0. (2.18)

The many steps leading to (2.18) are outlined in appendix A.
A similar relation can be obtained in the fixed-boundary case. Here the integral

over the plasma volume, (2.13), can be written as a surface integral by applying the
divergence theorem,

UP =
1

4π

∫
SP

d2x n · (δB1 × δA2 − δB2 × δA1). (2.19)

Again, following steps outlined in (appendix A), this may be rewritten in the following
form, ∫

VP

d3x (−ξ1 · δF2 + ξ2 · δF1)−
2π

c

∫
VP

dψ
(
δIT,2

dδΦ1

dψ
− δIT,1

dδΦ2

dψ

)
−

1
4π

∫
SP

d2x n · (ξ2δB1 ·B− ξ1δB2 ·B)= 0. (2.20)
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The fixed-boundary adjoint relation can also be obtained by applying the self-
adjointness of the MHD force operator (appendix B). If the second term in (2.20) is
integrated by parts in ψ , we see that the fixed and free boundary adjoint relations
share the terms involving the products of displacements with bulk forces and perturbed
fluxes with perturbed toroidal currents. The integral over the vacuum region in (2.18)
is replaced by an integral over the plasma boundary and a boundary term from the
integration by parts in ψ in (2.20).

We now have two integral relations between perturbations 1 and 2, viz. (2.18)
and (2.20). They have a common form in that they each are the sum of three
integrals: the first involving forces and displacements, the second involving the
toroidal current and poloidal flux profiles and the third involving the manner in
which the plasma boundary is prescribed. In (2.18), the free boundary case, the
changes in coil current densities are specified. In (2.20), the fixed-boundary case,
the displacement of the outer flux surface is prescribed. Equations (2.18) and (2.20)
can also be viewed as the difference in sums of generalized forces and responses.
For example, in (2.18) we can consider the quantities δF, δΦ, δJc as forces and ξ ,
dδIT/dψ , δAV as responses. The fact that the sum of the products of true forces and
adjoint responses less the products of adjoint forces and true responses vanishes is
similar to the relation between forces and fluxes related by Onsager symmetry. In the
case of Onsager symmetry this relation follows from the self-adjoint property of the
collision operator. In the case of MHD equilibria it is known that the force operator
is self-adjoint. Here we see that the self-adjoint property is extended to cases in
which the MHD frozen-in constraint is broken.

These relations (2.18) and (2.20) can be used to generate the shape gradient if we
manipulate the terms to be zero, or some known quantity. For example, if we impose
that both the true and adjoint solutions maintain pressure as a function of flux, or
equivalently there are no added forces, then the first terms in both (2.18) and (2.20)
vanish. If we impose that the adjoint solution in (2.20) involves no change in shape
of the outer flux surface, the boundary term involving n · ξ2 vanishes. This leaves

2π

c

∫
VP

dψ
(
δIT,2

dδΦ1

dψ
− δIT,1

dδΦ2

dψ

)
=

1
4π

∫
Sp

d2x n · ξ1δB2 ·B. (2.21)

Thus, if we solve the adjoint problem with a prescribed change in toroidal current
profile, and ask what is the change in rotational transform in the true problem when
the current profile is unchanged we find

2π

c

∫
VP

dψ
(
δIT,2

dδΦ1

dψ

)
=

1
4π

∫
SP

d2x n · ξ1δB2 ·B. (2.22)

The right-hand side has the form of (1.1), with δB2 · B/4π playing the role of the
shape gradient. Thus, by picking an adjoint current profile change that is localized to
a particular flux surface, we determine the sensitivity of the rotational transform at
that flux surface to changes in the boundary shape. Note that even if the rotational
transform is allowed to vary, the normal component of ξ1 describes the displacement
of the boundary, as discussed in (appendix C). Thus the form of the shape gradient
in (1.1) can be used with δr · n replaced with ξ1 · n.

