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Abstract

The aim of the present paper is to extend the dualizing object approach to Stone duality to the
noncommutative setting of skew Boolean algebras. This continues the study of noncommutative
generalizations of different forms of Stone duality initiated in recent papers by Bauer and Cvetko-Vah,
Lawson, Lawson and Lenz, Resende, and also the current author. In this paper we construct a series
of dual adjunctions between the categories of left-handed skew Boolean algebras and Boolean spaces,
the unital versions of which are induced by dualizing objects {0, 1, . . . , n + 1}, n ≥ 0. We describe the
categories of Eilenberg-Moore algebras of the monads of the adjunctions and construct easily understood
noncommutative reflections of left-handed skew Boolean algebras, where the latter can be faithfully
embedded (if n ≥ 1) in a canonical way. As an application, we answer the question that arose in a recent
paper by Leech and Spinks to describe the left adjoint to their ‘twisted product’ functor ω.
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1. Introduction

Stone duality [9, 14, 34] is probably the most famous result about Boolean
algebras. It provides a subtle link between algebra and topology and has far-reaching
consequences and numerous important generalizations.

Recently, different variations of Stone duality have been generalized to the
noncommutative setting. We mention the generalizations to skew Boolean algebras by
the author [16], to skew Boolean algebras with intersections independently by Bauer
and Cvetko-Vah [2] and the author [16], to Boolean inverse semigroups by Lawson
[20, 21], to some classes of pseudogroups by Lawson and Lenz [22], to pseudogroups
and a class of quantales (at the level of objects) by Resende [31, 32]. Priestley duality
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has been generalized to the setting of skew lattices by Bauer, Cvetko-Vah, Gehrke, van
Gool and the author in [3]. Very recently, Mark Lawson and the author have found a
common generalization of the results of [16] and [20, 21] to a duality for étale actions
of Boolean inverse semigroups [19]. These actions were introduced in [13, 33] and
play an important role in Morita theory of inverse semigroups [12, 33] as well as in
the interplay of semigroup and topos theories [10, 11, 13, 18].

The study of skew Boolean algebras, the objects of consideration of this paper, was
initiated by Cornish [8] and Leech [23, 24]. In [4] it was observed that skew Boolean
algebras with intersections form a discriminator variety and therefore tools of universal
algebra can be applied to their study. Stone duality for skew Boolean algebras [16] and
skew Boolean algebras with intersections [2, 16] opens completely new perspectives
of looking at these algebras. The duality of [16] made the constructions of this paper
possible, and also, together with the results of [20, 21], led Mark Lawson and the
author to the duality of [19]. The latter duality, in its turn, witnesses that skew Boolean
algebras and Boolean inverse semigroups are closely related. Putting them together
leads to the construction of new objects that are connected with important concepts of
inverse semigroup theory and its applications.

A fundamental feature of Stone duality is that (the unital version of) it is induced by
a dualizing object (sometimes also called a schizophrenic object) 2 = {0, 1}, considered
as a Boolean algebra or as a discrete topological space. In contrast, its generalizations
to the skew Boolean setting given in the papers [2, 16] do not possess this property
(see Section 2.4 for details), despite the fact that there are natural candidates for the
role of such objects: left-handed skew Boolean algebras n + 2 = {0, 1, . . . , n + 1}. For
n = 0 such an algebra is just 2, and for n ≥ 0 it generalizes 2 (see Subsection 2.2
for details). This suggests to study the constructions that are determined by these
objects. In the present paper we treat this question and construct a series of dual
adjunctions Λn a λn, n ≥ 0, between the categories of left-handed skew Boolean
algebras and Boolean spaces, the unital versions of which are induced by the dualizing
objects {0, 1, . . . , n + 1}, n ≥ 0. Our motivation comes from the well-established
significance of dualizing objects, both from the universal algebra and the category
theory viewpoints, (see, for example, [7, 15, 30]), on the one hand, and recently
revealed importance of skew Boolean algebras, on the other hand.

Roughly speaking, our constructions are obtained if in the dualizing object approach
to the classical Stone duality one replaces Boolean algebras by left-handed skew
Boolean algebras, and 2 by n + 2, n ≥ 0 (but note that on the topological side we
work with Boolean spaces, just as in the classical case). Therefore, the constructed
adjunctions can be looked at as noncommutative generalizations of Stone duality.
We emphasize that the constructions of this paper connect skew Boolean algebras
with Boolean spaces and lead to dual adjunctions that are not equivalences, while the
constructions of [2, 16] connect skew Boolean algebras or skew Boolean algebras with
intersections with étale spaces over Boolean spaces and lead to dual equivalences.

It is worth noting that a variation of the functor λ1 of this paper has previously
appeared in another disguise in the paper by Leech and Spinks [27] as the ‘twisted
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product’ ω-functor. Invoking Freyd’s adjoint functor theorem, it was argued in [27]
that the functor ω has a left adjoint, Ω, and the question to describe Ω arose. As a first
step towards answering this question, the action of Ω on finite objects was described
in [27]. The approach of [27], however, did not allow to go further than that. In the
present paper we look at both ω and Ω in a new light which brings more suitable
insights and leads to the full description of the functor Ω (see Remarks 3.1 and 4.6).

We provide a nice combinatorial description of the monads induced by the
constructed adjunctions and prove that the categories of Eilenberg–Moore algebras of
these monads are equivalent to the images of λn, so that the adjunctions are monadic.
Thus for each n ≥ 0 the image of λn is a reflective subcategory of the category of left-
handed skew Boolean algebras.

Given a left-handed skew Boolean algebra S , its maximal Boolean algebra quotient
S/D reflects S in the sense that there is a functor from the category of left-handed
skew Boolean algebras to the category of Boolean algebras sending S to S/D, and this
functor is the left adjoint to the inclusion functor going in the reverse direction. Thus
S/D is known as a commutative reflection of S . In this paper we construct a series
λnΛn(S ), n ≥ 0, of reflections of S . If n = 0 we have λ0Λ0(S ) ' S/D. If n ≥ 1, λnΛn(S )
is a noncommutative reflection of S . Moreover, the units of the constructed adjunctions
provide a canonical way to faithfully represent S in λnΛn(S ) (for all n ≥ 1). However,
in order to decrease the ‘degree of noncommutativity’ of the enveloping algebra one
has to sacrifice the size of the underlying Boolean algebra (Λn(S ))∗. Note that the
possibility of an embedding of S into λn(X) for some X can be easily deduced from [27,
Corollary 3.6] applying Remark 3.1 of this paper. But no specific construction of an
embedding of a skew Boolean algebra into another skew Boolean algebra with ‘low
degree of noncommutativity’ had been previously known.

Before stating in Sections 3–5 the main constructions and results of this paper,
we collect in Section 2 all necessary preliminaries. In particular, we explain what
precisely we mean by a dualizing object approach to the classical Stone duality, then
provide necessary background on skew Boolean algebras and étale spaces and review
the noncommutative Stone duality from [16] needed in this paper. We also explain why
the latter duality and its specialization for skew Boolean algebras with intersections are
not induced by a dualizing object.

