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A CHARACTERISATION OF SIMPLE GROUPS PSL(5,q)

A. IRANMANESH AND S.H. ALAVI

Order components of a finite group are introduced in [4]. We prove that, for every
q, PSL(5,q) can be uniquely determined by its order components. A main conse-
quence of our result is the validity of Thompson's conjecture for the groups under
consideration.

1. INTRODUCTION.

If n is an integer, 7r(n) is the set of prime divisors of n and if G is a finite group
7r(G) is denned to be 7r(|G|). The prime graph Y(G) of a group G is a graph whose
vertex set is 7r(G), and two distinct primes p and q are linked by an edge if and only if G
contains an element of order pq. Let TT,, i = 1,2,..., t(G) be the connected components
of r(G). For |G| even, TTI will be the connected component containing 2. Then |G| can be
expressed as a product of some positive integers rrii, i = 1,2,..., t(G) with 7r(mi) = the
vertex set of 7Tj. The integers mi's are called the order components of G. The set of order
components of G will be denoted by OC{G). If the order of G is even, then m,\ is the even
order component and m 2 , . . . , mt(G) wiU be the odd order components of G. The order
components of non-Abelian simple groups having at least three prime graph components
are obtained by Chen [8, Tables 1,2,3]. The order components of non-Abelian simple
groups with two order components are illustrated in Table 1 according to [13, 18]. The
following groups are uniquely determined by their order components. Suzuki-Ree groups
([6]), Sporadic simple groups ([3]), PSL2(q) ([8]), PSL3(q) where q is an odd prime
power ([10]), Es(q) ([7]), F4(q) [q = 2n] ([12]), 2G2(q) ([2]) and Ap where p and p - 2 are
primes ([11])- In this paper, we prove that PSL(5,q) is also uniquely determined by its
order components, where q is a prime power.

THE MAIN THEOREM. Let G be a finite group, M - PSL(5,q) and 0C(G) =

0C(M). ThenG^M.
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2. PRELIMINARY RESULTS

In this section we state some preliminary lemmas to be used in the proof of the main

theorem.

DEFINITION 2.1: ([9]) A finite group G is called a 2-Frobenius group if it has a

normal series G > K > H > 1, where K and G/H are Frobenius groups with kernels H

and K/H, respectively.

LEMMA 2 . 2 . ([18, Theorem A]) IfG is a finite group and its prime graph has

more than one component, then G is one of the following groups:

(a) a simple group;

(b) a Frobenius or 2-Frobenius group;

(c) an extension of a TTI — group by a simple group;

(d) an extension of a simple group by a TTI—solvable group;

(e) an extension of a ni—group by a simple group by a Hi-group.

LEMMA 2 . 3 . ([18, Corollary]) IfG is a solvable group with at least two prime

graph components, then G is either a Frobenius group or a 2-Frobenius group and G has

exactly two prime graph components one of which consists of the primes dividing the

lower Frobenius complement.

By Lemma 2.3 and the proof of Lemma 2.2 in [18] we can state the following lemma.

LEMMA 2 . 4 . If G is a finite group and its prime graph has more than one com-

ponent, then G is either:

(a) a Frobenius or 2-Frobenius group; or

(b) G has a normal series 1 < H < K < G such that H and G/K are it\ -groups,

and K := K/H is a non-Abelian simple group with 7r,' C n(K) for alii > 1.

Moreover, ~K<G/H ^ Aut(F).

LEMMA 2 . 5 . ([1, Theorem 1]) Let G be a Frobenius group of even order, and

let H and K be Frobenius complement and Frobenius kernel of G respectively. Then

t(G) — 2, the prime graph components ofG are n(H) and n(K), and G has one of the

following structures.

(a) 2 € K{K), all Sylow subgroups of H are cyclic.

(b) 2 6 K(H), K is an Abelian group, H is a soivaWe group, the Sylow sub-

groups of odd order of H are cyclic and the 2-Sylow subgroups of H are

cyclic or generalised quaternion groups.