If we impose that the adjoint solution in (2.18) involves no change in coil currents,
upon integrating the middle term in (2.18) by parts a similar relation can be obtained
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for the free boundary case,

2π

c

∫
VP

dψ
(
δIT,2

dδΦ1

dψ

)
=

1
c

∫
VV

d3x δJC1 · δAV2, (2.23)

where it has been assumed that δIT,2 = 0 at the boundary.
When the coil currents are confined to wires, the right-hand side can be expressed

as changes in currents and fluxes and integrals along wires,

1
c

∫
VV

d3x δJC1 · δAV2 =
1
c

∑
k

(
δΦC2,kδIC1,k + ICk

∫
Ck

dl δrCk(x) · t× δB2

)
. (2.24)

Here δΦC2,k , δIC1,k are the change in adjoint flux through and change in true current
in coil k and ICk is the current through the unperturbed coil. The unit tangent
vector along Ck is t. The second term describes the effect of moving the coil. It is
proportional to the current in the coil and the line integral of the displacement of the
coil dotted with the cross product of the tangent to the coil and the perturbed adjoint
magnetic field.

The sensitivity of other figures of merit may be evaluated by considering cases
for which both the true and adjoint solutions preserve the rotational transform or the
toroidal current profile. In this case a perturbed force density is included in the adjoint
calculation ∫

VP

d3x ξ1 · δF2 =
1
c

∫
VV

d3x δJC1 · δAV2 . (2.25)

In this case one must find an expression for the perturbed adjoint force, δF2, such
that the left-hand side is the change in a figure of merit of interest. Some examples
will be discussed in the next section.

3. Applications
In this section we will consider figures of merit which depend on the shape of the

outer boundary of the plasma (§§ 3.1 and 3.2) and on the shape of the electromagnetic
coils (§ 3.3). The shape gradients of these figures of merit will be computed using
both a direct method and an adjoint method, to demonstrate that the adjoint method
produces identical results to the direct method but at much lower computational
expense.

3.1. Surface shape gradient for β
Consider a figure of merit, the volume-averaged β,

fβ =
fP

fB
, (3.1)

where

fP =

∫
Vp

d3x p(ψ) (3.2)

and

fB =

∫
Vp

d3x
B2

8π
. (3.3)
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(This definition of volume-averaged β is the one employed in the VMEC code
(Hirshman & Whitson 1983).) While fβ is a figure of merit not often considered
in stellarator shape optimization, we include this calculation to demonstrate the
adjoint approach, as its shape gradient can be computed without modifications to an
equilibrium code.

The differential change in fP associated with displacement ξ1 is

δfP(SP; ξ1)=−

∫
VP

d3x ξ1 · ∇p+
∫

SP

d2x ξ1 · np(ψ). (3.4)

The first term accounts for the change in p at fixed position due to the motion of
the flux surfaces, and the second term accounts for the motion of the boundary. The
differential change in fB associated with ξ1 is

δfB(SP; ξ1) = −
1

4π

∫
VP

d3x (B2
∇ · ξ1 + ξ1 · ∇(B2

+ 4πp))

+
1

8π

∫
SP

d2x ξ1 · nB2, (3.5)

where we have assumed a perturbation that preserves the rotational transform (δΦ1=

0), for which δB2
=−2(B2∇ · ξ1+ ξ1 ·∇(B2

+4πp)) is the perturbation to the magnetic
field strength at fixed position. The first term in (3.5) corresponds to the change in fB
due to the perturbation to the field strength, while the second term accounts for the
motion of the boundary. Applying the divergence theorem we obtain,

δfB(SP; ξ1)=−

∫
VP

d3x ξ1 · ∇p−
1

8π

∫
SP

d2x ξ1 · nB2. (3.6)

The differential change in fβ associated with displacement ξ1 satisfies

δfβ(Sp; ξ1)

fβ
=

∫
SP

d2x ξ1 · n
(

p(ψ)
fP
+

B2

8πfB

)
−

(
1
fP
−

1
fB

) ∫
VP

d3x ξ1 · ∇p. (3.7)

The first term on the right of (3.7) is already in the form of a shape gradient.
To evaluate the second term, we turn to the adjoint problem, and we choose
δF2 = −∇(1p), where ∆� 1 is a constant scalar. That is, we add a force which
is proportional to the equilibrium pressure force with a small multiplier, ∆. This
additional force produces a proportional change in magnetic field at the boundary
and thus from (2.20), we find