2. Preliminaries

2.1. The dualizing object view of the classical Stone duality. By a Boolean
algebra we mean what is usually called a generalized Boolean algebra, that is, a
relatively complemented distributive lattice with a bottom element. A Boolean algebra
with a top element will be called a unital Boolean algebra. A homomorphism
ϕ : B1→ B2 of Boolean algebras is called proper [9], provided that for any b ∈ B2

there exists a ∈ B1 such that ϕ(a) ≥ b. In this paper any homomorphism of Boolean
algebras is assumed to be proper. By BA we denote the category of Boolean algebras
and proper morphisms.

https://doi.org/10.1017/S1446788713000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000323


386 G. Kudryavtseva [4]

By a Boolean space we mean what is usually called a locally compact Boolean
space, that is, a Hausdorff space in which compact-open sets form a base of the
topology. Note that compact Boolean spaces are usually referred to as Boolean spaces.
By BS we denote the category of Boolean spaces and continuous proper maps (recall
that a map of topological spaces is proper if inverse images of compact sets are
compact sets).

Given a Boolean space X, all continuous maps X→ {0, 1}, where {0, 1} is a discrete
topological space, such that f −1(1) is a compact set, form a Boolean algebra denoted
by X∗ and called the dual Boolean algebra of X. Note that the elements of X∗ can
be looked at as proper maps from X to the Sierpiński space {0, 1}. The assignment
X→ X∗ is the object part of the contravariant functor A : BS→ BA. The restriction
of A to the category of compact Boolean spaces is an enriched contravariant Hom-
set functor, because given a compact Boolean space X, the unital Boolean algebra X∗

consists of all continuous maps X→ {0, 1} (note that such a map is automatically also
proper).

The spectrum B∗ of a Boolean algebra B is the set of all proper morphisms from B to
the two-element Boolean algebra 2 = {0, 1}. The set B∗ is equipped with the topology
whose base is formed by the sets M(a) = { f ∈ B∗ : f (a) = 1}, a ∈ B. This space is a
Boolean space and is called the dual space of B. It is well known that the topology
on B∗ can be also characterized as the subspace topology of the product space {0, 1}B.
The assignment B→ B∗ is the object part of the contravariant functor S : BA→ BS. It
is important for us that the restriction of S to the category of unital Boolean algebras
is an enriched contravariant Hom-set functor, because given a unital Boolean algebra
B, the points of the space B∗ are all unital Boolean algebra morphisms B→ 2.

Stone duality for unital Boolean algebras [34] (see also the textbooks [6, 14])
states that the above described contravariant Hom-set functors to {0, 1} establish a dual
equivalence between the categories of unital Boolean algebras and compact Boolean
spaces. Therefore, {0, 1} is called a dualizing object, and this duality is induced by a
dualizing object.

Stone duality for Boolean algebras [9, 34] is an extension of the above duality. It
states that the functors A : BS→ BA and S : BA→ BS establish a dual equivalence
between the categories BS and BA.

In this paper, we will work at the locally compact and nonunital level of
generality. We will construct functors, whose restrictions to appropriate compact-
unital subcategories are enriched Hom-set functors, just as in the commutative case
that was outlined in this subsection.

2.2. Skew Boolean algebras. A skew lattice is an algebra (S ; ∧, ∨) of type (2, 2)
such that the operations ∧ and ∨ are associative, idempotent and satisfy the absorption
identities x ∧ (x ∨ y) = x = x ∨ (x ∧ y) and (y ∨ x) ∧ x = x = (y ∧ x) ∨ x. The natural
partial order ≤ on a skew lattice S is defined by x ≤ y if and only if x ∧ y = y ∧ x = x
or, equivalently, x ∨ y = y ∨ x = y. A skew lattice S is symmetric if x ∧ y = y ∧ x
which happens if and only if x ∨ y = y ∨ x. An element 0 of S is called a zero
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if x ∧ 0 = 0 ∧ x = 0 for all x ∈ S . The skew lattice S is Boolean if it is symmetric, has
a zero element and each principal order ideal dxe = {y ∈ S : y ≤ x} = x ∧ S ∧ x forms a
Boolean lattice.

Let S be a Boolean skew lattice and x, y ∈ S . The relative complement x \ y is
the complement of x ∧ y ∧ x in the Boolean lattice dxe. A skew Boolean algebra
is a Boolean skew lattice, whose signature is enriched by the nullary operation 0
and the binary relative complement operation, that is, it is an algebra (S ; ∧, ∨, \, 0).
Skew Boolean algebras satisfy distributivity laws x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and
(y ∨ z) ∧ x = (y ∧ x) ∨ (z ∧ x), see [25, Theorem 2.5].

Let S be a skew lattice. It is called rectangular if there exist two sets L and R
such that S = L × R, and the operations ∧ and ∨ are defined by (a, b) ∧ (c, d) = (a, d)
and (a, b) ∨ (c, d) = (c, b). Let D be the equivalence relation on S given by xD y if
and only if x ∧ y ∧ x = x and y ∧ x ∧ y = y. It is known [23, Theorem 1.7] that D is a
congruence relation, the D-classes of S are maximal rectangular subalgebras and the
quotient S/D is the maximal lattice image of S . If S is a skew Boolean algebra then
S/D is the maximal Boolean algebra image of S .

A skew lattice is called left-handed (right-handed) if it satisfies the identities
x ∧ y ∧ x = x ∧ y and x ∨ y ∨ x = y ∨ x (respectively, x ∧ y ∧ x = y ∧ x and x ∨ y ∨ x =

x ∨ y). In a left-handed skew Boolean algebra the rectangular subalgebras are flat in
the sense that xD y if and only if x ∧ y = x and y ∧ x = y. If S is a left-handed skew
Boolean algebra then the band (S , ∧) is left normal. It can be easily shown (or see [17])
that for each a ∈ S and D ∈ S/D such that [a]D ≥ D there is a unique b ∈ S such that
[b]D = D and a ≥ b. This element b is called the restriction of a to D and is denoted
by a|D.

A skew Boolean algebra S is called primitive if it has only one nonzeroD-class or,
equivalently, if S/D is the Boolean algebra 2. Up to isomorphism, finite primitive left-
handed skew Boolean algebras are the algebras n + 2, n ≥ 0. These algebras play an
important role in this paper. The underlying set of n + 2 is the set {0, 1, . . . , n + 1}
and its nonzero D-class is the class D = {1, . . . , n + 1}. The operations on D are
determined by left-handedness: x ∧ y = x and x ∨ y = y for any x, y ∈ D.

A skew Boolean algebra has finite intersections if any finite set of its elements has
the greatest lower bound, called the intersection, with respect to the natural partial
order. Since all intersections that we consider are finite, we will sometimes just write
‘intersections’ for ‘finite intersections’. Homomorphisms of skew Boolean algebras
with finite intersections are required to preserve the finite intersections.