(c) 2 € n(H), K is an Abelian group, and there exists Ho < H such that

\H : Ho\ ^ 2, Ho = Z x SL(2,5), (\Z\,2 • 3 • 5) = 1 and the Sylow

subgroups of Z are cyclic.
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LEMMA 2 . 6 . ([1, Theorem 2]) Let G be a 2-Frobenius group of even order.

Then t(G) = 2 and there exists a normal series 1 < H < K < G such that, TTI = ir(G/K) U
7T{H),TT{K/H) = TT2, G/K and K/H are cyclic, \G/K\ \ \Aut(K/H)\, (\G/K\,\K/H\) =

1 and \G/K\ < \K/H\. Moreover, H is a nilpotent group.

LEMMA 2 . 7 . ([5, Lemma 8]) Let G be a finite group with t{G) ^ 2 and N

a normal subgroup of G. If N is a 7Tj —group for some prime graph component of G

and mi,m2,..., mT are some of the order components of G but not a TTj-number, then,
mi • m2 • • • • • mr is a divisor of \N\ — 1.

LEMMA 2 . 8 . Let G be a finite group with OC(G) = OC{M) where M =

PSL(5,q), and suppose mi(q) and 7712(9) a r e the even and odd order components of

M respectively. Then:

(a) Ifp € 7r((7), then \SP\ < q7 or is equal to q10 where Sp G Sylp(G).

(b) If q' is a power of a prime number, q' \ \G\ and q1 — 1 = 0 (modm2(g)),

thenq' = q5 orq10.

(c) If q' is a power of a prime number, q1 | |G|, then q' + 1 ^ 0 (modm2(<7)).

(d) m2(q) — e for e = —1,2,3 and qa + 1 for a = 5, 10 do not divide m1(q).

PROOF: Since \M\ = |G| = ql0{q2-l){q3-l)(q4-l){q5-l)/k where k - (5,9-1), it
is easy to show that (a) holds. To prove (b) and (c), let q' = p° where p is a prime number.
Since \G\ = qlo(q-l)*(q + l)2(q2 + l)(q2 + q + l)-Tn2(q) where m2(q) = (q5-!)/(k(q~l)),

q' must divide one of the coprime factors g10, (q - I)4, 3{q - I)4, (q + I)2, (q2 + q + l ) /3 ,
q2+q+l or q2 + l if q is an even number or g10, (g—1)4/16, 3(g- l ) 4 /16, 8 (g - l ) 4 , 12(g—I)4,
1 6 ( g - l ) 4 , 4 8 ( g - l ) 4 , ( g + l ) 2 / 8 , ( 9 + l ) 2 / 4 , 3 2 ( g + l ) 2 , (g

2 + l ) /2, 9
2 + l, (g

2 + g + l ) / 3 or
q2 + q + 1 if q is an odd number. Therefore, it is sufficient to consider the cases where q'

divides?10, 48(<?-l)4, 32(g+l)2 , q2 + l or q2 + q + l. Assume that q' + e = 0mod(m2(q))

where e = ±1 , that is, q' +e = 7"7n2(q
r) for some positive integer r. If q' | 48(g - I)4 , then

48(g - 1 ) 4 = sq1 for some integers s and therefore, 48(g - I)4 + es — rsmvfa). If k = 5, we
have A{q) = (rs - 240)g4 + {rs + 960)<?3 + {rs - 1440)g2 + {rs + 960)q + rs- 5es - 240 = 0,
but for rs > 240 it is easy to see A(q) > 0 and for rs ^ 240 we can get a contradiction
by calculation. For the case k — 1, we also get a contradiction by a similar method. If
q' I 32(<7 + I)2, q2 + 1 or q2 + q + 1, then m2{q) s£ 32(g + I)2 + 1, q2 + 2 or q2 + q + 2
respectively, and by calculation we get a contradiction. Therefore, q' | q10. If q ^ 5, by
calculation we can see that (b) and (c) are valid. Thus we may assume that q > 5. Since
m2{q) ^ <?' + e, we have q' > q3, q' = q3pn and q' + e = rm2{q) for some positive integer
n.