δfβ(SP; ξ1)

fβ
=

∫
SP

d2x ξ1 · n
(

p(ψ)
fP
+

B2

8πfB
+

(
1
fP
−

1
fB

)
δB2 ·B
4π∆

)
. (3.8)

Thus, we can obtain the shape gradient without perturbing the shape of the surface,

S= fβ

(
p(ψ)

fP
+

B2

8πfB
+

(
1
fP
−

1
fB

)
δB2 ·B
4π∆

)
. (3.9)

Obtaining S amounts to computing an equilibrium with unperturbed ι, unperturbed
boundary and perturbed pressure p′ = (1+∆)p.
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Shape gradients for three-dimensional magnetic confinement equilibria 11

A similar expression can be obtained for equilibria for which the rotational
transform is allowed to vary, but the toroidal current is held fixed (δIT,1 = 0). In
this case, the toroidal current for the adjoint problem is chosen to be δIT,2 =

−∆IT(1/fP − 1/fB)
−1(1/fB) where IT is the unperturbed current profile, and again

δF2 =−∇(1p). The shape gradient can then be obtained from (3.9).
To demonstrate, we use the NCSX stellarator LI383 equilibrium (Zarnstorff et al.

2001). The pressure profile was perturbed with ∆= 0.01. The unperturbed and adjoint
equilibria are computed with the VMEC code (Hirshman & Whitson 1983). The shape
gradient obtained with the adjoint solution, Sadjoint, and that obtained with the direct
approach, Sdirect, are shown in figure 1(a). Positive values of the shape gradient
indicate that fβ increases if a normal perturbation is applied at a given location as
indicated by (1.1). For the direct approach, parameter derivatives (∂fβ/∂Rc

mn, ∂fβ/∂Zs
mn)

are computed with a centred 4-point stencil for m6 15 and |n|6 9 using a polynomial
fitting technique. The shape gradient is obtained using the method outlined in §4.2
of Landreman & Paul (2018). The fractional difference between the two methods,

Sresidual =
|Sadjoint − Sdirect|√∫

SP

d2x S2
adjoint

/∫
SP

d2x

, (3.10)

is shown in figure 1(c). The surface-averaged value of Sresidual is 1.7× 10−3.
The parameter ∆ must be chosen carefully, as the perturbation must be large enough

that the result is not dominated by round-off error, but small enough that nonlinear
effects do not become important. The relationship between Sresidual and ∆ is shown
in figure 1(d). Here Sdirect is computed using the parameters reported above such that
convergence is obtained. We find that Sresidual decreases as (∆)1 until ∆≈0.5, at which
point round-off error begins to dominate. This scaling is to be expected, as δB2 is
computed with a forward difference derivative with step size ∆.

For this and the later examples, the computational cost of transforming the
parameter derivatives to the shape gradient was negligible compared to the cost
of computing the parameter derivatives. The direct approach used 2357 calls to
VMEC while the adjoint approach only required two. It is clear that the adjoint
method yields nearly identical derivative information to the direct method but at
substantially reduced computational cost.

In figure 1 we find that the shape gradient for fβ is everywhere positive. This
reflects the fact that the toroidal flux enclosed by SP is fixed. As perturbations
which displace the plasma surface outward increase the surface area of a toroidal
cross-section, the toroidal field must correspondingly decrease, thus increasing fβ . We
find that the shape gradient is increased in regions of large field strength, as indicated
by the second term in (3.9).

3.2. Surface shape gradient for rotational transform
Consider a figure of merit, the average rotational transform in a radially localized
region,

fι =
∫

VP

dψ ι(ψ)w(ψ). (3.11)
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12 T. Antonsen, Jr., E. J. Paul and M. Landreman

FIGURE 1. (a) The shape gradient for fβ (3.1) computed using the adjoint solution (3.9)
(left) and using parameter derivatives (right). (b) The shape gradient computed with the
adjoint solution in the ζ − θ plane. (c) The fractional difference (3.10) between the
shape gradient obtained with the adjoint solution and with parameter derivatives. The
two methods give virtually indistinguishable results, as they should. (d) The fractional
difference between the shape gradient obtained with the adjoint solution and with
parameter derivatives, Sresidual, depends on the scale of the perturbation added to the adjoint
force balance equation, ∆.

