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Abstract Let h(¢) be the topological entropy of a real continuous flow ¢ on a
compact metric space X Introducing an equivalent definition for the topological
entropy on an expansive real flow enables us to investigate the topological entropies
of mutually conjugate expansive flows and estimate the periodic orbits of an
expansive flow which has the pseudo-orbit tracing property

Introduction

In this paper we assume that the spaces are compact metric spaces, and (X, ¢)
denotes a continuous real flow [ie ¢ X XR->X continuous and ¢(x, t+s)=
¢(d(x, 1), s)] Write ¢, for the homeomorphism of X defined by ¢,(x) = ¢(x, 1)
¢ 1s called h-expanswe 1if there 1s an &£ > 0 so that the set

d.(x)={ye X, d(¢,y, p.x) < ¢ for all s =0}

has zero topological entropy for each x € X It 1s obvious that every expansive flow
1s h-expansive [4]

For E, F< X we say that E (¢, 8)-spans F (with respect to ¢), 1if for each xe F,
there 1s an e€ E so that d(¢.e, ,x)=8 for all 0=s=<t Let r(F, 8)=r/(F,§, ¢)
denote the minimum cardinality of a set which (¢, 8)-spans F If F 1s compact, then
the continuity of ¢ guarantees r.(F, §) <co We define

1
74(F, 8) =lim sup - log r,(F, 8)

t—>0 t

For E, F= X we say also that E 1s a (t, 8)-separate subset of F (with respect to
¢), 1if for every x, ye E with x # y we have maxy,=,d(¢,x, ¢,y)> 8 Let 5,(F, 8) =
s.(F, 8, ¢) denote the maximum cardinality of a set which 1s a (1, §)-separated subset
of F If F 1s compact, then Theorem 6 4 1n [10] shows that s,(F, §) <co We define

1
5,(F, 8)=hm sup;log s,(F, 8)
t>00

and topological entropy by
h(e, F)=lm 7, (F, 8) =lim 5,(F, 8)

By Lemma 1 in [2] these limits exist and are equal
In fact the topological entropy of a flow ¢ equals the topological entropy of the
homeomorphism ¢,, and more generally h(¢,) =|t|h($;) For more details see [2]
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(0 1) Standing hypothesis We shall assume throughout the remainder of the paper
that ¢ 1s a continuous real flow on a compact metric space X without fixed points

Let I be any 1nterval of real numbers containing the origin A reparametrization
of I 1s an orientation-preserving homeomorphism (increasing) from I onto its image
fixing the onigin Define Rep (I) to be the set of all reparametrizations of |

Given a continuous real flow (X, ¢) and £ >0 For xe X and y> ¢ define

U(t,x,y)={ye X, d(d.s)y, ¢ x) =7y for some acRep (I) and all 0=s=1}
Let

U, x, €)= Ut x,v)

y>e
We will show later that U(t, x, €) 1s closed in X
For E < X and 8> 0 we say that E (¢, §)-weakly spans X (with respect to ¢), 1f
for each x € X, there exist e E and @ € Rep [0, ¢] such that
d(Pas)X, de) =8 forall 0=s=<t

Let R,(X, 8) = R,(X, 8, ¢) be the smallest cardinality of any (¢, §)-weakly spanning
set for X Compactness of X guarantees R,(X, §) <o Define

R,(X, 8)= m?*?p % log R,(X, &)
(notice that R, (X, 8) increases as & decreases)
For Ec X and 6> 0 we say that E is a (t, §)-strongly separated set in X if for
every x,ye E, x # y and for every «, B € Rep [0, t]
d(baisyX, Psy)> 8 for some s [0, 1]
or
d(dacs)y, Psx)> 8 for some s<[0, ]

Let S,(X, 8)=S,(X, 8, ¢) be the largest cardinality of any (¢, 8)-strongly separated
subset of X We will show later that S,(X, §) <o Define

S4(X, 8) =hm sup 1 log S,(X, 8)

=50 t
We now define
H(¢)= gmé Ii,(X, 8)= !Smg §¢(X, 8)

Later we will show also that these limits exist and are equal Note that H(¢) =< h(¢)
We would like to raise the following

Conjecture If (X, ¢) 1s a continuous real flow (without fixed points), then H(¢) =
h(¢).
In this paper (§ 2) we will use an adaptation of work by Bowen [4] involving certain
complications to prove this conjecture under certamn additional assumptions