Now let e = - 1 and q' — 1 = rm2(<j). If g' ^ qb, then rr(i2(?) = q' - 1 ^ g5 — 1, thus
r ^.k(q- 1). On the other hand, r(q4 + q3 + q2 +q)+ r + k = kq1 - kq3pn, so q \ r + k,

thus, q ^r + k ^ kq. If k = 1, then r + 1 = 9 and thus q1 = qb- If fc = 5, then r + k = tq

where t = 1,2,.. . , 5. For i / 5 we have r(q3 + q2 + g' -+• r + t = 5q2pn, so q \ r + t
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but q\r + k — r + 5, thus q | 5 — t, that is, q < 5 which is a contradiction. If t — 5,
then r + 5 = 5q, and thus q' = q5. Now let q' > q5, then q' = g5pm for some positive
integer m. By (a), q' < g10, so p m ^ q5. Since g' - 1 = kpm(q - I)m2{q) + pm - 1 and
m2{q) I Q1 ~ 1) then p m — 1 = 0(mod 7712(9)) with p m ^ g5 and by a similar method as
the last case we must have pm = qb, thus q' = q10 and therefore, (b) is proved. Suppose
that e — 1 and q' + 1 = rm2(q). If #' ^ <75, as above, r < k(q - 1) and 9 | r — k, and thus,
q ^ r — k < k(q — 2). If k = 1, then q ^ r — 1 ^ q — 1 which is impossible. If /c = 5,
then r -5 = tq where * = 1,2,3,4. Thus r(g3 + g 2 + g ) + r + i = 5g2pn, so 9 | r + i. But
9 I r — 5, thus q\ t + 5, that is, <? = 2,3,4,7,8 or 9 and it contradicts k = 5. Therefore,
q' > g5, that is, 9' = <75pm for some positive integer m. By (a), q' ^ 910, so pm ^ g5.
Since 9 '+ 1 = kpm(q - I)m2(q) + pm + 1 and m2(g) | g' + l, thenp m + l = 0(mod m2(q))

with p m ^ q5 and as above we get a contradiction. Now the proof of (c) is completed.
Since the proof of (d) is similar for each cases, we present one of them. Let e = — 1.
Since m^q) = f(q)(m2{q) + 1) + r{q) where r(q) = -20q3 + 40q2 - 849 + 40 for 5 \ q - 1,
and r(q) = -4980g3 + 7800g2 - 8820? - 3240 for 5 | q - 1 , if m2(q) + 1 | mx{q), then
r(q) — 0. This has no solution which is contradiction. D

LEMMA 2 . 9 . Let G be a finite group and OC(G) - OC(M) where M =

PSL(5, q). Then G is neither a Frobenius group nor a 2—Frobenius group.

PROOF: If G is a Frobenius group, then by Lemma 2.5, OC(G) = {\H\, \K\) where
H and K are the Frobenius complement and the Frobenius kernel of G, respectively.
Suppose that 2 | \K\, then \K\ = mx(q) and \H\ = m2(g). Let p be a prime number
which divides \K\ and p \ q. By nilpotency of K, Sp must be a unique normal subgroup of
G where 5P is p-Sylow subgroup of K. Thus m2(g) | \SP\ — 1 by Lemma 2.7. Therefore,
\SP\ = q5 or q10 by Lemma 2.8(b), which is a contradiction. If 2 | \H\, then \H\ = mi(q)

and \K\ = m2(q). Since \H\ divides \K\ — 1, rti\{q) \ m2(q) — 1, which is a contradiction.