Here w(ψ) is a normalized weighting function,

w(ψ)=
e−(ψ−ψm)

2/ψ2
w∫

VP

dψ e−(ψ−ψm)
2/ψ2

w

, (3.12)
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Shape gradients for three-dimensional magnetic confinement equilibria 13

and ψm and ψw are parameters defining the centre and width of the Gaussian
weighting, respectively.

The differential change of fι associated with perturbation ξ1 is

δfι(Sp; ξ1)=

∫
VP

dψ
dδΦ1

dψ
w(ψ). (3.13)

For the adjoint problem, we can choose a toroidal current profile δIT,2 = I∆w(ψ),
where I∆ is a scalar constant, and we can take δF2 = 0. This additional current
produces a proportional change in the magnetic field at the boundary; thus using
(2.20), we obtain the following

δfι(Sp; ξ1)=
c

I∆8π 2

∫
SP

d2x n · ξ1δB2 ·B. (3.14)

So, we can obtain the shape gradient from the adjoint solution

S=
cδB2 ·B
I∆8π 2

. (3.15)

Note that the computation of the shape gradient of the rotational transform on a
single surface, ψm, with the adjoint approach would require a delta-function current
perturbation, δIT,2= I∆δ(ψ −ψm). As this type of perturbation is difficult to resolve in
a numerical computation, the use of the Gaussian envelope allows the shape gradient
of the rotational transform in a localized region of ψm to be computed.

To demonstrate, we use the NCSX stellarator LI383 equilibrium. The toroidal
current profile was perturbed with I∆ = 715 A, ψm = 0.1ψ0 and ψw = 0.05ψ0. The
shape gradient obtained with the adjoint solution and with the direct approach are
shown in figure 2(a). For the direct approach, the shape gradient is computed from
parameter derivatives (∂fι/∂Rc

mn and ∂fι/∂Zs
mn) using an 8-point stencil with m 6 18

and |n|6 12. The fractional difference, Sresidual, between the two approaches is shown
in figure 2(c), with a surface-averaged value of 2.7× 10−2.

The direct approach used 7401 calls to VMEC, while the adjoint only required two.
Again, it is apparent that the adjoint method allows the same derivative information
to be computed at much lower computational cost.

We find that over much of the surface, the shape gradient is close to zero. A region
of large negative shape gradient occurs in the concave region of the plasma surface
with adjacent regions of large positive shape gradient. This indicates that ‘pinching’
the surface in this region, making it more concave, would increase ι near the axis.
The relationship between shaping and rotational transform is generally quite complex.
Further analysis is needed to interpret the shape gradient for fι.

3.3. Coil shape gradient for rotational transform
The shape gradient of fι can also be computed with a free boundary approach. We can
again choose a toroidal current profile δIT,2 = I∆w(ψ) for the adjoint problem, where
w(ψ) is given by (3.12). Using (3.13) and (2.18) and noting that δIT,2 vanishes at the
boundary, we find

δfι(C; δrC)=
1

2πI∆

∫
VV

d3x δJC1 · δAV2 . (3.16)
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14 T. Antonsen, Jr., E. J. Paul and M. Landreman

FIGURE 2. (a) The shape gradient for fι (3.11) computed using the adjoint solution (3.15)
(left) and using parameter derivatives (right). (b) The shape gradient computed with the
adjoint solution in the ζ − θ plane. (c) The fractional difference (3.10) between the shape
gradient obtained with the adjoint solution and with parameter derivatives. Again, the
results are essentially indistinguishable, as expected.

