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Abstract. The most convincing evidence to date of solar-type oscilla­
tions in other stars comes from recent observations of 0 Hydri (Bedding 
et al., 2001) and ctCenA (Bouchy & Carrier, 2001). It is the current 
belief that the convection dynamics in the outer layers of sun-like stars 
is the source for driving the intrinsically stable modes to the observed 
amplitudes. Comparing such observations with theoretical models will 
help us improve our understanding of the interaction between convection 
and pulsation. 

In this contribution I review the mechanisms responsible for mode 
damping in stars with convective envelopes, and the basic mechanism of 
stochastic driving by turbulent convection. The application of a stochas­
tic excitation formalism to the Sun is discussed and compared with re­
cent measurements and numerical simulations. Amplitude predictions for 
models of Procyon, a Cen A and /? Hydri are compared with observations. 

1. Introduction 

Sun-like stars possess surface convection zones, and it is in these zones, where 
the energy is transported principally by the turbulence, that most of the driving 
of the intrinsically stable modes takes place. Mode stability is governed not 
only by the perturbations in the radiative fluxes (via the K-mechanism) but also 
by the perturbations in the turbulent fluxes (heat and momentum). The study 
of mode stability therefore demands a theory for convection that includes the 
interaction of the turbulent velocity field with the pulsation. 

Predictions of amplitudes of solar-like oscillations in other stars were car­
ried out first by Christensen-Dalsgaard & Frandsen (1983) and later by Houdek 
et al. (1999) and by Samadi et al. (2001). Christensen-Dalsgaard & Frandsen 
obtained amplitudes of modes by postulating equipartition between the energy 
of an oscillation mode and the kinetic energy in one convective eddy having the 
same turnover time as the period of the oscillation. This simple formula for 
excitation was proposed by Goldreich & Keeley (1977b), who used it to esti­
mate amplitudes for the solar case, assuming damping rates determined solely 
by a scalar turbulent viscosity (Goldreich & Keeley, 1977a). Houdek et al. 
(1999) assumed the excitation mechanism proposed by Balmforth (1992b). In 
Balmforth's calculations the linear damping rates were obtained from solving 
the equations of linear nonadiabatic oscillations in which convection was treated 
with the time-dependent, nonlocal convection formalism by Gough (1976, 1977). 
As discussed by Balmforth (1992a) for the solar case and by Houdek et al. (1999) 
for other stars, it is the perturbed momentum flux which crucially contributes 
to mode damping and to making all modes stable in these stars. Recently 
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Samadi & Goupil (2001) proposed a turbulent-excitation model based on Gol-
dreich et al.'s (1994) work. They included a more sophisticated model for the 
excitation process due to the entropy perturbations. Furthermore, with their 
formulation the effect of assuming different turbulent spectra in the excitation 
model on the mode amplitudes can be investigated consistently. 

In this contribution we adopt Balmforth's excitation model to predict am­
plitudes of radial p modes for the Sun, aCenA, /SHydri and Procyon. Stellar 
models and damping rates are computed in the manner of Houdek et al. (1999). 

2. The stochastic excitation model 

2.1. Mode parameters 

Were solar p modes to be genuinely linear and stable, their power spectrum 
could be described in terms of an ensemble of intrinsically damped, stochasti­
cally driven, simple-harmonic oscillators, provided that the background equilib­
rium state of the star were independent of time (Fig. 1); if we assume further 
that mode phase fluctuations contribute negligibly to the width of the spectral 
lines, the intrinsic damping rates of the modes, F/2, could then be determined 
observationally from measurements of the pulsation linewidths T. 

The power (spectral density), P, of the displacement £„; of a damped, 
stochastically driven, simple-harmonic oscillator, satisfying 

'nl 
d 2 £ n / d£n ( 2 + r„(—— +Wni€nl 
d*2 ' "' di = /(*)> (1) 

which represents the pulsation mode of order n and degree I, with linewidth Tn[ 
and frequency u>ni and inertia /„;, satisfies 

P o c P L P f = ?
 VnflV2/APti (2) 
(w - wnly + r y 4 

assuming Tni <C u>nh where f(t) describes the stochastic forcing function. The 
total mean energy in the mode is 

InlVZ := lu;2
nlInl(\Anl\

2) ex ^ 4 c< u2
nlInl [°° P(w) du,, (3) 

^ •'n(l nl JO 

where Ani is the displacement amplitude (angular brackets, (), denote an ex­
pectation value); i.e., it is directly proportional to the injected power of the 
stochastic forcing, Pf, at the frequency uini and indirectly proportional to Tn;. 
Thus, in order to compute the root-mean-square velocity amplitude, Vni, we 
need to model the damping rate and the rate of energy of the random forcing. 

2.2. Damping rates 

Basically, the damping of stellar oscillations arises from two sources: processes 
influencing the momentum balance, and processes influencing the thermal energy 
equation. Each of these contributions can be divided further according to their 
physical origin, as illustrated in Fig. 2. A detailed discussion of the processes 
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Figure 1. Power spectra of a randomly excited, damped, harmonic 
oscillator. Pf represents the spectral density of the random force and P 
is the product of the Lorentzian PL and Pf (adopted from Kosovichev, 
1995). 

was given by Houdek et al. (1999 and references therein). Here we limit the 
discussion to the convection dynamics only. 