Let G be a 2-Frobenius group. By Lemma 2.6, there is a normal series 1<H<K<G

such that \K/H\ = m2(q) and \G/K\ < \K/H\. Since \K/H\ = m2(q) = (q5 - l)/((q -
1)(5, q — 1)) < (<72 + l)(q2 + q + 1), there exists a prime number p such that p | (q2 +

\)(q2 + q + 1) and p does not divide \G/K\, that is, p | \H\ since TTI = x(G/K) U ?r(/f).
But 5P, the p—Sylow subgroup of i / , must be a normal subgroup of K because H is
nilpotent. Therefore, m2(q) \ \SP\ — 1 by Lemma 2.7 which contradicts Lemma 2.8(b). D

LEMMA 2 . 1 0 . Let G be a finite group. If the order components of G are the

same as those of M = PSL(5, q), then G has a normal series 1 < H < K < G satisfying

the following two conditions:

(a) H and G/K are TTI— groups, K/H is a non-Abelian simple group and H is
a nilpotent group.

(b) The odd order component of M is equal to the odd order component of

some K/H. Especially, t(K/H) ^ 2.
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P R O O F : Part (a) of the Lemma follows from Lemma 2.4 and 2.9 because the prime
graph of M has two prime graph components.

To prove (b) note if p and q are prime numbers, then if K/H has an element of order
pq, so G has an element of order pq. Hence by the definition of prime graph components,
an odd order component of G must be an odd order component of K/H. If q is odd,
then by Table I, the number of order components of M is equal to two. Therefore,
t(K/H) >2. U

In the next section we prove the Main Theorem.

3. PROOF OF THE MAIN THEOREM.

By Lemma 2.10, G has a normal series 1 < H < K < G such that H and G/K are
TTi-groups, K/H is a non-Abelian simple group where t(K/H) ^ 2, and the odd order
component of M is the odd order component of some K/H, that is, one of the odd order
component of K/H is equal to m2(g) = (q5 - l)/((<7 — 1)(5, q — 1)). We summarise the
relevant information in Tables I-III below.

Table I
The order components of simple groups1 with t[G) = 2

Group

Ap, p ^ 5,6
p and p — 2 not both prime

p — 1 and p + 1 not both prime
Ap+2* P ^ 3,4

p and p + 2 not both prime

Ap(q),q-l\p+l

2AP ,( ,)

2Ap(q), q + l | p+l

Orcmpl

3 - 4 - ( p - 3 ) ( p - 2 ) ( p - l )

9 rtp-.tnp-.1^'* ^

0rcmp2

P

P

P

9 P - 1

(0-l^(p,a-l)

9* + 1
(, + l^(p,? +l)

9 + 1

1 p is an odd prime number.

https://doi.org/10.1017/S0004972700020256 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700020256


216 A. Iranmanesh and S.H. Alavi [6]

Table I (continued)

Group

2A3(2)

Bn{q), n = 2 m ^ 4,9 odd

Cn(q), n = 2m 2 2

Cp(«), 9 = 2,3

Dp(q),p ^ 5, 9 - 2,3,5

D p + 1 ( 9 ) , 9 - 2 , 3

2£>n(9), n = 2m £ 4

2Z?n(2), n = 2m + 1 ^ 5

Dp(3),p^ + , p ^ 5

Dn{3), 71 = 2"* + 1 ^- p, 772 Ŝ 2

£7 2(<7), Q = ^(niod 3),£ = i l , Q > 2
3Z?4(cj)

F4(q), 9 odd
2 F 4 (2) '

£/g(9)

2 ̂ 6 (9), 9 > 2

72

i/e
Mel
Co\
Co3

Fiii
F5=HN

Orcmpl

2f

9" 2 (9 n - l )

9J>2(9" + 1)

gp(p-i>n
1

( 2 , 9 - 1 ) ' ^ '