Using (2.24), this can be written in terms of changes in the positions of coils in the
vacuum region,

δfι(C; δrC)=
1

2πI∆

∑
k

(
ICk

∫
Ck

dl δrCk(x) · t× δB2

)
. (3.17)

When computing the coil shape gradient, the current in each coil is fixed. In arriving
at (3.17), we assume that δIC1,k = 0. The coil shape gradient is thus

Sk =
ICk t× δB2

2πI∆
. (3.18)

As anticipated, Sk has no component in the direction tangent to the coil. Evaluating
the shape gradient requires computing the adjoint magnetic field at the unperturbed
coil locations in the vacuum region. This can be performed with the DIAGNO
code (Gardner 1990; Lazerson 2012), which employs the virtual casing principle to
efficiently compute the fields in the vacuum region due to the plasma current.

To demonstrate, we use the NCSX stellarator LI383 equilibrium. The toroidal
current profile was perturbed with I∆= 5.7× 105 A, ψm= 0.1ψ0 and ψw= 0.05ψ0. The
shape gradient is computed for each of the three unique modular coils per half-period
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FIGURE 3. The coil shape gradient for fι (3.11) computed using the adjoint solution (3.18)
for each of the 3 unique coil shapes (black). The arrows indicate the direction of Sk,
and their length indicates the local magnitude relative to the reference arrow shown. The
arrows are not visible on this scale on the outboard side.

(Williamson et al. 2005), keeping the planar coils fixed. The result obtained with the
adjoint solution, Sadjoint,k, is shown in figure 3. The shape gradient is also computed
with the direct approach, Sdirect,k. For the direct approach, the Cartesian components
of each coil are Fourier discretized (Xm, Ym, Zm). The numerical derivative with
respect to these parameters are computed for m 6 45 using an 8-point stencil. In
figure 4(a) the Cartesian components of the shape gradient computed with the adjoint
approach, Sl

adjoint,k, and with the direct approach, Sl
direct,k, are shown for each coil.

Here l ∈ {x, y, z}. The arrows indicate the direction and magnitude of Sk such that
if a coil were deformed in the direction of Sk, fι would increase according to (1.2).
The direct approach used 6553 calls to VMEC, while the adjoint only required two.
In figure 4(b) the fractional difference between the results obtained with the two
methods,

Sl
residual,k =

|Sl
adjoint,k − Sl

direct,k|√∫
Ck

dl (Sl
adjoint,k)

2

/∫
Ck

dl

, (3.19)

is plotted. The line-averaged values of Sl
residual are 6.1 × 10−2 for coil 1, 3.8 × 10−2

for coil 2 and 4.8× 10−2 for coil 3.
From figure 3 we see that the sensitivity of fι to coil displacements is much higher

in regions where the coils are close to the plasma surface. The shape gradient points
toward the plasma surface in the concave region of the plasma surface, while on
the outboard side the sensitivity is significantly lower, again indicating the ‘pinching’
effect seen in figure 2.

4. Conclusions
We have obtained a relationship between 3-D perturbations of MHD equilibria that

is a consequence of the self-adjoint property of the MHD force operator. The relation
allows for the efficient computation of shape gradients for either the outer plasma
surface using the fixed boundary adjoint relation (2.20) or for coil shapes using the
free boundary adjoint relation (2.18). The computation of the shape gradient of several
stellarator figures of merit has been demonstrated with both the adjoint and direct
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FIGURE 4. (a) The Cartesian components of the coil shape gradient for each of the 3
unique modular NCSX coils computed with the adjoint and direct approaches. (b) The
fractional difference (3.19) between the shape gradient computed with the adjoint approach
and the direct approach is plotted for each Cartesian component and each of the 3 unique
coils.
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approach. The application of the adjoint relation provides an O(N) reduction in CPU
hours required in comparison with the direct method of computing the shape gradient,
where N is the number of parameters used to describe the shape of the outer boundary
or the coils. For a fully 3-D geometry, N can be 102. Thus, the application of adjoint
methods can significantly reduce the cost of computing the shape gradient for gradient-
based optimization or local sensitivity analysis.