A flow (X, ¢) 1s said to be strongly h-expansive if there 1s an & >0 called the
h-expanstve constant, so that for every x € X the set £.(x) =( ),=0 U(t, x, ) has zero
topological entropy (1e h(¢, &(x))=0)
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THEOREM A If ¢ 15 a strongly h-expanswe flow on a compact metric space X (without
fixed ponts), then H(¢)= h(d)

Using this theorem we can investigate the topological entropies of mutually conjugate
expansive flows as Theorem B 1n § 3

A flow (X, ¢) 1s said to be expansive if for every & > 0 there exists 8 >0 with the
property that if d(,X, ¢.y) <8 forall s e R=(—00, ) and a pair of points x, ye X
and a continuous map @ R->R with a(0)=0, then y = ¢,x, where |s|<e

Lemma 1 1n [5] shows that the study of flows with the expansive property can
be reduced to those without fixed points

Let (X, ¢) be a continuous real flow Given 8, a>0, a (5, a)-chain 1s a collection
of sequences ({x,},{t,}) so that t,=a and d(¢,x, X,+1) <8 for all integer . The
definition of a (¢, a)-pseudo-orbit 1s the same as that of a (8, a)-chain [8], [9]

Let ({x,}, {t.}) be a (8, a)-pseudo orbit The following notation will be standard
throughout this paper s,=0, s,=Y ", ¢, and s_, =Y ! 1, We always assume
Efzj( },=01f k<j In particular Z;l t,=0

A (8, a)-pseudo orbat ({x,.}, {t,}) 1s e-traced by an orbit ($,z),.q If there exists an
a € Rep (R) such that

d(Pa(z, Pi_s,Xn) <€ whenever s, <t <s,4, for n=0,1,2,
and
A(Dacy2, Pras_ X-n) <€ whenever —s_,<t<s_,,, forn=1,2,3,

We say that a flow (X, ¢) has the pseudo-orbit tracing property (POTP) if for all
€ >0, there exists 8 > 0 such that every (5, 1)-pseudo orbit 1s e-traced by an orbat
of ¢

Now using Theorem A we can show

TueoreM C If (X, &) 1s an expanswe flow and has the POTP, then
1
h(¢d)=lm ;log v(t),
>0
where v(t) 1s the number of closed orbits in X with period <t
This result 1s known if ¢ 1s a continuous flow on a compact manifold M which
satisfies Axiom A [3]
1 Preparatory lemmas
Let (X, ¢) be a continuous real flow {no fixed points)

LEMMA 11 (cf [5, Lemma 2]) There exists To>0 such that for all X satisfying
0<A < T, there exists y> 0 with d($,x, y) > y provided that x, ye X and d(x, y) <y

Now let us introduce our basic lemma

LEMMaA 12 For all A >0, there exists € >0 such that for every x, y € X and for every
[T,, T;] containing the origin and for every a € Rep [T, T.], tf d(du(s)X, dsy) = € for
allse[T,, T,], then |a(s)—s| <A for |s| <1 [T, T,] and |a(s) —s| <|s|A for |s| =1
in [Ty, T]
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Proof Suppose A >0 Without loss of generality let A < T, (see Lemma 1 1) and
also take &' small enough that 1t satisfies Lemma 1 1 with respectto A Let 0<e < §’
with the property that d(¢,x, ¢.y) <8’ for 0= s=2 whenever d(x, y) <e Suppose
forx, ye X, d( o)X, dsy) <eforO0=s=2 Then d(P,(s)-sPsX, d;y) <efor0=x=<2
Thus by the continuity of @ and by Lemma 1 1, |a(s) —s| <A for 0=s=2 For the
case 2=s5=4, let d(d, ()X, ¢y) <e for some a Then leting u =5s—2, we get
d(bauryX, duh1y) = d(ba)X, bs1$1y) <e for0=u=2

Let y(u)=a(u+1)—a(l) Then vy 1s increasing continuous with y(0) =0 and

d(Dyuyba)X, dud1y) <e for 0=u=2
Thus |y(u) —u|<A for 0=u=2,and so |a(u+1)—a(1)—(u+1)+1|< A It follows
that |a(s) —s| <2A for 2= s=4 Using a similar argument one can show inductively
that for 2n—2=s5=<2n,
la(s)—s|<nr  forn=2,3,4,

since n/(2n—2)=<1forn=2,3, Thus for all s=11n [T, T;] we have
|a(s)—s|<ne=§s)\ss)\

For negative s we can use a similar process and the proof 1s fimshed

LEMMA 13 (1) For all A>0, there exists §>0 such that S, ,,(X, 6)=<
R/(X, 8/2)<©

() R(X, 8)=S,(X, 8)