For a detailed introduction to the theory of skew Boolean algebras we refer the
reader to [4, 24, 26].

Let ϕ : S 1→ S 2 be a morphism of skew Boolean algebras. We denote by ϕ :
S 1/D→ S 2/D the underlying morphism of Boolean algebras. We call ϕ proper if
ϕ is proper.

We fix the notation Skew for the category of left-handed skew Boolean algebras
and proper morphisms. All skew Boolean algebras considered in the following are
left-handed, so we take a convention to write ‘skew Boolean algebra’ for ‘left-handed
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skew Boolean algebra’. By a morphism of skew Boolean algebras we will mean a
morphism in the category Skew.

2.3. Étale spaces. Preliminaries on étale spaces can be found in any textbook on
sheaf theory, for example, in [5, 29]. An étale space over X is a triple (E, f , X), where
E, X are topological spaces and f : E→ X is a surjective local homeomorphism. The
points of E are called germs. A local section or just a section in E is an open subset
A of E such that the restriction of the map f to A is injective. If U is an open set in X
then E(U) is the set of all sections of E over U, where a section A is over U provided
that f (A) = U. For x ∈ X we denote the set of all y ∈ E such that f (y) = x by Ex. This
set is called the stalk over x. If A ∈ E(U) then for x ∈ U by A(x) we denote the germ
y ∈ A ∩ Ex.

Let (A, g, X) and (B, h, Y) be étale spaces and f : X→ Y be a continuous map.
A cohomomorphism over f (or an f -cohomomorphism) k : B A is a collection of
maps kx : B f (x)→Ax for each x ∈ X such that for every section s ∈ B(U) the function
x 7→ kx(s( f (x))) is a section ofA over f −1(U). The maps kx are called the components
of k.

We introduce the notation Etale for the category of étale spaces over Boolean spaces
and their cohomomorphisms over continuous proper maps. All étale spaces considered
in the following are over Boolean spaces, therefore we take a convention to write ‘étale
space’ for ‘étale space over a Boolean space’. By a morphism of étale spaces we will
mean a morphism in the category Etale.

2.4. Equivalence of the categories of skew Boolean algebras and étale spaces.
The constructions of this paper rely on the generalization of Stone duality to left-
handed skew Boolean algebras given in [16]. We outline it in this subsection.

Let (E, π, X) be an étale space. Denote by E∗ the set of all compact-open sections
of E. We define binary operations ∪ and ∩ on E∗ as follows. Let A, B ∈ E∗. We set

(A∪B)(x) =

B(x) if x ∈ π(B),

A(x) if x ∈ π(A) \ π(B),

(A∩B)(x) = A(x) for all x ∈ π(A) ∩ π(B).

Then A∪B is a section over π(A) ∪ π(B), A∩B is a section over π(A) ∩ π(B) and
(E∗, ∪, ∩) is a left-handed Boolean skew lattice. The associated skew Boolean algebra
E∗ is called the dual skew Boolean algebra to the étale space (E, π, X). Note that
aD b in E∗ if and only if π(a) = π(b). The assignment [a]D 7→ π(a) establishes an
isomorphism between E∗/D and X∗. Note that E∗ has finite intersections if and only
if E is Hausdorff.

Before providing the construction in the opposite direction, we recall the definition
of an ultrafilter of a poset. Let P be a poset. A nonempty and strict subset F of P is
called a filter, provided that:

(i) if a ∈ F and b ≥ a then b ∈ F (F is upwardly closed);
(ii) for any a, b ∈ F there is c ∈ F such that c ≤ a, b (F is down directed).

https://doi.org/10.1017/S1446788713000323 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788713000323


[7] A dualizing object approach to noncommutative Stone duality 389

A maximal filter is called an ultrafilter. In [16] we use the term prime filter for
ultrafilters (note that in Boolean algebras both notions coincide). Also, we use a
different approach to define ultrafilters of skew Boolean algebras. It is easy to show
that the definition of ultrafilters from [16] is equivalent to the one stated above.

Let S be a skew Boolean algebra. The points of the dual étale space S ∗ are the
ultrafilters of S . The latter can be characterized as follows. Let F be an ultrafilter of
the Boolean algebra S/D and let a ∈ S be such that [a]D ∈ F. Then the set

Xa,F = {b ∈ S : there is c ∈ S such that a, b ≥ c and [c]D ∈ F}

is an ultrafilter of S , and any ultrafilter of S is of this form.
The set S ∗ of all ultrafilters of S is called the spectrum of S . There is the projection

map π̂ : S ∗→ (S/D)∗ that is given by Xa,F 7→ F. For a ∈ S we put M(a) = {F ∈ S ∗ : a ∈
F}.

The topology on S ∗ is given by a subbase, that is in fact a base, consisting of the
sets M(a), a ∈ S . We have that S ∗ = (S ∗, π̂, (S/D)∗) is an étale space called the dual
étale space of S . The space S ∗ is Hausdorff if and only if the skew Boolean algebra S
has finite intersections.

We now describe the correspondence for morphisms. Let (E, f , X) and (G, g, Y)
be étale spaces and k : E→ F a morphism. We can readily extend k to the map on
sections. It takes compact-open sections to compact-open sections and preserves the
operations ∪, ∩ and ∅. This gives rise to the morphism k̃ : E∗→G∗ of skew Boolean
algebras. Note that if the spaces E and G are Hausdorff and all components of k are
injective then k̃ preserves finite intersections.

Conversely, let S , T be skew Boolean algebras and k : S → T a morphism. The map

k
−1

induces a morphism of Boolean spaces from (T/D)∗ to (S/D)∗. Let F ∈ (T/D)∗

and V ∈ T ∗F . Then the set k−1(V) is either empty or a disjoint union of several ultrafilters

over k
−1

(F). This allows to define the component k̃F of the morphism k̃ : S ∗→ T ∗.
The domain of k̃F is S ∗

k
−1

(F)
and for U ∈ S ∗

k
−1

(F)
we set k̃F(U) = V if V ∈ T ∗F and

U ⊆ k−1(V). Note that if S , T have finite intersections and k preserves them, then
all components of k̃ are injective.

We now state the theorem that provides insights needed for establishing the main
results of this paper.

T 2.1 [16]. The described assignments are functors that establish an
equivalence between the categories Etale and Skew. If S is a skew Boolean algebra
then S is naturally isomorphic to S ∗∗ via the map βS given by βS (a) = M(a), a ∈ S . If
E is an étale space over a Boolean space then it is naturally isomorphic to E∗∗ via the
map γE given by γE(A) = NA = {N ∈ E∗ : A ∈ N}, A ∈ E.