To compute the adjoint equilibria in this work, the full nonlinear MHD equilibrium
equations are solved using VMEC with the addition of a small perturbation to
the current profile, characterized by I∆, or a small perturbation to the pressure
profile, characterized by ∆. These parameters must be tuned carefully such that
the perturbation is large enough that the result is not dominated by round-off error,
but small enough that nonlinear effects do not become important. If a perturbed
equilibrium code were instead used, these difficulties could be avoided. However, it
is convenient to use the same code for both the unperturbed and adjoint equilibrium.

It should be noted that the adjoint approach we have outlined can not yield an
exact analytic shape gradient. Throughout we have assumed the existence of magnetic
surfaces as the 3-D equilibrium is perturbed. Therefore a code such as VMEC, which
minimizes an energy subject to the constraint that surfaces exist, is suitable. Generally
VMEC solutions do not satisfy (2.3) exactly (Nührenberg, Boozer & Hudson 2009)
as they do not account for the formation of islands or current singularities associated
with rational surfaces. Furthermore, the parameters ∆ and I∆ introduce additional
numerical noise. We have demonstrated that the typical difference between the shape
gradient obtained with the adjoint method and that computed directly from numerical
derivatives is .5 %. These errors should not be significant for applying the shape
gradient to an analysis of engineering tolerances. The discrepancy between the true
shape gradient and that obtained numerically, with the adjoint approach or with finite
difference derivatives, may become problematic as one nears a local minimum during
gradient-based optimization, as the resulting shape gradient may not provide a true
descent direction.

For the figure of merit considered in § 3.1, the additional force (δF2 in (2.14))
applied to the adjoint problem can be expressed as a gradient of a scalar pressure; thus
an existing equilibrium code could be utilized without modification. This approach
could be applied to other quantities of interest. For example, consider a figure of merit
which quantifies the vacuum magnetic well,

fW =

∫
VP

d3x w(ψ)V ′′(ψ), (4.1)

where w(ψ) is a weighting function and V ′′(ψ) = (∂/∂ψ)(
∫ 2π

0 dθ
∫ 2π

0 dζ
√

g). The
presence of a magnetic well (V ′′(ψ) < 0) has a stabilizing effect on MHD modes
(Greene 1997; Helander 2014) and has been considered in stellarator design (Hirshman
et al. 1999; Drevlak et al. 2018). Computing the shape gradient of fW requires solving
an adjoint force balance equation with a perturbation to the scalar pressure, similar to
the calculation in § 3.1.

For many interesting figures of merit the spatial dependence of the required force
is more complicated. Thus, an equilibrium code that allows for an arbitrary force
perturbation is needed. One possibility is a generalization of the code ANIMEC
(Cooper et al. 2009) that currently treats anisotropic pressure tensors in the form
of a bi-Maxwellian distribution. For example, the shape gradient of the neoclassical
particle flux in the 1/ν regime (Nemov et al. 1999) can be computed with the
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addition of a bulk force that takes the form δF2 = −∇ · P2 to the adjoint force
balance equation. Here P2 is a pressure tensor that has arbitrary spatial dependence.
For several figures of merit, the required additional bulk force does not take the form
of the divergence of a pressure tensor. Consider the following figure of merit, which
quantifies the departure from quasi-symmetry,

fQS =

∫
VP

d3x[B×∇ψ · ∇B− F(ψ)B · ∇B]2w(ψ), (4.2)

where w(ψ) is a weighting function and

F(ψ)=
(M/N)G(ψ)+ I(ψ)

M/Nι(ψ)− 1
. (4.3)

Here M and N are the mode numbers of the desired quasi-symmetry such that if
B(ψ,Mθ −Nζ ) for Boozer angles θ and ζ , then fQS= 0 (Helander 2014). The Boozer
covariant components are G(ψ) = 2IP/c and I(ψ) = 2IT/c, where IP is the poloidal
current outside the ψ surface. Computing the shape gradient of fQS requires the
addition of a bulk force to the adjoint force balance equation which does not take the
form of the divergence of a tensor pressure. These calculations will be reported in a
separate publication. We anticipate there will be numerous additional applications of
this technique for efficient optimization of MHD equilibria.
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Appendix A. Derivation of adjoint relation

The quantity UP =UP1 +UP2 consists of two terms, accounting for changes to the
vector potential due to MHD perturbations