(1) For §,<8,, Ry(X, 8,) = R,(X, 8,) and S,(X, 8,)=<S,(X, 8,)
Proof Given A >0, choose 8 > 0 satisfying Lemma 1 2 with respect to A Let E be
a ((1—A)¢, 8)-strongly separated set in X with the largest cardinality and let F be
a (1,8/2)-weakly spanning set of X Define f E > F by choosing for each x€ E
some point f(x)€ F and some a € Rep [0, t] such that

d( o)X, d:f(x))=68/2 forall0=s=<1¢
If f(x)=f(x") for x, x' € E, the tniangle inequahty imples that
d(ba(s)X, Gys)x') =<8
for some a, ye Rep [0, t] and for all 0= s=1t By taking u= y(s), we get
d( Doy ()% Pux') =8 forall 0su=(1-2A)¢,
and by taking u = a(s), we get
d{P.X, Prar()Xx) =8 forall 0=su=(1-A)t
As E 1sa((1—A)t, 8) - strongly separated set, we clearly have x = x’ Thus cardinality
of E 1s less than or equal to the cardinality of F, and so S(;-,,.(X, 8)= R,(X, 6/2)
Since this lemma 1s a version of Lemma 1 1n [2], the rest follows by a slightly
modified version of the proof of that lemma
This lemma shows these limits
H($)=lm R,(x, 8) =1lim $,(X, 8)

exist and are equal
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PROPOSITION 1 For small ¢ >0, U(t, x, £) 15 a closed subset of X for every x € X and
t=0

Proof Given A >0 choose y satisfying Lemma 12 with respect to A Take any
0<e<vy Now for =0 and x € X we want to show U(t, x, ) 1s a closed subset of
X Let {y,} be any sequence in U(t, x, £) and assume {y,} converges to y in X
Then there exists a sequence {a,} of reparametrizations on [0, ¢] such that

A( Do (5)Vns PsX) = forall0ss=<tand e<A=y

Using Lemma 1 2 we know that (1 -A)s<a,(s)=<(1+A)S Therefore for any ¢>0,
there exists a positive integer M such that

A( Do (5)Vms Pa, V) =& forall0=s<t and m=M
Hence
d(da o), ¢sx)<y+¢é forall0=s=t y>¢ and £>0
This means that ye U(t, x, €)
For xe X and y >0, define

W(t, x,y)={ye X, d(dbas)y, dsx) <y for some a € Rep [—1, t)

and forall —t<s=t},
and let

Wt x, €)= W(tx,7y)

y>e
Using a similar argument as above (Proposition 1) one can show that ¥'{t, x, €) 1s
a closed subset of X This means that

I.(x)= W(t,x,e)

=0
1s also a closed subset of X
The following lemma 1s also essentially Theorem 3 of [5]

LEMMA 14 (cf [9, Lemma 8]) Let ¢ be an expansive flow on X Then for all ¢ >0,
there exists 8 >0 with the property that for all £,> 0, there exists T >0 such that for
every x, y€ X and for every continuous and increasing real valued function s on a
closed interval [T, T] with 5(0)=0 1f d(¢y)x, dy) <8 for all te[-T, T], then
d(d.x, y)<eg, for some re[—e, €]

Using this lemma one can show the following

LEmMa 15 If (X, ¢) 1s an expanswe flow, then there exists A >0 such that
h(¢, T (x))=0 for every xe X

Proof For >0, take & satisfying the above lemma Let A =8/2 If y € u,(x), then
ye W(t, x,A) for all £=0 This means that y € W(4, x, y) for some y, A <y=28 and
for all 1=0 Given g,=1/n Lemma 14 mmphes that d(¢, y, x)<1/n for some
r.€[—¢, e] Compactness of [—¢, €] imphes that there exists re[—¢, £] such that
¢,y =x This means that T',(x) < ¢, .;x Therefore h(¢,T',(x))=0

2 Strongly H-expansiwve flows

This section 1s an adaptation of work by Bowen [4] involving certain technical
complications
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LEMMA 21 For £€>0, let a=sup,.x h(®, £.(x)), and suppose 5, 3>0 are gwen
Then there exist t, T> 0, t< T such that for every x ¢ X, there exists a set E, which
(t, 8)-spans U(s, x, €) for every s= T and

card E, = Exp [(a+8)1t]
Proof For ye X, let ¢, >0 with the property that for every t=1t, there 1s a set E,
which (¢, 6/2)-spans £ (y) and