Consider an application of this theorem. Let n ≥ 0 and ϕ : S → n + 2 be a
morphism of skew Boolean algebras (such morphisms will play an important role in
Section 4). We interpret this topologically. Observe that (n + 2)/D' 2 and 2∗ is a
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one-element space, {a}. The cohomomorphism ϕ̃ has therefore only one component
ϕ̃a : S ∗

ϕ−1(a)
→ {1, . . . , n + 1}. Conversely, any map φ : S ∗

ϕ−1(a)
→ {1, . . . , n + 1} gives

rise to a morphism from S to n + 2 over ϕ−1.
A noncommutative generalization of Stone duality to skew Boolean algebras with

intersections is given by the following theorem.

T 2.2 [2, 16]. The category of left-handed skew Boolean algebras with
intersections is equivalent to the category of Hausdorff étale spaces over Boolean
spaces whose morphisms are cohomomorphisms with injective components.

Let S , T be left-handed skew Boolean algebras with intersections. Theorems 2.1
and 2.2 tell us that, unless S is commutative, the set of all morphisms from S to T is
much bigger than the set of intersection-preserving such morphisms. For example,
if S = 4 and T = 3, morphisms from S to T are given by functions from {1, 2, 3}
to {1, 2}. Intersection-preserving morphisms are given by injective such functions,
which means that there are no intersection-preserving morphisms at all (note that we
do not take into account the zero map since we consider only proper morphisms). For
the constructions of this paper, it is crucial that we consider all cohomomorphisms
between appropriate spaces, and not only the ones with all components injective. So
it is important that the duality theorem we use in this paper is Theorem 2.1 and not
Theorem 2.2.

We now explain why the unital versions of the dualities of Theorems 2.1 and 2.2 are
not induced by a dualizing object. We emphasize that this explanation is applicable
only to the particular kinds of morphisms given in Theorems 2.1 and 2.2. For
Theorem 2.1, consider the functor constructing the spectrum of a skew Boolean
algebra. As follows from [16, Lemma 6.3], points of the spectrum of a skew Boolean
algebra S are in a bijective correspondence with morphisms S → n + 2 such that the
inverse image of 1 is nonempty and minimal possible. This does not produce all
morphisms S → n + 2 (and neither all morphisms from S to another skew Boolean
algebra), even in the case when S/D is unital. For the example from the previous
paragraph, there are exactly 23 = 8 morphisms from 4 to 3. But only three of these
morphisms, that are listed below, give rise to the points of the spectrum of 4:

ϕ1 :

0 7→ 0
1 7→ 1
2 7→ 2
3 7→ 2

; ϕ2 :

0 7→ 0
1 7→ 2
2 7→ 1
3 7→ 2

; ϕ3 :

0 7→ 0
1 7→ 2
2 7→ 2
3 7→ 1

.

For Theorem 2.2, this follows from the fact that for any skew Boolean algebra with
intersections T , there exists another skew Boolean algebra with intersections S such
that there are no intersection-preserving morphisms from S to T at all (we have only
to take care that any stalk of S ∗ has cardinality sticktly greater than the cardinality of
any stalk of T ∗).
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3. The functors λn, n ≥ 0

Let X be a Boolean space and let n ≥ 0 be fixed. We regard the set {0, . . . , n + 1} as
a discrete topological space. Let λn(X) denote the set of all continuous maps f from
X to {0, . . . , n + 1} such that the sets f −1(1), . . . , f −1(n + 1) are compact. Define the
binary operations ∧ and ∨ on λn(X) to be induced by the operations ∧ and ∨ on the
primitive left-handed skew Boolean algebra n + 2. That is, for f , g ∈ λn(X) we put

( f ∧ g)(x) = f (x) ∧ g(x), ( f ∨ g)(x) = f (x) ∨ g(x).

With respect to ∧ and ∨ the set λn(X) becomes a left-handed Boolean skew lattice.
By adding to its signature the relative complement operation and the zero, we turn it
into a left-handed skew Boolean algebra. Note that λ0(X) = X∗.

It is immediate that the elements of λn(X) are in a bijective correspondence
with ordered (n + 1)-tuples of pairwise disjoint compact-open subsets of S via the
assignment f 7→ ( f −1(1), . . . , f −1(n + 1)).

R 3.1. Another realization of λn(X) is by flags An+1 ⊇ · · · ⊇ A1 of compact-open
subsets of X via the assignment

f 7→ f −1({1, . . . , n + 1}) ⊇ f −1({1, . . . , n}) ⊇ f −1(1).

Let An+1 ⊇ · · · ⊇ A1 and Bn+1 ⊇ · · · ⊇ B1 be the flags corresponding to f and g,
respectively. It is easy to verify, applying the definitions of ∨ and ∧, that the flag
corresponding to f ∨ g is Cn+1 ⊇ · · · ⊇C1, where Ci = (Ai \ Bn+1) ∪ Bi for all i, and
the flag corresponding to f ∧ g is Dn+1 ⊇ · · · ⊇ D1, where Di = Ai ∩ Bn+1 for all i.
From this description it follows that λ1(X) = ω(A(X)), where A is the functor from
Subsection 2.1 and ω : BA→ Skew is the (version with proper morphisms of the)
Leech-Spinks ω-functor [27]. Therefore, the construction of λ1 provides a new
interpretation of the functor ω.

Let us look at the structure of the skew Boolean algebra λn(X) in more detail. For
f ∈ λn(X) by f̂ : X→ {0, 1} we denote the map given by

f̂ −1(1) = f −1({1, . . . , n + 1}).

L 3.2. Let f , g ∈ λn(X). Then f D g if and only if

f −1({1, . . . , n + 1}) = g−1({1, . . . , n + 1}).

The quotient Boolean algebra λn(X)/D is isomorphic to λ0(X) = X∗ via the map
[ f ]D 7→ f̂ .

P. By definition, f D g is equivalent to f ∧ g = f and g ∧ f = g. Therefore,
f (x) ∧ g(x) = f (x) and g(x) ∧ f (x) = g(x) for all x ∈ X. The latter equalities are
equivalent to the condition f (x) = 0 if and only if g(x) = 0 for all x ∈ X. This is
equivalent to f −1({1, . . . , n + 1}) = g−1({1, . . . , n + 1}). The second statement is easy
to verify. �
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L 3.3. The natural partial order on λn(X) is given by f ≥ g if and only if

f −1(i) ⊇ g−1(i) for all i ∈ {1, . . . , n + 1}.

P. By definition, f ≥ g is equivalent to f ∧ g = g ∧ f = g. By the definition of the
operation ∧ on λn(X), the latter is equivalent to

f (x) ∧ g(x) = g(x) ∧ f (x) = g(x)

for all x ∈ X, where the equalities are in n + 2. This is equivalent to the condition that
g(x) = i implies f (x) = i for all i ∈ {1, . . . , n + 1}. �

L 3.4. The skew Boolean algebra λn(X) has finite intersections. If f , g ∈ λn(X)
then the intersection f ∩ g is given by

( f ∩ g)−1(i) = f −1(i) ∩ g−1(i)

for all i ∈ {1, . . . , n + 1}.