2n(n—l)/2n 1 lW2
n

i3"(n-1'(3" + l)(3

96(93-e)(
ql2(q6 ~ 1)(92

924(98 - 1)(«
211

93 6(91 2 - 1)(98 - 1)(96 -

g36(g12 - 1)(98 - I)(t76 -

28

27-
214 • 3 3

2 1 0 - 3

2 7 - 3
221 , o9 . c

2 1 0 • 3 7

2 1 7 • 3 9

214 . 36

•34

"?=,'(

«?=!*(

°~1(92

L)(9"+

"=i1(92

~ — 1

- 1 (

1-1 _

92* — 1)

32* 1)

q2' — 1)

- 1)

- l)IIp1
1(92i - 1)

1)n^Ti2(3 2* - J )

)(q + e)
- l ) ( 9 4 + 92 + l)
6 - l )
3 3 - 5 5

- 1)(95

" 1)(95

3 3 - 5

3 3 - 5 2

• 5 3 - 7
3 - 5 2 •

0 - 5 3 -
4 - 7 2 •

• 5 3 - 7

• 5 2 - 7

• 5 6 - 7

V -1)

- 1)(9
3 - 1)(92 -

+ 1)(93 + 1)(92 -

•13

73

7

11 13

•11

•11

•11

0rcmp2

5

Qn "h 1

3 P - 1

qn + 1

( 2 , 9 - 1)
qp - 1

(2,9-1)
9 " - l

F-\
qn + 1

( 2 , 9 + 1 )
2 " - 1 + 1

4
3 n - l + _

92 - eq + 1
94 - 92 + 1

9 4 - 9 2 + l
13

, 96 + 93 + l
; (3 ,9-1)
. 9° - 93 + 1
; (3,9+1)

11

7

29

17

11

23

23

13

19
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Table II

The order components of simple groups1 with t(G) ^ 3

217

Group

Ap, p and p - 2

are primes

Ai{q), 4 | 9 + 1

A1(q),4\q-1

Ai(q),2\q

A2(2)

A, (4)
2^5(2)
2B2{q) .

q = 22"+1 > 2
2DP(3)

p = 2n + 1, n > 2
2OP+1(2)

p = 2n - 1, n > 2
£7(2)

2 | 9, 9 > 2
2^4(9)

g = 2 2 n + 1 > 2

Ga(9), 3 | 9
2G2(<7),<7 = 32"+1

Orcmp 1
3 - 4 - ( p - 3 ) ( p - l )

9 + 1

9 - 1

9
8

26

2 1 5 • 3 6 • 5

92

2-3P(P-I)(3P-I - i)

xn?T2(32'-l)
2P(P+I)(2P - 1)

xn?"l
1(22i-l)

263 . 3II . 52 . ?3

•11 13 17 19-31-43

9
2 V - D2(94 - I)2

912(94-1)(93 + 1)
x(92 + l ) ( 9 - l )

9 6 (9 2 - l ) 2

93(92 - 1)

Orcmp 2
p - 2

9

9

9 + 1
3
5
7

q-yffi+l

(3P-1 + l)/2

2P + 1

73

94 + l

9 2 -N/V
+9 - ./Sg" + 1

92 + 9 + 1
q- y/iq + 1

Orcmp 3 Orcmp 4

P

(9 - l ) /2
(9 + l)/2

9 - 1
7

7 9
11

9+ s/29 + 1 9 - 1

(3* + l)/4

2P+1 + 1

127

94~92 + l

92 + %/V
+q + v^g + 1

92-9 + l
9 + v^+l

p is an odd prime number.
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Table II (continued)
Group

E7(3)