1
7logcard E,=a+p

Let
N(y)={we X, there exists z€ E, such that d(¢,x, ¢,z)<8 for 0=s= 1t}
Then N(y) 1s a neighbourhood of £.(y) and E, 1s a (¢, §)-spanning set of N(y)
Since (= U(t, y, €) = £.(»), we may choose a real number T, such that U(s, y, £) <
N(y) for all s=T, For y>e¢ we have (),..U(s,y,v)=U(s, y,e) Thus
U(s,y, v)< N(y) for some y>¢ Let
v(y)={ueX,d(pu, p,y)<y—e for 0=r=s}
Then V(y) 1s a neighbourhood of y and U(s, u, )< U(s, y, y) < N(y) for every

ue V(y) Let V(y1), V(y2), , V(y.) cover the compact space X and take T=
max{T,,T,, ,T,,t,,t,, ,t,} Ths finishes the proof of this lemma

LEMMA 22 For £>0, let a=sup,.x h(¢, . (x)), and suppose 8, B >0 are gien
Then there exist t, T>0, t< T such that for every x € X, there exists a set E, which
(1, 8)-spans W(s, x, €) for every s= T and

card E, <= Exp[(a+ B)t]
Proof Exactly similar to the proof of Lemma 2 1

LEMMA 2 3 (cf [4, Lemma 2 1] Suppose E, (t,, 8)-spans F and E, (t,, §)-spans ¢,,_F
for 1=2,3, ,n Then there exists a set Q which (s,,28)-spans F and card Q=
[1'_, card E,, where s, = Z:;, t

LEMMA 2 4 For all A >0, there exists £ >0, such that if ye U(s, x, &), then the time
distance between y and U(s —1t, ¢,x, £) 1s between t — At and t + At for every t<s

Proof Given A >0, choose ¢ satisfying Lemma 12 and take y€ U(s, x, ) Then
there exists @ € Rep [0, s] such that

d(¢a(u)y, ¢ux) = Y
for 0=<u=<s, and y> ¢ Therefore

d(¢a(u)y, ¢u—r¢t~x)s‘y
for 0=u=<s Now let w=u—1t and y(w)=a(w+1t)—a(t) It 1s obvious that ye
Rep [0, s—t] and for 0=<w=s—t we have

d(¢7(w)¢a(l)y9 d)wd)tx) = Y
This means that ¢,y € U(s—t, ¢,x,£) Using Lemma 12 we know that (1—A)t<
a(t)=(1+A)t and this finishes the proof of this lemma
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The above lemma 1s also true for the case when we have W(s, x,¢) and
W(s—1, ¢,x, ) instead of U(s, x, ¢) and U(s—t, ¢,x, ) respectively

LEMMA 2 5 Given A >0, there exists € > 0 such that if E, 1s a (t+ At, §)-spanning set
of U(s—ut, ¢,x, &) for 1=1,2, ,m—1 and E,, 1s any (T,8)-spanming set of
U(s—mt, ¢,.x, £), then there exists a set Q which [m(t—At)+ T, 281-spans U(s, x, €)
and
card Q=< J[ card E,
1=1

Proof Choose £ satisfying Lemma 12 with respect to A Lemma 2 4 implies that
the arc ¢p,_r(+a)y meets U(s—1ut, ¢,x,€) for every pomt y in U(s—(1—1)¢,
b1 £) So the rest of the proof of this lemma 1s just exactly as the proof of
Lemma 2 1 1n [4]

The above lemma 1s also true when we have W(s—1t, ¢,x, &) wstead of
U(s—1it, ¢p,x,e)for1=1,2, ., m

ProrosiTiION 2  For all A>0, there exists €>0 such that if a=
sup {h(¢, £&.(x)), x= X} and 5, B> 0 are giwven, then there exists T >0 such that for
every s = Tand x € X, there exists a set Qwhich [(s — T)(1—A)+ T, 8]-spans U(s, x, €)
and
card Q=c¢ exp[(atB)s(1+A)]

Proof For A >0, choose ¢ satisfying Lemma 1 2 and ¢, T satisfying Lemma 2 1 with
respect to 5, B Without loss of generality fix T large enough such that for every
s=T, U(s, x, £) 1s (t+At, §/2)-spanned by a set E with

card E<exp[{a+B)t(1+1)]
Also without loss of generality assume s = mt+ T for some positive integer m It 1s
obvious that each U(s—1t, ¢, x, £) 1s (1+ At, 8/2)-spanned by a set, say E,, with

card E, <exp[(a+B)t(1+A)]