UP1 =
1
c

∫
VP

d3x (δJ1 · ξ2 ×B− δJ2 · ξ1 ×B), (A 1)

and changes to the rotational transform,

UP2 =
1
c

∫
VP

d3x (δΦ1δJ2 · ∇ζ − δΦ2δJ1. · ∇ζ ). (A 2)

The quantity UP1 can be expressed by using (2.14) and applying the divergence
theorem to the pressure gradient terms,

UP1 =

∫
VP

d3x ξ2 ·

(
J× δB1

c
+∇p(∇ · ξ1)+ δF1

)
−

∫
VP

d3x ξ1 ·

(
J× δB2

c
+∇p(∇ · ξ2)+ δF2

)
. (A 3)
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We will define δB̂1,2 = ∇ × (ξ1,2 × B) such that δB1,2 = δB̂1,2 − ∇δΦ1,2 × ∇ζ . The
terms in (A 3) due to δB̂1,2 can be evaluated using J= J||b+ cb×∇p/B and (2.3),

1
c

∫
VP

d3x(ξ2 · J× δB̂1 − ξ1 · J× δB̂2)=

∫
VP

d3x
J||
cB
∇ · ((ξ1 ×B)× (ξ2 ×B))

+

∫
VP

d3x
1
B
((ξ2 · ∇p)b · δB̂1 − (ξ1 · ∇p)b · δB̂2). (A 4)

The first term in (A 4) can be simplified using ∇ · J = 0 and noting that the
perturbation can be written as ξ1,2 = ξ

ψ

1,2∇ψ + ξ
⊥

1,2b × ∇ψ . Applying the identity
b · δB̂1,2 = −B2∇ · ξ1,2 − ξ1,2 · ∇B2

− 4πξ1,2 · ∇p to the second term, the following
expression can be obtained,

1
c

∫
VP

d3x(ξ2 · J× δB̂1 − ξ1 · J× δB̂2)=

∫
VP

d3x((∇ · ξ2)ξ1 · ∇p− (∇ · ξ1)ξ2 · ∇p). (A 5)

Hence we obtain the following expression for UP1 ,

UP1 =

∫
VP

d3x(ξ2 · δF1 − ξ1 · δF2)−
1
c

∫
VP

d3x(δι1ξ2 · ∇ψ − δι2ξ1 · ∇ψ)J · ∇ζ . (A 6)

We now consider UP2 defined in (A 2). Applying (2.10) for the change in toroidal
current, integrating by parts in ψ and combining the expressions for UP1 (A 3) and
UP2 (A 2), we obtain

UP =

∫
VP

d3x (ξ2 · δF1 − ξ1 · δF2)+
2π

c

∫
VP

dψ
(
δΦ1

dδIT,2

dψ
− δΦ2

dδIT,1

dψ

)
−

1
c

∫
SP

d2x(δΦ1ξ2 − δΦ2ξ1) · nJ · ∇ζ . (A 7)

Next we combine UP (A 7) with UB (2.16) and add Uc (2.17) to obtain the free
boundary adjoint relation (2.18).

To obtain the fixed-boundary adjoint relation, the integral over the plasma volume
(2.13) can be related to a surface integral by applying the divergence theorem, (2.19).
Using (2.8) and applying several vector identities,

UP = −
1

4π

∫
SP

d2x n · (ξ1δB2 ·B− ξ2δB1 ·B)

−
1

4π

∫
SP

d2x(δΦ2δB1 − δΦ1δB2) · ∇ζ × n. (A 8)

Using the expression for UP, (A 7), expressing the second term in (A 8) as a perturbed
current using (2.10), the fixed-boundary adjoint relation (2.20) is obtained.