2E6(2)
Mu

M22

M23

M24

Ji

J3

J*
HS
Sz
ON
Ly

C02

F23

Fit
Fi=M

i*2 — B

F3 =Th

Orcmp 1

223 . 363 . 52 . 73

-II2 - 133 - 19-37-41

•61 • 73 • 547
236 . 39 . 52 . 72 . U

2 4 - 3 2

2 7 - 3 2

27 • 32 • 5•7

2 1 0 - 3 3 - 5 - 7

23 • 3 • 5

27 • 3 5 • 5
2 2 i - 3 3 - 5 - 7 1 1 3

2 9 • 3 2 • 5 3

213 . 37 . 52 . 7

2 9 • 3 4 • 5 • 7 3

28 • 37 • 56 • 7 • 11

2ia • 3 6 • 5 3 • 7

2 1 8 - 3 1 3 - 5 2 - 7 - 1 1 13

2 2 i - 3 1 6 - 5 2 - 7 3 - 1 1 1 3

2 4 6 - 3 2 0 - 5 9 - 7 6 - l l 2 1 3 3

•17 19 -23 -29 -31 -47

2 4 1 - 3 1 3 - 5 6 - 7 2 1 1 1 3

•17 19 -23
2 is . 310 . 53 . 72 . 1 3

Orcmp 2

757

13

5

5

11

11

7

17

23

7

11

11

31

11

17

17

41

31

19

Orcmp 3

1093

17

11

7

23

23
11

19

29
11

13

19

37

23

23

23

59

47

31

Orcmp 4 Orcmp 5 Orcmp 6

19

11

19

31 37 43

31

67

29

71

Table III
The order components of E8(q)

Group
Orcmp 1
Orcmp 2
Orcmp 3
Orcmp 4
Orcmp 5

Group
Orcmp 1

Orcmp 2
Orcmp 3
Orcmp 4

Es(q), q
q120(q18 - l)(g14 - l)(q12 -

q*+q7-q
q8 -q7 + q

qs -q6

q8

Es(q),
ql20(q20 - l)(g18 - l)(g

14 -

x(q

q8 -q7 + q

q8

= 0,1,4(mod5)
l)2(g10_1)2(g8_1)2(g4+g2 + 1 )

5 - ?4 - q3 + q +1
5 - q4 + q3 - q + 1

~f~ Q ~~ Q "i~ 1

? = 2,3(mod5)

i)(?12 -1) (? 1 0 - i)(?8 -1)(94 +1)
4 + 9 2 + l)
5 _ g4 _ ?3 + ? + J
5 - 9 4 + 9 3 - 9 + l
- 9 4 + l
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Since K/H is a non-Abelian simple group with t(K/H) ^ 2, then K/H must be
isomorphic to one of the simple groups in Tables I, II or III.

If K/H is isomorphic to the alternating groups, by Table I and II and Lemma 2.10,
we must have 7712(9) = p — 2 or p, where p ^ 5 is an odd prime number. If 7712(9) = V ~ 2,
then m,2{q) +1 = p — 1 divides rrii(q) which contradicts Lemma 2.8(d), and, if 7712(9) = P>
then m2(g) - 2 = p — 2 | mi(g), which contradicts Lemma 2.8(d).

If K/H is isomorphic to one of the sporadic simple groups, ^2(2), ^2(4), 2As(2),
2A5{2), £7(2), £77(3), 2£6(2) or 2F4(2)' , by Lemma 2.10 we must have m2{q) = 3, 5, 7, 9,
11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 59, 67, 71, 73, 127, 757 or 1093. This equation
has only one solution 7712(9) = 31 and in this case q = 2. Thus K/H can be isomorphic
to J4, ON, Ly, F2 = B or F3 - Th. But in all the above cases 11 € it(K/H) and
\G\ = 210 • 32 • 5 • 7 • 31 which is a contradiction because \K/H\ \ \G\.