for1=1,2, ,m-—1 Let E,, be any (T, §/2)-spanning set of X with minimum
cardinality Then E,, 1s a (T, 8/2)-spanning set of U(s—mt, ¢,.x, €)= X Using
the above lemma there exists a set Q which [mt(1—2A)+ T, 8]-spans U(s, x, €) and
card Q=card E,, exp[{a+B8)mt(1+A)]
But mt=s—T, so Q 1s a set which [(s— T)(1—A)+ T, 6]-spans U(s, x, €) and
card Q=card E,, exp[(a+B)(s—T)(1+1)]
Taking
c=card E,, exp[(a+B)(—T)(1+A)],

finishes the proof of this proposition

ProposiTiION 3  For all A>0, there exists ¢>0 such that if a=
sup {h(¢,T'.(x)), x€ X} and 8, B> 0 are given, then there exists T> 0 such that for
everys = Tand x € X, there exists aset Qwhich [(s — T)(1—A)+ T, 8]-spans W(s, x, €)

and
card Q=c¢ exp[(a+B)s(1+2A)]
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Proof Using Lemma 22 we can obtain an exactly similar proof of the above
proposition
LEMMA 26 For all A >0, there exists € >0 such that for large s and xe X

¢s+/\s(§£(x)) < ¢[0,2/\s] W(S, ¢sx, 8)
Proof For A >0, choose ¢ satisfying Lemma 1 2 Let z be an element 1n &,(x) Then
z 1s an element 1n U(2s, x, €) for every s =0 In other words

A(Ga(nz, &:X) =<7,
for 0sr=ys and for all y> ¢ and for some a € Rep[0,2s] Now assume u=r—s
and B{u)=a(u+s)—a(s) Then BeRep[-s, s] and
d(Ds)Pa(s)z Gup,x) =y  for —s=u=s
Thus ¢, (52 1s an element of w(s, d;X, ¥), SO Du(s)-sBZ = Pa(syZ 15 an element of

W(s, ¢,x, €) Lemma 12 implies that ¢,z 1s an element of @p_,, s W(s, ¢.x, &) It
follows that

¢s+)\s(§e(x)) = ¢/\s¢s§£(x) < ¢As¢[—z\s As] W(S, ¢sx7 8)
Therefore
¢s+)\s(§s(x)) < ¢[0 2As] W(S, d)sx’ 8)

LeEMMA 27 If E (t, 8)-spans W, then there exists 8' >0 (depending only on 8) such
that for every A, 8’ < A <, there 15 a set Q which (t— A, 28)-spans ¢y W and

card Q= (%) card E

Proof Given 8 > 0, choose 8’ > 0 small enough such that d(¢,x, ¢,y)=< 5 forall teR
whenever x = ¢.y, where |¢]|=8’ For x€ X define a set
3, ={dnsx,n=0,1, ,mpuigxl,
where m 1s the largest integer less than A/8" Take
Q=U{Z, xe E}
Then Q 1s a (t, 8)-spanning set of W and

A
card Q= (y) card E

In order to prove that Q 1s a (t — A, 28)-spanning set of ¢ .7 W, let x be any element
in ¢ W If x 1s an element of W or an element of ¢ ,1E, then the rest follows
easily If ¢_,x 1s an element of W for 0<r= A, then there exists a point e 1n E
such that

d(¢,d_,x, pe)<8  forO=s=t
Let u=s—r Then
d(¢.x, pube)<8 forO=u=<t—r
Pick a point z 1n X, so that
d(dub,e, d,z)<8  forall ueR
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Then

d(d’uxa ¢llz) S d(¢ux9 ¢u¢re) + d(¢u¢re7 ¢uz) < 26
for all 0= u =<1t —r and this fimishes the proof of this lemma
In order to show that an expansive flow 1s strongly h-expansive we need the following
which 1s a version of corollary 2 3 1n [4]
ProPOSITION 4 Every expansive flow (X, ¢) 1s strongly h-expansive
Proof For A >0, choose & >0 satisfying Lemma 1 2 and let

a=sup {h(4,I'.(x)), xe X}
Then there exists T>0 satisfying Proposition 3 For s=T, let E, be an
(s+As, 8/2)-spanning set of &.(x) For B> 0, Proposition 3 imphes that there 1s a
set Q which [(s—T)(1—A)+ T, 8/4]-spans W(s, ¢,x, €) and
card Q=c¢ exp[(a+B)s(1+A)]

Using the above lemma, there exists 8'=0 and a set E; which {(s—T}1—-A)+T—
21s, 8/2]-spans ¢po.s W(s, ¢,.x, €) and