Vibrational stability is influenced crucially by the exchange of energy be­
tween the pulsation and the turbulent velocity field. The exchange arises either 
via the pulsationally perturbed convective heat flux, or directly through dynam­
ical effects of the fluctuating Reynolds stress. In fact, it is the modulation of 
the turbulent fluxes by the pulsations that seems to be the mechanism predom­
inantly responsible for the driving and damping of solar-type acoustic modes. 
It was first reported by Gough (1980) that the dynamical effects arising from 
the turbulent momentum flux (also called turbulent pressure pt) perturbations 
contribute significantly to the damping I \ . Detailed analyses (Balmforth, 1992a) 
reveal how damping is controlled largely by the phase difference between the 
momentum perturbation and the density perturbation. Therefore, turbulent 
pressure fluctuations must not be neglected in stability analyses of solar-type 
p modes. Results of modelled solar damping rates were discussed recently by 
Houdek et al. (2001). 

2.3. Acoustical noise generation rate 

Intrinsically stable modes can be stochastically excited by the turbulent convec­
tion. The process can be regarded as multipole acoustical radiation (e.g. Unno, 
1964), e.g., the volume expansion of the convective eddies results in a monopole 
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Figure 2. Physical processes contributing to the linear damping rate 
T/2. They can be associated with the effects arising from the momen­
tum balance (rayn) and from the thermal energy balance (rg) . The 
contributions rscatt and rieak are in parentheses because they have not 
been taken into account in the computations reported in this paper. 
The influence of Reynolds stress on solar modes, contributing to Ft, 
has been treated by Goldreich & Keeley (1977a) in the manner of a 
time-independent scalar turbulent viscosity. The linewidth of the os­
cillations is influenced also by nonlinearities, both those coupling a 
mode to others (Kumar & Goldreich, 1989) and those intrinsic to the 
mode itself. 

radiation. The turbulent-excitation model predicts not only the right order of 
magnitude for the p-mode amplitudes (Gough, 1980), but it also explains the 
observation that millions of modes are excited simultaneously. Acoustical ra­
diation by turbulent multipole sources in the context of stellar aerodynamics 
has been considered by several authors (see Houdek et al. 1999 and references 
therein). Because of the lack of a complete convection theory, the mixing-length 
approach still represents the main method for computing the turbulent fluxes 
in stars with convectively unstable regions. One of the main assumptions in the 
mixing-length formulation is the Boussinesq approximation. It neglects acoustic 
wave generation by assuming the fluid to be incompressible. This is demon­
strated with the linearized expression of the perturbed continuity equation: 

dtP' + V • (pu) = 0 
exact 

-» V • (pu) = 0 
anelastic appr. 

-> V-w = 0, 
Boussinesq 

(4) 

where p' is the Eulerian density perturbation and u is the convective velocity 
field. Consequently a separate model is needed to describe approximately the 
acoustical noise generated by the turbulent motion of the convective eddies. Such 
a model was proposed by Lighthill (1952); in this model the density fluctuations 
are the same between a real fluid with highly nonlinear motion and a fictitious 
acoustic medium with linear motion upon which an external stress system T^ is 
acting. Expressed mathematically, 

Cp' = didjTij (5) 
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where £ is a linear wave operator and Ty = puiUj is a nonlinear stress tensor. 
In other words, it is the nonlinearity of the fluid motion that generates the 
acoustical noise. 

Balmforth (1992b) reviewed the theory of acoustical excitation in a pul­
sating atmosphere, and, following Goldreich & Keeley (1977b), he derived the 
following expression for the rate of energy injected into a mode with frequency 
u) by quadrupole emission through the fluctuating Reynolds stress: 

PK=V/O ^V5(m'u'dm' (6) 

0 

where £,U,T are the length, velocity and correlation time scales, respectively, of 
the most energetic eddies, determined by the mixing-length model. The function 
S(m, wr) accounts for the turbulent spectrum, which approximately describes 
contributions from eddies with different sizes to the noise generation rate PR, 
and which we implemented as did Balmforth (1992b). The displacement eigen-
function of a p mode is described by £ (r and M are radius and total mass). 

A similar expression is obtained for the emission of acoustical radiation by 
low-order multipole sources through the fluctuating entropy. The ratio of the 
noise generation rate between the fluctuating entropy, Ps, and Reynolds stress 
is (Goldreich et al., 1994): 

where a is the mixing-length parameter (which is the ratio between the mixing 
length £ and the local pressure scale height), 71 is the first adiabatic exponent and 
$ is the eddy-shape parameter, which is of order unity. Assuming typical values 
for a, 7i and $ for the solar case, the value of this ratio is ~ 3. Consequently 
the noise generation rate due to the fluctuating entropy is about one order of 
magnitude larger than the contribution from the fluctuating Reynolds stress (see 
left panel of Fig. 3). In the right panel of Fig. 3 the results are depicted from 
hydrodynamical simulations by Stein & Nordlund (2001). From this comparison 
it is obvious that there is still controversy as to whether the fluctuating entropy 
or Reynolds stress is the dominating source of excitation 