Appendix B. Alternate derivation of fixed-boundary adjoint relation
The MHD force operator,

F(ξ1,2)=
J× (∇× (ξ1,2 ×B))

c
+
∇× (∇× (ξ1,2 ×B))×B

4π
+∇(ξ1,2 · ∇p), (B 1)
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possesses the following self-adjointness property (Bernstein et al. 1958; Goedbloed &
Poedts 2004),∫

VP

d3x(ξ2 ·F1 − ξ1 ·F2)=
1

4π

∫
SP

d2xn · (ξ1B · δB̂2 − ξ2B · δB̂1), (B 2)

where δB̂1,2 = ∇ × (ξ1,2 × B) is the perturbed field corresponding to the MHD
perturbations. For perturbations described by (2.8)–(2.10) and (2.14), we have the
following force operator,

F(ξ1,2)=
J× (∇δΦ1,2 ×∇ζ )

c
+
∇× (∇δΦ1,2 ×∇ζ )×B

4π
− δF1,2. (B 3)

Using (B 3) and several vector identities, the left-hand side of (B 2) can be written as∫
VP

d3x(ξ2 ·F1 − ξ1 ·F2) =
1
c

∫
VP

d3x(δι1ξ2 − δι2ξ1) · ∇ψJ · ∇ζ

−
1

4π

∫
VP

d3x∇ψ ×∇ζ · (δι1δB̂2 − δι2δB̂1)

−
1

4π

∫
SP

d2x(ξ2δι1 − ξ1δι2) · n(∇ψ ×∇ζ ·B)

−

∫
VP

d3x (ξ2 · δF1 − ξ1 · δF2). (B 4)

In arriving at (B 4), we use J · ∇ψ = 0. Using (2.10) to re-express the first two terms
on the right-hand side,∫

VP

d3x(ξ2 ·F1 − ξ1 ·F2) =
2π

c

∫
VP

dψ(δIT,2δι1 − δIT,1δι2)

−
1

4π

∫
SP

d2x(ξ2δι1 − ξ1δι2) · n(∇ψ ×∇ζ ·B)

−

∫
VP

d3x(ξ2 · δF1 − ξ1 · δF2). (B 5)

Using (2.8) and (B 2) we obtain (2.20).

Appendix C. Interpretation of the displacement vector

For MHD perturbations such that δB = ∇ × (ξ × B) the displacement can be
interpreted as a vector describing the motion of a field lines. Thus a normal
perturbation to the surface of the plasma as in (1.1) can be expressed in terms
of the displacement vector,

δf (SP; ξ)=

∫
SP

d2x Sξ · n. (C 1)

For perturbations that allow for changes in the rotational transform it remains to be
shown that a similar relation can be found.
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As we require that ψ remain a flux surface label in the perturbed equilibrium, the
Lagrangian perturbation to ψ at fixed position is

δψ =−δr · ∇ψ. (C 2)

The perturbed magnetic field, B′ = B + δB must remain tangent to ψ ′ = ψ + δψ
surfaces; thus to first order in the perturbation,

0=B′ · ∇ψ ′ =B · ∇δψ + δB · ∇ψ. (C 3)

Applying the form for the perturbed field allowing for changes in the rotational
transform, δB = ∇ × (ξ × B − δΦ∇ζ ), and using several vector identities, the
following condition is obtained

B · ∇(δr · ∇ψ)=B · ∇(ξ · ∇ψ). (C 4)

This implies that δr · ∇ψ = ξ · ∇ψ + F(ψ), where F(ψ) is some flux function which
can be determined by requiring that the perturbation to the toroidal flux as a function
of ψ vanishes, δΦT(ψ)= 0.

The perturbed toroidal flux through a surface labelled by ψ contains two terms,
corresponding to the flux of the unperturbed field through the perturbed surface and
the perturbed field through the unperturbed surface,

δΦT(ψ)=

∫
∂ST (ψ)

dθ
√

gδr · ∇ψB · ∇ζ +
∫

ST (ψ)

dψ dθ
√

gδB · ∇ζ . (C 5)

Using the form for δB, applying the divergence theorem and noting that B · ∇ζ =
√

g−1, the following condition is obtained,

δΦT(ψ)=

∫ 2π

0
dθ(δr · ∇ψ − ξ · ∇ψ). (C 6)

By requiring that δΦT(ψ) = 0, we find that F(ψ) = 0. Thus we can express shape
gradients in the form of (C 1) even when the rotational transform is allowed to vary.
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