2
card E, < c(ﬁ) exp[(a+B)s(1+21)]
Using Lemma 2 6 we have

berase(X)  Broaas 1 W(s, b.x, €)
Therefore the set E, 1s a [s —3As + AT, §/2]-spanning set of ¢, ,;£.(x) Lemma 2 3
implies that there exists a set £ which [2s(1—A)+ TA, 8]-spans £,.(x) and card <
card E; card E, This implies that

1 1 1
Py logcard X = % log card E, +E log card E,

Since (1/2s) log (2Asc/8")—> 0 as s > oo, then it 1s obvious that

(1= Mh(8, &.0N =122 b, ¢, 0o + LD

Hence

(1-30)h(¢, £&(x))=(a+B)(1+A)
for every A, B8 >0 Expansiveness and Lemma 1 5 imply that a=0 Since 8 >0 1s
arbitranily small, therefore h(¢, £.(x)) =0 for all xe X This completes the proof

ProprosiTION 5 For all A >0, there exists € >0 such that
(1-2)h(¢p)=H($)+(1+1)sup h(, &(x))
xeX

Proof For A >0, choose ¢ > 0 satisfying Lemma 1 2 and let T > 0 satisfy Proposition
2 For s=T, let E be any (s, £)-weakly spanning set of X For B, §>0 and for
every x € E there exists a set E, which [(s— T)(1—A)+ T, 8]-spans U(s, x, €) and

card E,<c¢ exp[(a+B)s(1+A)],
where

a=sup {h(¢, £&(x)), xe X}
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Since
U{U(s,x, &), xc E}=X
take
w=UJ{E,, xeE}
Therefore W [(s—T){1—A)+ T, 8]-spans X and
card W=card E ¢ exp[(a+B)s(1+A)]

Therefore
1 1 1
glog card WS;log card E +;log ct+(a+B)(1+A)

As s - 00 we have
(1-2)h(d)=Ry(x, e)+(a+p)(1+A)
Using Lemma 1 3(11) we have R¢(X, e)=< H(¢) This imphes that
(1-M)h(¢)=H(¢p)+(a+p)(1+2)
for every 8> 0 and the proof 1s completed

Proof of Theorem A If (X, ¢) 1s a strongly h-expansive flow, then
SUp..x (@, £&(x)) =0 Proposition 5 implies that (1—A)h(¢d)=< H(¢) for every
A >0 This means that h(¢)= H(¢) and the proof 1s finished using the fact that

H(¢)=h(d)

3 Entropy and conjugacy
In [7] Ohno 1investigated topological entropies of mutually conjugate flows as
Theorem 1 This theorem 1s proved 1n [7] using a measure theoretical point of view
As an application of Theorem A one can introduce a different and easier proof for
the following theorem which 1s stronger than Theorem 1 1n [7], but under an extra
assumption

We recall that the flows (X, ¢) and (Y, ¢) are conjugate (topological conjugate)
if there 1s a homeomorphism y from X onto Y mapping orbits of ¢ onto orbits of
¢ with preserved orientation

LemMma 31 (cf [8, Lemma 4]) If (X, ¢) and (Y, ) are conjugate flows with a
conjugate homeomorphism y X - Y and have no fixed ponts, then there exists a
unique continuous function ¢ X X R - X and a umique continuous function 3 'Y xR~
Y such that

(1) 0,(0)=0 and o, R->R is a strictly increasing homeomorphism for every x in X

(2) y¢x =1, yyx foreveryxeX, and teR

(3) ou(stt)=04sxs)+0o.(t) foreverys,teR and xe X

(4) B,(0)=0and B, R->R 1s a strictly increasing homeomorphism for every yin Y

(5) B,(s+1t)=PB,)(s)+B,(t) foreverys,tecR andyecY

(6) B,=a;' whenever yx=y

(7) 7_1((//:}’) = ¢B‘(r)')'_1y =¢o;inX foryx=yand teR
o and B are called the cocycles of ¢ and  with values in R respectively
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LEMMA 32 If o 1s the cocycle of the flow (X, ¢) with values in R, then there exist
m, M >0 such that

mt=o(t)<Mt  forall |t|=1andxe X

Proof Continuity of o and compactness of X imply that there exist m’, M’ > 0 such
that m'=o,(t)=M' for all 1=t=<2 and xe X Since (X, ¢) has no fixed points
(standing hypothesis), Property 3 of Lemma 3 1 implies that mt < o, (t) = Mt for
all t=1 and x€ X, where m=m'/2 and M = M' Similar arguments can be used
for the case when t=< -1