If K/H is isomorphic to one the simple groups 2An(q'), Bn(q') where n = 2m ^ 4 and
q' is odd, Cn{q') where n = 2m ^ 2, 2£>n(g'), G2(9') where q' = l(mod 3), 3D4(g'), F4(g'),
2£6(9 ') where g' > 2, 2F4(g') where 9' = 2 2 m + 1 > 2 or 2G2(9') where 9' = 3 2 m + 1 , using
Tables I,II and Lemma 2.8(c) we can get a contradiction. For example, if K/H = Bn(q')

where n = 2m ^ 4 and 9' is odd, by Lemma 2.10 one of the odd order components of K/H

must be m2(g) = (9s - l ) / ( ( 9 - 1)(5,9 - 1)). But by Table I, the odd order component
of Bn(g') where n = 2m ^ 4 and 9' is odd, is (9'" + 1 ) / 2 and thus g'" + 1 = 0(mod m2(q))

which contradicts Lemma 2.8(c).

If K/H is isomorphic to £n(g ' ) where 9' = 3 and n — p is an odd prime, Cn(q')

where 9' = 2 or 3 and n = p is an odd prime, Dn(q') where n = p + 1 and 9' = 2 or
3 or G2(q') where 9' = - l ( m o d 3), then by Lemma 2.8(d) we get a contradiction. For
example, if K/H = Bp(3), then by Lemma 2.10, 3" - 1 = 0(mod m2(g)). Hence by
Lemma 2.8(b), 3P = q5 or 910. Since 3P + 1 | \K/H\ then 95 + 1 or 910 + 1 must divide
7711(9) a n d this contradicts Lemma 2.8(d).

If K/H is isomorphic to Dp(q') where p ^ 5 is an odd prime number and 9' = 2,3 or 5,
E6(q') or Es(q'), by Lemma 2.8(a) we get a contradiction. For example, if K/H = Dp{q'),

then by Table I and Lemma 2.10, m2(q) = (q'P - l)/(q' — 1), so q'P = qb or 910 by Lemma
2.8(b). Since p > 5, then q'p{p~l) > q'4p > 910 which contradicts Lemma 2.8(a).

If K/H is isomorphic to 2B2(q') where q' = 2 2 m + 1 > 2 or G2{q') where 3 | 9' we
can get a contradiction by Lemma 2.8. For example, if K/H = 2B2(q'), then m2{q) =

9' - y/2q1+1, 9' + s/W + l or 9' - 1 by Table II and Lemma 2.10. If m2(g) = 9' - y/2qi+1
or 9' + Tlf2q1 + 1, then q'2 + 1 = 0(mod m2(q)) which contradicts Lemma 2.8(c). If
m2(q) - 9' - 1, by Lemma 2.8(b) we must have 9' = q5 or g10. If 9' = 910, then qft > g10

which contradicts Lemma 2.8(a). If 9' = q5, then ( g - l ) ( 5 , g — 1) = 1 which is impossible.

By the above argument we deduce that K/H must be isomorphic to a simple group

of Lie type An. Now we claim that K/H a A4(q) = PSL(5,q) and therefore H = 1

and since \K\ = \G\, we must have G = M where M = PSL(5,q). To prove this claim,
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we assume that K/H = Ax(q'). If 2 | q', then m2(q) - q' - 1 or q' + 1 by Table II and
Lemma 2.10. By Lemma 2.8(c) we must have m2(q) = q' — 1, and hence q' = q6 or q10 by
Lemma 2.8(b). Hence, q5 + 1 or q10 + 1 divide mi(q) which contradicts Lemma 2.8(d). If
q' = e(mod 4) where e = ±1 , then by Table II and Lemma 2.10 we must have rri2(q) — q',

(q' - l ) /2 or {q1 + l) /2. But from Lemma 2.8(c) we have m2{q) = q' or (q' - l)/2. If
mi(q) = q', then q' + 1 = m2(q) + 1 | rrii(q) which is impossible. If m2{q) = (q' — l)/2,
then q' = q5 or q10, since q' + 1 | m^g), we get a contradiction.