P. Let h ∈ λn(X) be given by h−1(i) = f −1(i) ∩ g−1(i) for all i ∈ {1, . . . , n + 1}.
Then f , g ≥ h by Lemma 3.3. Assume that f , g ≥ q and let i ∈ {1, . . . , n + 1}. Then
f −1(i) ⊇ q−1(i) and g−1(i) ⊇ q−1(i). It follows that h−1(i) ⊇ q−1(i). This proves that
f ∩ g exists and equals h. �

It is well known that the ultrafilters of the Boolean algebra λ0(X) are the sets
{ f ∈ λ0(X) : f (x) = 1}. Consequently, the ultrafilters of the Boolean algebra λn(X)/D
are the sets

Nx = {[ f ]D ∈ λn(X)/D : f (x) ∈ {1, . . . , n + 1}}, x ∈ X. (3.1)

Let α : λn(X)→ λn(X)/D be the projection map.

L 3.5. For every x ∈ X and i ∈ {1, . . . , n + 1} the set

Nx,i = { f ∈ λn(X) : f (x) = i}

is an ultrafilter of λn(X), and any ultrafilter is of this form. We also have α(Nx,i) = Nx.

P. Let f ∈ Nx,i. We show that Nx,i = X f ,Nx . Let g ∈ Nx,i. Since x ∈ f −1(i) ∩ g−1(i)
we have f ∩ g ∈ Nx,i. Thus also [ f ∩ g]D ∈ Nx. This and f , g ≥ f ∩ g imply that
g ∈ X f ,Nx .

Conversly, let g ∈ X f ,Nx . Then there is some h ∈ λn(X) with [h]D ∈ Nx such that
f , g ≥ h. Since f ≥ h and h(x) , 0 it follows that h(x) = i by Lemma 3.3. Now, g ≥ h
implies g(x) = i again by Lemma 3.3. It follows that g ∈ Nx,i, as required. The second
claim is immediate. �

C 3.6. For any ultrafilter Nx of λn(X)/D

α−1(Nx) =

n+1⋃
i=1

Nx,i.

Consequently, each stalk of the étale space (λn(X))∗ has cardinality n + 1.
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P. Ultrafilters of λn(X) that are over Nx are of the form X f ,Nx , where f (x) ∈
{1, . . . , n + 1}. The statement now follows from the equality Nx,i = X f ,Nx , where
f (x) = i, established in the proof of Lemma 3.5. �

Let X(i) = {Nx,i}x∈X , i ∈ {1, . . . , n + 1}. It follows from Lemma 3.5 that, as a set,
(λn(X))∗ is the union X(1) ∪ · · · ∪ X(n+1) of (n + 1) disjoint copies of X.

L 3.7. The space (λn(X))∗ as a topological space is a disjoint union of (n + 1)
copies of the Boolean space X.

P. Consider each X(i) as a topological space homeomorphic to X via the map
Nx,i 7→ x. Then (λn(X))∗ can be considered as a disjoint union of the spaces X(i). We
aim to show that this topology coincides with the dual étale space topology on (λn(X))∗,
whose construction was outlined in Subsection 2.4. It is enough to verify that the map
π : (λn(X))∗→ X given by Nx,i 7→ x is a local homeomorphism. Fix some Nx,i and a
compact-open set A in X such that x ∈ A. Consider the function f ∈ λn(X) given by
f −1(i) = A and f −1( j) = ∅, j ∈ {1, . . . , n + 1} \ {i}. It is clear that M( f ) =

⋃
y∈A Ny,i.

This is a neighborhood of Nx,i that is homeomorphic via π to A since any basic open
subset that is contained in M( f ) is equal to

⋃
y∈B Ny,i for some compact-open subset B

of A. �

We now define λn on morphisms. Let n ≥ 0 and g : X1→ X2 be a morphism of
Boolean spaces. For any f ∈ λn(X2) we put

λn(g)( f ) = f g. (3.2)

It is easy to check that λn(g) is a skew Boolean algebra morphism from λn(X2)
to λn(X1) and that this makes λn a contravariant functor from the category BS to the
category Skew.

We finish this section by recording the following fact that will be needed in
Section 5.

L 3.8. Let g : X1→ X2 be a morphism of Boolean spaces. Then

λn(g)
−1

(Nx) = Ng(x)

and
λn(g)−1(Nx,i) = Ng(x),i

for any x ∈ X1 and any i ∈ {1, . . . , n + 1}.

P. We have λn(g)([ f ]D) = [ f g]D. Therefore, λn(g)([ f ]D) ∈ Nx if and only if
[ f g]D ∈ Nx. By (3.1) this is equivalent to f g(x) ∈ {1, . . . , n + 1}. Therefore, [ f ]D ∈
N f (x), which implies the first equality. For the second equality, observe that

λn(g)( f ) ∈ Nx,i⇔ f g(x) ∈ Nx,i⇔ f ∈ Ng(x),i. �
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4. The functors Λn and the adjunctions Λn a λn, n ≥ 0

Let S be a skew Boolean algebra, α : S → S/D the canonical projection and α̂ the
projection from S ∗ to (S/D)∗ given by α̂(Xa,F) = F. We also fix n ≥ 0.

Let {0, 1, . . . , n + 1}S be the set of all maps from S to {0, 1, . . . , n + 1}. We regard
{0, 1, . . . , n + 1} as a discrete space and {0, 1, . . . , n + 1}S as a product space. That is,
a base of the topology on {0, 1, . . . , n + 1}S is formed by the sets

Uδ =
⋂
t∈T

{ f ∈ {0, 1, . . . , n + 1}S : f (t) = δ(t)}, (4.1)

where T runs through the finite subsets of S and δ runs through the functions from T
into {0, 1, . . . , n + 1}.

We denote by Λn(S ) the set of all morphisms from S to n + 2 in the category Skew.
We endow Λn(S ) with the subspace topology inherited from the product topology on
the space {0, 1, . . . , n + 1}S .

For each s ∈ S and i ∈ {0, 1, . . . , n + 1} we put

L(s, i) = { f ∈ Λn(S ) : f (s) = i}.

L 4.1. The sets L(s, i), where s runs through S and i runs through the set
{1, . . . , n + 1}, form a subbase of the topology on Λn(S ).

P. By the definition of subspace topology and in view of the base given by (4.1),
the sets

Vδ = Uδ ∩ Λn(S ) =
⋂
t∈T

{ f ∈ Λn(S ) : f (t) = δ(t)},

where T runs through the finite subsets of S and δ runs through the functions from T
into {0, 1, . . . , n + 1}, form a base of the topology on Λn(S ). Therefore, the topology
on Λn(S ) admits a subbase consisting of the sets L(s, i), s ∈ S , i ∈ {0, 1, . . . , n + 1}.
Let s ∈ S . We show that the set L(s, 0) can be expressed as a union of some sets L(t, i)
such that t ∈ S and i ∈ {1, . . . , n + 1}. Let

A = {t ∈ Λn(S ) : α(t) ∧ α(s) = 0}.