We will call m and M the lower and upper bounds of o respectively

THEOREM B Suppose a flow (X, ¢) 1s topologically conjugate to an expanswe flow
(Y, ) with a conjugate homeomorphism y X - Y and the cocycle o of the flow (X, ¢)
with values in R Then

mh(¢) =< h(¢p)= Mh(4),

where m and M are the lower and upper bounds of o

Proof As expansiveness 1s a conjugacy mvariant [5], clearly (X, ¢) and (Y, ¢) are
strongly h-expansive flows Given £>0 smaller than the strongly h-expansive
constant of ¢, choose 8 >0 which 1s also smaller than the strongly h-expansive
constant of ¢ and with the property that d(ya, yb) < ¢ whenever d(a, b) <86 1n X
For large ¢, let E be a set which 1s (¢, §)-weakly spanning set of X with mmimum
cardinality Thus for every y in Y with yx=y there exist a point ec E and
a € Rep [0, t] such that

d(bacs)x, pe)<8 forall 0<s=<t
s0
Ao (a(s) VX Yo 7€) = d(Yba(s)X, YIs€) < &,
for 0=s=1t Now taking u = 0,(s) and B(u) = o.ac.'(u), we have
d(Yany, huye)<e for 0= u=mt

Thus yE 1s a (mt, €)-weakly spanning set of Y, and this means R, (Y, ¢) < R,(X, §)
which implies that mh(y) < h($) Since t/ M =o' (t) for every teR and x € X and
suppose E (¢, 8)-weakly spans Y with mimmum cardinality Then clearly y 'E 1s
(t/ M, e)-weakly spanning set of X Hence R, (X, £)=< R, (X, 8) which implies
that h(¢)=< Mh(y)

The following 1s a direct consequence of Theorem B and Lemma 1 1n [6]

CorOLLARY 1 If ¢ 15 a flow obtained from an expansiwe flow ¢ on X by a positive
continuous change of velocity A X > R, then

mh(¢)=<h(y)< Mh(s),
where m =1nf {1/A(x), xe X} and M =sup {1/1(x), xe X}
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CoROLLARY 2 If (Y, &) 1s the suspension flow of an expansive homeomorphism
T X - X under a positive continuous function f X >R, then

L),

< —
m

Sh(T) < h(9)

where m =1nf { f(x), x€ X} and M =sup {f(x), xe X}

Proof Let (2, ) be the suspension flow of (X, T) under the constant 1 Then 1t 1s
obvious that h(y) = h(T) and (Y, ¢) 1s conjugate to (2, ¢) with the cocycle o, (s) =
s/f(x) for every xe X Let m=1nf {f(x), x€ X} and M =sup {f(x), xe X} Then
1t 1s obvious that (1/M)t=<o.(t)=<(1/m)t for every teR and x€ X Theorem B
finishes the proof

4 Entropy and chan recurrence
Let ¢ be an expansive flow which has the POTP on a compact metric space X
Given x, ye X, a (8, a)-chain from x to y 1s a collection

{x=x0’xl’ s Xk =Y, IO’ tla ’tkvl}
so that t,= a and d(¢,x,, X, ) <8
A pomnt x 15 chain equivalent to y (wnitten x ~ y 1f for every 8, a>0, there 1s a
(8, a)-chain from x to y and from y to x The chain recurrent set of ¢ 1s
CR(¢p)={xe X, x~x}

In this section we give some standard results as Lemma 4 1

LEmMMa 41 (a) Q=CR

(b) Forall r>0, x~ ¢,x for every xc ()

(c) The set of periodic ponts 1s dense in ()

(d) Let Q, be an equivalence class of Q) under the relation ~ Then (), 1s invariant,
closed, and open in )

Proof Is an easy exercise for the reader

Since () 1s compact, therefore () 1s umiquely expressed as a disjoint umon Q =, Q,
where ), (1=1=<m) 1s an equivalence class under ~ (note that there are no fixed
points) Moreover one can show easily that (£},, ¢) 1s topologically transitive for
all 1 (1e Q, contains a dense orbit)

LemMAa 42 For all 5> 0, there exists L> 0 such that for every x, y€ Q) 1f x ~ y, then
there exists we §) so that d(w, x) < 8 and d(@,w, y) <& for some 0=s=<1L

Proof x~y implies x, y € ), for some 1, 1 =<1=m Take {Us};, to be a finite cover
for Q, of open sets each of diameter less than 6 Topologically transitive implies
that there exists ry >0 (1<k<=<n, 1=s=<n) such that ¢, U, n U, # Take L, =
max, . rq and L=max, L, This fimshes the proof