Another way to study the properties of the turbulent-excitation model is 
to compare the depth and frequency dependence of the integrand of P R with 
solar measurements and with hydrodynamical simulations of the Sun. The re­
sults are depicted in Figure 4: the contours in the top panel show the integrand 
of Eq. (6) multiplied by dm/dlnp, the maximum values of which are plotted 
by the dot-dashed line. These maximum values are compared with the posi­
tions of the horizontal, solid lines, which represent the error bars of Chaplin 
& Appourchaux's (1999) measurements of the locations of the driving regions. 
For modes with frequencies ^ 2.3 mHz the computed locations of the excitation 
regions are in good agreement with the observations. These modes have frequen­
cies larger than the acoustical cut-off frequency, illustrated by the solid curve 
(the dashed curve is the isothermal approximation to the acoustical potential), 
and are therefore propagating. For these modes the frequency dependence of 
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Figure 3. Noise generation rate as function of frequency for a solar 
model. Left: Results, obtained with Eqs. (6) and (7), are compared 
with observations by BiSON (Chaplin et al., 1998) and from the BBSO 
(Libbrecht, 1988). The contribution from the fluctuating entropy Ps 

is about one order of magnitude larger than the contribution from the 
fluctuating Reynolds stress PR. Right: Results are obtained from hy-
drodynamical simulations (adopted from Stein & Nordlund 2001). The 
contribution from the fluctuating Reynolds stress (Pturb) is on average 
about four times larger than the contribution from the fluctuating en­
tropy (Pgas). 

PR is predominantly determined by the turbulent spectrum - described by the 
function S in Eq. (6). Modes with frequencies smaller than the acoustic cut-off 
frequency are evanescent. The frequency dependence of P R for these modes is 
predominantly determined by the shape of the eigenfunctions, i.e. by the term 
(d£/dr)2/I, and consequently by the structure of the equilibrium model. 

The lower panel of Fig. 4 shows the logarithm to the base 10 of the integrand 
of the total noise generation rate (entropy plus Reynolds stress) as functions of 
frequency and depth obtained from numerical simulations by Stein & Nord­
lund (2001). As for the model results (top panel), the driving region decreases 
with frequency; however, in the simulations it extends further out to the surface 
for modes with frequencies v <^ 1.8 mHz. 

3. Amplitude predictions 

With the estimates of the damping rates and noise generation rate, the oscillation 
amplitudes can be obtained from Eq. (3). Fig. 5 plots the mean-square velocity 
amplitudes for a solar model and for three solar-type stars. For the Sun results 
are plotted for computations in which both observed (solid curve) and theoretical 
(dashed curve) damping rates were assumed. Both results are calibrated to the 
BiSON (Chaplin et al., 1998) observations (symbols) by scaling the maximum 
values of the computed amplitudes to the measurements. In the remaining panels 
of Fig. 5 the mean-square velocity amplitudes for models of a Cen A, /? Hydri and 
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Figure 4. Top: Contours display the integrand of Eq. (6) multi­
plied by dm/dlnp, the maximum values of which are plotted by the 
dot-dashed curve. The horizontal, straight lines represent error bars 
of the measured location of the excitation region by Chaplin & Ap-
pourchaux (1999). The solid and dashed curve display the exact and 
isothermal approximation of the acoustical potential. Bottom: Loga­
rithm of integrand of noise generation rate from Stein & Nordlund's 
(2001) simulations. 
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Figure 5. Mean-square velocity amplitudes for models of the Sun, 
a Cen A, /3 Hydri and Procyon, assuming Eq. (6) for the total noise 
generation rate. 

Procyon are scaled by the factor 1.57, obtained from the scaled solar model using 
the theoretical damping rates. 

Table 1. Comparison between theoretical V and observed V̂ ,bs veloc­
ity amplitudes for three solar-type stars. Quoted amplitudes are peak 
values in cms - 1 . A solar peak value of V© = 2 3 c m s - 1 is assumed. 
References to the observations are indicated. 

Star M/MQ L/LQ Teff (K) V/VQ V Vohs Reference 

a Cen A 
P Hydri 
Procyon 

1.16 
1.11 
1.46 

1.58 
3.50 
6.62 

5799 
5800 
6395 

1.6 
2.8 
5.7 

37 
65 
132 

35 
50 
60 

Bouchy& Carrier (2001) 
Bedding et al. (2001) 
Martic et al. (1999) 

In Table 1 the peak values of the theoretical velocity amplitudes V are 
compared with recent observations V b̂s- For the low-mass stars a Cen A and /3 
Hydri the values of V and VobS are in fair agreement. However, for the more 
massive and hotter star, Procyon, the theoretical amplitude is larger by a factor 
of about 2.2. 

For solar-type stars with masses ;> 1.35 MQ and which are hotter than the 
Sun, theoretical damping rates may be too small (possibly due to the lack of 
modelling another mechanism such as incoherent scattering, see Fig. 2) and the 
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estimated convective velocities too large, leading to predicted amplitudes larger 
than the data suggest. 
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