We aim to show that

L(s, 0) =
⋃
t∈A

n+1⋃
i=1

L(t, i). (4.2)

Let f ∈ L(s, 0). Since f is nonzero, there is t ∈ S such that f (t) , 0. Observe
that f (s|α(s)∧α(t)) = 0, since s ≥ s|α(s)∧α(t) and f (s) = 0. It follows that f (t|α(s)∧α(t)) = 0
as well since the two elements s|α(s)∧α(t) and t|α(s)∧α(t) are in the same D-class.
Hence f (t|α(t)\α(s)) , 0. We obtain t|α(t)\α(s) ∈ A and f ∈

⋃n+1
i=1 L(t|α(t)\α(s), i), proving that

L(s, 0) ⊆
⋃

t∈A
⋃n+1

i=1 L(t, i).
To prove the reverse inclusion, we let f ∈

⋃
t∈A
⋃n+1

i=1 L(t, i). We have α(s ∧ t) =

α(s) ∧ α(t) = 0, so that s ∧ t = 0. It follows that f (s ∧ t) = f (0) = 0. On the other hand,
we have f (s ∧ t) = f (s) ∧ f (t). We obtain 0 = f (s) ∧ f (t) and f (t) , 0. It follows that
f (s) = 0 and thus f ∈ L(s, 0). This finishes the proof of (4.2). �
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L 4.2. Let s ∈ S and i ∈ {1, . . . , n + 1}. The set L(s, i) is a closed subset of the
space {0, . . . , n + 1}S . Consequently, L(s, i) is a compact-open subset of Λn(S ).

P. Let Y∧ and Y∨ denote the sets of all functions from S to {0, 1, . . . , n + 1} that
preserve ∧ or ∨, respectively. Further, let Y0 and Ys,i denote the sets of all functions
from S to {0, 1, . . . , n + 1} that map 0 to 0 or that map s to i, respectively. It can be
shown using a standard argument (see, for example, [14, proof of Lemma 1, Ch. 34,
page 326]) that each of the sets Y∧, Y∨, Y0 and Ys,i is a closed subset of {0, 1, . . . ,
n + 1}S . It follows that L(s, i) is closed, too, since L(s, i) = Y∧ ∩ Y∨ ∩ Y0 ∩ Ys,i.

For the second claim, observe that L(s, i) is compact in {0, . . . , n + 1}S , because it
is a closed subset of a compact space. Therefore, L(s, i) is compact-open in Λn(S ). �

T 4.3. Λn(S ) is a Boolean space.

P. Λn(S ) is Hausdorff as a subspace of the Hausdoeff space {1, . . . , n + 1}S . So,
in view of Lemmas 4.1 and 4.2, Λn(S ) is a Hausdorff space, in which compact-open
sets form a base of the topology. Thus Λn(S ) is a Boolean space. �

We now define Λn on morphisms. Let h : S 1→ S 2 be a morphism of skew Boolean
algebras. For each f ∈ Λn(S 2) we set

(Λn(h))( f ) = f h.

L 4.4. Λn(h) is a morphism of Boolean spaces from Λn(S 2) to Λn(S 1).

P. It is immediate that for each f ∈ Λn(S 2)

(Λn(h))( f ) ∈ Λn(S 1).

To show that Λn(h) is a continuous proper map, it is enough to verify that the set
(Λn(h))−1(L(s, i)) is compact-open for any s ∈ S 2 and any i ∈ {1, . . . , n + 1}. We
observe that

f ∈ (Λn(h))−1(L(s, i))⇐⇒ (Λn(h))( f ) ∈ L(s, i)

⇐⇒ f h ∈ L(s, i)⇐⇒ f (h(s)) = i⇐⇒ f ∈ L(h(s), i),

implying that (Λn(h))−1(L(s, i)) = L(h(s), i), and the statement follows. �

It is straightforward to check that the constructed assignments define a contravariant
functor Λn : Skew→ BS.

We are now prepared to formulate and prove our adjunction theorem.

T 4.5. For each n ≥ 0 the functor Λn : Skew→ BSop is the left adjoint to the
functor λn : BSop→ Skew. For a skew Boolean algebra S the component ηS of the
unit of the adjunction η is given by

ηS (a)(g) = g(a), a ∈ S , g ∈ Λn(S ). (4.3)
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P. It is immediate that ηS is a morphism. Let S be a skew Boolean algebra, X a
Boolean space and µ : S → λn(X) a morphism of skew Boolean algebras. Our aim is
to show that there is a unique morphism u : X→ Λn(S ) of Boolean spaces such that
µ = λn(u)ηS .

For each x ∈ X we put

u(x)(s) = µ(s)(x), s ∈ S . (4.4)

Let us verify that u is a proper continuous map. For this, we have to show that the
inverse image under u of a compact-open subset of Λn(S ) is compact-open in X. Since
any compact-open subset is a finite union of basic compact-open sets, and any basic
compact-open set is a finite intersection of the sets of the form L(s, i), it is enough to
verify that u−1(L(s, i)) is compact-open in X for each s ∈ S and each i ∈ {1, . . . , n + 1}.

x ∈ u−1(L(s, i))⇔ u(x) ∈ L(s, i)⇔ u(x)(s) = i

⇔ µ(s)(x) = i⇔ x ∈ µ(s)−1(i).

Since µ(s) ∈ λn(X), we have that µ(s)−1(i) is compact-open by the definition of λn(X).
So u−1(L(s, i)) is compact-open, too.

We verify the equality µ = λn(u)ηS . For each a ∈ S and x ∈ X

(λn(u)ηS (a))(x) = ηS (a)u(x) (by (3.2))

= u(x)(a) (by (4.3))

= µ(a)(x) (by (4.4)),

as required.
The uniqueness of u can be shown in a standard way. �

R 4.6. Let S be a skew Boolean algebra and A, S the functors from
Subsection 2.1. We set Ω = AΛ1 : Skew→ BA. It follows from Theorem 4.5 that
Ω is the left adjoint to the functor ω = λ1S : BA→ Skew from [27]. The construction
of Λ1 yields the full description of (the version with proper morphisms of) Ω. This
extends the result of [27], where the action of Ω on finite objects was described.

The statement that follows provides a way to faithfully represent a skew
Boolean algebra S as a subalgebra of a well-understood skew Boolean algebra with
intersections λnΛn(S ). Each stalk of its dual étale space has cardinality n + 1. If n = 1,
we obtain a faithful representation of S in a skew Boolean algebra with intersections
λ1Λ1(S ). Each stalk of its dual space has cardinality 2. This algebra has, roughly
speaking, a ‘low degree of noncommutativity’ (but note that its underlying Boolean
algebra (Λ1(S ))∗ is rather huge in comparison with the underlying Boolean algebra
S/D of S ). In the terminology of Leech and Spinks [27], λ1Λ1(S ) is a minimal skew
Boolean cover of the Boolean algebra (Λ1(S ))∗. We refer the reader to [27] for a
detailed discussion of this notion.
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T 4.7. For each n ≥ 1 the map ηS is injective, and is therefore a faithful
representation of S as a subalgebra of λnΛn(S ).