LEMMA 4 3 For all A > 0, there exists € > 0 and there exists B> 0 such that for every
r>0 and x € ), there exists a periodic point z of period < (1+ A)r+ Band a € Rep [0, r]
so that

d(danyz, px)<¢ forall 0st=r
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Proof For A >0, choose ¢>0 satisfying Lemma 12 Take §>0 satisfying the
defimtion of POTP with respect to ¢ and § <& For x€ (), we have x ~x, Lemma
4 2 implies that there exist L>0 and we Q so that d(w, ¢,x) <8 and d(¢pw, x) <8
for some 5, 0=s< L Take B=(1+A)L, and consider the periodic 8-pseudo-orbit
{x, w, x, r, s} Expansiveness and POTP imply that there 1s a periodic point z and
a € Rep [0, r+ 5] such that
d(panz, dx)=¢ forall 0=t=<r,
and
d(panz, dW)=<e forall rst<r+s
Using Lemma 1 2, we have
A-Mt=a(t)=(1+A)t
forall0=t=<r+s Therefore the period of z=<(1+ A)r+ B and the proof 1s finished

We fix some notation p 1s the set of all periodic orbits of ¢, p(t) those with period
r<t, and p.(t) those with period 7 1n the interval [t —¢, t+¢] Let v(t) and v,.(¢)
be the number of closed orbits with period 7=t and 7€ [t — ¢, t+ £] respectively Set

D(t)= Y r(y)= Y periodof y

yep(t) yep(t)

It 1s obvious that D(t) =< tv(t)

PrRoOPOSITION 6 Let (X, ¢) be an expansiwe flow which has the POTP Then
1
h(¢)=lim 1nf; log v(t)

Proof Given A >0, choose B satisfying expansiveness with respect to A Take
8 <min {iB, A} and satisfying the above lemma and Lemma 12 with respect to A
Let E be a (1, B)-strongly separated set of Q Take r=((1+A)/(1—A))t1n the above
lemma Then for x# y 1n E, there exist z, and z, pertodic points each of period
=(1+A)r+ B (for some B) with a,, a,cRep [0, r] and
(1) d(dayZe, psx)=8 forall 0s=r,
and
(1) d(Pa(s2y, dy)=8 forall0=s=<r
Choose £ >0 small enough such that
sup {d(z, ¢.2), ze x, |u|<3e}= 6
Now assume z, € ¢_3. 3,12, This means that
d(dszy, Psz,)= 8 for all seR
Take u=a.(s) 1n (1) and u=a,(s) n (;1) Therefore
d(buze, bat(yX) =8 forall Osu=(1-A)r=(1+A)s,
and
d(duz,, o i(sy) =8 forall 0=su=(1+A)t
The triangle inequality implies that
d(Da (X, Gart(wyy) =28 forall 0=su=(1+A)t
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Now again let v=a,'(u) Then we have
d(dux, duipyy) =28 forall0=<v=t,
where h(v) =a, ' a,(v)
Also if we take v =a,'(u), then we have
d(d, )X, Py)=28 forallO0sv=1t,

where y(v) = a;'a,(v) This contradicts the fact that E 1s a (¢, B)-strongly separated
set of {} Hence z, £ ¢_;.3.12,, and so

S,(Q, ﬁ)<—D[(1+A)r+B]—— [(11_/\) t+B]
Using the fact that D(t) =< tv(t), we get

S:{(Q, B) 5—21; [_(114;);‘)2 t+ B] v[—(11+ );) t+ B]

Therefore

1 1. 1[@a+A)? ] 1 [(1+A)2 ]
- <-log—|——1t+B|+-1 ———t+B
tlogS,(Q,B)<tlog2£[ Y t+B  log v} =T

This means that

_ 1+2)? 1
S (€, B)S( l—A) Iim mf;log v(t)

As A >0, we have
H(¢, Q)shrtllgonf%log v(t)
Using Theorem A we have,
h(gp, Q)= hrtri:onf% log v(1)
Theorem 2 4 1n [1] implies that
h(d;)sllrllléonf%log v(t)

Proof of Theorem C Using a similar argument to the proof of the second part of
Lemma 4 10 1n [3] we can show that for any &> 0, there exists A >0 such that
u()=S8/(x,¢) As

v()=ov () +o,(t-2A)+ +0,(0)
(there are at most t/2A terms), and S,(X, £) =< S5,(X, ¢) for t=< ¢, we have
t
t)=—3S8,(X
U( ) 2A Sl( il E)s
and so

Iim supllog v(t)=h(e)

t->co

Proposition 6 finishes the proof of this theorem
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