Now we claim that K/H ^ Ap(q') where q' — 1 | p +1 and p is an odd prime number.
Because if K/H S Apq', then by Lemma 2.10 and Table I, we must have m2(q) —
{q'r - l)/(q' - 1). Lemma 2.8(b) yields q1" = q5 or q10. If qlp = q10, then q'MP+1)/2) > q

10

which contradicts Lemma 2.8(a). If q'p = q5 and p ^ 5, then g'(p(p+1)/2) ^ 9'3P > gio ancj
again we get a contradiction by Lemma 2.8(a). If p — 3 and q'3 — qb, then q' — 1 = d(q-1)
where d = (5,g — 1). If d = 1, then q' - q which is impossible, and if d = 5, then
q5 = (5q — 4)3 which is a contradiction.

Therefore, K/H 2* ̂ p-i(g') where (p,?') ^ (3,2), (3,4). Then by Lemma 2.10 and
Table I, m2(q) = (q'p-l)/({q'-l)(p,q'-I)), q'p = <?5 or q10 by Lemma 2.8(b). If q' = qw

and p > 3, then 9'(P(P-I)/2) ^ g'2p > gio which contradicts Lemma 2.8(a). If p = 3 and
q'3 = 9

10, then

(1) d(<7 - 1)(<75 - 1) = d V - 1); rf=(5,9-l)andd' = ( 3 , g ' - l ) .

If d = 5 or d = d' = 1, by (1) we must have q' + 1 > q' - 1 ^ q5 + 1, thus g' > q5,

so g'3 > q10 which contradicts Lemma 2.8(a). If d = 1 and d! = 3, by (1) q' - 1 =
((? ~ l)/3) (95 + 1) ^ 95 + 1 for q > 4 and again we get a contradiction by Lemma 2.8(a).
If q = 2 or 3, then 9' = gm for some positive integer m, then q3m = q10, that is, 3m = 10
which is impossible. Therefore, q'p = q5. If p > 5, then qP(v-x)l2 > q10 which contradicts
Lemma 2.8(a). If p = 3 and q'3 = q5, then

(2) d(g - 1) = d'(q' - 1); d = (5,9 - 1) and d' = (3, q' - 1).

If d = 5 and d' = 1 or 3, by (2) we obtain the equations q5 = (5g-4)3 or 27q5 = (5q-2)3,

respectively, but both of them do not have suitable solutions. By (2), if d = 1 and d' = 3,

q3 > q5 which are impossible, therefore, d = d' = 1 and thus q — q'.

Therefore, qlp = q5 and p = 5, that is, q - q' and p = 5, thus i f / i / = A4(q) =

PSL(5, q) and the proof is completed. D

REMARK 3.1. It is a well known conjecture of J.G.Thompson that if G is a finite group
with Z(G) — 1 and M is a non-Abelian simple group satisfying N(G) = N(M) where
N(G) — {n I G has a conjugacy class of size n}, then G = M. We can give positive
answer to this conjecture by our characterisation of the groups under discussion.

COROLLARY 3 . 2 . Let G be a finite group with Z(G) = 1, M = PSL(5, q) and

N(G) = N(M), then G^M.
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P R O O F : By [4, Lemma 1.5] if G and M are two finite groups satisfying the conditions
of Corollary 3.2, then OC(G) = OC(M). So the main theorem implies the corollary. D

Shi and Jianxing in [16] put forward the following conjecture.

CONJECTURE. Let G be a group and M a finite simple group, then G = M if and only

if

(i) |G| = |M|

(ii) 7re(G) = 7re(M), where ire(G) denotes the the set of orders of elements in

G.

This conjecture is correct for all groups of alternating type ([17]), Sporadic simple
groups ([14]), and some simple groups of Lie types ([15, 16]). As a consequence of the
main theorem, we prove the validity of this conjecture for the groups under discussion.

COROLLARY 3 . 3 . Let G be a finite group and M = PSL{b,q). If \G\ = \M\

and 7re(G) = ire{M), then G^M.

PROOF: By the assumption we must have OC(G) = OC(M). Thus the corollary
follows by the main theorem. D
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