P. Let a, b ∈ S and a , b. Then M(a) , M(b) by Theorem 2.1. Thus we can
assume that there is an ultrafilter Xa,F in S such that b < Xa,F (but note that a ∈ Xa,F).
Let x be the only point of the space 2∗. The map g : 2∗→ (S/D)∗ given by x 7→ F is a
continuous map. As follows from the discussion in the paragraph after Theorem 2.1,
we can construct a cohomomorphism k : S ∗→ (n + 2)∗ over g given by kx(Xa,F) = 1
and kx(G) = 2 for any G ∈ S ∗F such that G , Xa,F . Since b < Xa,F we have k(b) , 1.
Therefore, the morphism from S to n + 2 that corresponds to k has different values at
a and b. This implies that ηS (a)(k) , ηS (b)(k). �

5. The algebras of the monads of the adjunctions Λn a λn

Preliminaries on monads can be found in, for example, [1, Ch. 10] or [28, Ch. VI].
Let n ≥ 0 be fixed throughout this section.

Let (T, η, µ) be the monad over the category Skew that arises from the adjunction
Λn a λn. We have T = λnΛn, η is the unit of the adjunction given by (4.3), and µ = λnεΛn

is a natural transformation from T 2 to T , where ε : 1BS→ Λnλn is the counit of the
adjunction.

The following statement is straightforward to verify.

L 5.1. Let X be a Boolean space. Then

εX(x)( f ) = f (x), x ∈ X, f ∈ λn(X).

Let S be a skew Boolean algebra. In this section we will work with skew Boolean
algebras λnΛnλnΛn(S ), λnΛn(S ) and morphisms between them. These objects are
rather complicated, and therefore we first find a convenient way of working with them.
We start from a useful description of points of the space Λn(S ).

L 5.2. There is a bijective correspondence between the points of the space Λn(S )
and elements of the set

{(F, f ) : F ∈ (S/D)∗, f ∈ {1, . . . , n + 1}S
∗
F }. (5.1)

P. Let a be the only point of the Boolean space ((n + 2)/D)∗ ' 2∗. Let h ∈ Λn(S ).

Then h
−1

induces a continuous proper map, that we denote also by h
−1

, from 2∗ to

(S/D)∗. Let Fh ∈ (S/D)∗ be such that h
−1

(a) = Fh. Then h̃ has only one component
h̃a : S ∗Fh

→ (n + 2)∗a = {1, . . . , n + 1}. We show that

h 7→ (Fh, h̃a) (5.2)

is a bijection. Assume that (Fh, h̃a) = (Fg, g̃a). Then we have h = g and h−1(i) = g−1(i)
for all i ∈ {1, . . . , n + 1}. Therefore, (5.2) is injective. For the reverse direction, let
F ∈ (S/D)∗ and f ∈ {1, . . . , n + 1}S

∗
F . The map g from 2∗ to (S/D)∗ given by g(a) = F

is proper and continuous. Hence f is the only component of a g-cohomomorphism
from S ∗ to (n + 2)∗. This and Theorem 2.1 imply that (5.2) is surjective. �
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We now characterize the points of the space ΛnλnΛn(S ). Let Tn+1 denote the set of
all transformations of the set {1, . . . , n + 1}.

L 5.3. There is a bijective correspondence between the points of the space
ΛnλnΛn(S ) and elements of the set

{(F, f , g) : F ∈ (S/D)∗, f ∈ {1, . . . , n + 1}S
∗
F , g ∈ Tn+1}. (5.3)

P. Let h ∈ ΛnλnΛn(S ), that is, h is a skew Boolean algebra morphism from
λnΛn(S ) to n + 2. Then h is a Boolean algebra morphism from (λnΛn(S ))/D to 2.

Since h
−1

(1) is an ultrafilter of (λnΛn(S ))/D, it is equal to some NG, where G ∈
Λn(S ), see (3.1). The only component of the cohomomorphism h̃ is a map from
(λnΛn(S ))∗NG

to {1, . . . , n + 1}. This map defines g ∈ Tn+1, where NG,i 7→ g(i) for all
i ∈ {1, . . . , n + 1}. By Lemma 5.2, G corresponds to some pair (F, f ). Hence h
corresponds to the triple (F, f , g). Finally, similarly as in the proof of Lemma 5.2,
it can be shown that this correspondence is bijective. �

To proceed, we need to describe the action of the maps that are involved in the
construction of the monad (T, η, µ), provided that the points of the spaces Λn(S )
and ΛnλnΛn(S ) are identified with the elements of the sets (5.1) and (5.3) via the
constructions in the proofs of Lemmas 5.2 and 5.3, respectively. We do this in
the following three lemmas. By id we denote the identity transformation of the set
{1, . . . , n + 1}.

L 5.4. εΛn(S )(F, f ) = (F, f , id).

P. Let ϕ ∈ Λn(S ) and assume that εΛn(S )(ϕ) = ϕ′. By Lemma 5.1 we have ϕ′(g) =

g(ϕ) for each g ∈ λnΛn(S ). Thus for all i

g ∈ ϕ′−1(i)⇔ ϕ ∈ g−1(i)⇔ g ∈ Nϕ,i.

Therefore, ϕ′−1(i) = Nϕ,i. Thus also ϕ′
−1

(1) = Nϕ. This and the constructions in the
proofs of Lemmas 5.2 and 5.3 imply that if ϕ corresponds to (F, f ) then ϕ′ corresponds
to (F, f , id), as required. �

L 5.5. ηS
−1(N(F, f )) = F and the component η̃S N(F, f )

of η̃S is given by

x 7→ N(F, f ), f (x), x ∈ S ∗F .

P. Let ϕ ∈ Λn(S ). For any a ∈ S and any i ∈ {1, . . . , n + 1}, applying the definition
of Nϕ,i and (4.3), we write

a ∈ η−1
S (Nϕ,i)⇔ ηS (a) ∈ Nϕ,i⇔ ηS (a)(ϕ) = i⇔ ϕ(a) = i⇔ a ∈ ϕ−1(i).

Thus η−1
S (Nϕ,i) = ϕ−1(i). If ϕ corresponds to the pair (F, f ) via the construction in the

proof of Lemma 5.2, then the only component of ϕ̃ is f : S ∗F → {1, . . . , n + 1}. We
therefore have η̃S

−1(N(F, f ),i) = f −1(i), and the statement follows. �
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L 5.6. µS
−1

= ε∗∗
Λn(S ), that is, µS

−1(Nx) = NεΛn(S )(x) and the component µ̃S N(F, f )
is

given by
N(F, f ,id),i 7→ N(F, f ),i.

P. Note that µS = λn(εΛn(S )) and apply Lemmas 3.8 and 5.4. �

We now characterize the algebras for the monad (T, η, µ). An algebra of the monad
(T, η, µ) (or just a T-algebra) is a pair (S , γ) such that S is a skew Boolean algebra and
γ : T (S )→ S is a morphism such that the following diagrams commute:

T 2(S )
T (γ) //

µS

��

T (S )

γ

��
T (S )

γ // S

S
µS //

1S !!CC
CC

CC
CC

C T (S )

γ

��
S

A morphism of T-algebras h : (S 1, γ)→ (S 2, δ) is a morphism h : S 1→ S 2 such
that the following diagram commutes:

T (S 1)
T (h) //

γ

��

T (S 2)

γ

��
S 1

h // S 2

T 5.7. (1) A pair (S , γ) is an algebra for the monad (T, η, µ) if and only if
S = λn(X) for some Boolean space X and γ = λnεX .

(2) A map h : λn(X1)→ λn(X2) is a morphism of T-algebras if and only if h = λn( f )
for some morphism f : X1→ X2.

P. The equality 1S = γηS implies the equality 1(S/D)∗ = ηS
−1γ −1. Applying

Theorem 2.1 we have the following commuting diagrams:

S ∗
η̃S //

1S ∗ %%JJJJJJJJJJ (λnΛn(S ))∗

γ̃

��
S ∗

(S/D)∗ (λnΛn(S )/D)∗
ηS
−1

oo

(S/D)∗
1(S/D)∗

ggNNNNNNNNNNN
γ −1

OO

Let F ∈ (S/D)∗. Assume that γ−1(F) = N(G, f ). By Lemma 5.5 we have
ηS
−1(N(G, f )) = G. Since the second diagram above commutes, F = G. We fix f =

fF : S ∗F → {1, . . . , n + 1} such that γ−1(F) = N(F, f ). Since the first diagram above
commutes and applying Lemma 5.5, we see that for any x ∈ S ∗F

x
η̃S N(F, f )
−−−−−−→ N(F, f ), f (x)

γ̃F
−−−→ x.
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The latter shows that both the map η̃S N(F, f )
and the restriction of the map γ̃F to the

image of η̃S N(F, f )
are injective. Injectivity of η̃S N(F, f )

implies that f has to be injective,
too.

By definition and applying Theorem 2.1 we have the following diagrams (where
Λn(γ)∗∗(Nx) = NΛn(γ)(x)):

(λnΛnλnΛn(S ))∗
˜λnΛn(γ)//

µ̃S

��

(λnΛn(S ))∗

γ̃

��
(λnΛn(S ))∗

γ̃ // S ∗

(λnΛnλnΛn(S )/D)∗ (λnΛn(S )/D)∗
Λn(γ)∗∗oo

(λnΛn(S )/D)∗

ε∗∗
Λn(S )

OO

(S/D)∗
γ −1

oo

γ −1

OO

Our goal now is to describe the action of Λn(γ) and λnΛn(γ) provided that the
elements of the spaces are encoded by the elements of the sets (5.1) and (5.3).
Let g ∈ Λn(S ). It corresponds to the pair (F, ĝ), where F = g −1(1) and ĝ is the
only component of g̃. Applying Λn(γ)(g) = gγ and the construction in the proof of
Lemma 5.3, we can write

(F, ĝ)
Λn(γ)
−−−−−→ (F, f , ĝγ̃F).

This and Lemma 3.8 yield

N(F, f ,ĝγ̃F ),i

˜λnΛn(γ)(F,ĝ)
−−−−−−−−−→ N(F,ĝ),i

for each i ∈ {1, . . . , n + 1}. It follows that for any F ∈ (S/D)∗ we can write

F
γ−1

−−−→N(F, f )
Λn(γ)∗∗
−−−−−−→N(F, f , f γ̃F ). (5.4)

On the other hand, observe that (λnΛn(S )/D)∗ is isomorphic to Λn(S ) and
(λnΛnλnΛn(S )/D)∗ is isomorphic to ΛnλnΛn(S ) via the map Nx 7→ x. Applying
Lemma 5.4, for any F ∈ (S/D)∗

F
γ−1

−−−→N(F, f )

ε∗∗
Λn(S )
−−−−−→N(F, f ,id). (5.5)

Since (5.4) and (5.5) are equal, f is a bijection and γ̃F = f −1. Hence |S ∗F | = n + 1.
Therefore, each stalk of S ∗ has cardinality n + 1.

Let F ∈ (S/D)∗ be fixed. Since |S ∗F | = n + 1 and f is a bijection, we can enumerate
the germs of S ∗F so that S ∗F = {F(1), . . . , F(n+1)} and f maps each F(i) to i. In this
notation

γ̃F(N(F, f ),i) = F(i). (5.6)

Let i ∈ {1, . . . , n + 1}. We define the ith layer of the space S ∗ as the set

S ∗(i) = {F(i) : F ∈ (S/D)∗}.

We show that S ' λn((S/D)∗). It is convenient to work with the isomorphic copy
S ∗∗ of S . Let s ∈ S . Observe that η̃S (M(s) ∩ S ∗(i)) is the ith layer of M(ηS (s)). Since
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the projection of the latter set is compact-open, its inverse image under γ is compact-
open, too. It follows that the map F(i) 7→ NF,i, where F ∈ (S/D)∗ and i ∈ {1, . . . , n + 1},
induces an isomorphism between S ∗∗ and λn((S/D)∗)∗∗.

Let X = (S/D)∗. To establish the equality γ = λnεX , we apply arguments similar to
those in the proofs of Lemmas 5.4 and 5.6 to observe that the action of λ̃nεX F coincides
with the action of γ̃F given in (5.6).

We are left to prove the claim about morphisms. Let f : X2→ X1 be a morphism of
Boolean spaces. It is straightforward to verify that

λn( f ) : λn(X1)→ λn(X2)

is a morphism of T -algebras from (T (λn(X1)), λnεX1 ) to (T (λn(X2)), λnεX2 ).
We now assume that h : λn(X1)→ λn(X2) is a morphism of T -algebras from

(T (λn(X1)), λnεX1 ) to (T (λn(X2)), λnεX2 ). Since (λn(Xi)/D)∗ ' Xi, i = 1, 2, we have

that h
−1

induces a morphism, ĥ, from X2 to X1. We show that h = λn(ĥ). Let
(F, f ) ∈ Λn(S 2), where F ∈ X2 and f ∈ {1, . . . , n + 1}(λn(X2))∗F . Then

(F, f )
Λn(h)
−−−−−→(h

−1
(F), f h̃F),

and therefore

N
(h
−1

(F), f h̃F ),i

˜λnΛn(h)N(F, f )
−−−−−−−−−−→N(F, f ),i (5.7)

for all i ∈ {1, . . . , n + 1}.
Let X be a Boolean space. Similarly as is done in Lemma 5.3, we may establish

a bijection between the points of Λnλn(X) and the pairs (F, f ), F ∈ X, f ∈ Tn+1. If
g ∈ Λnλn(X) then g : X∗→ 2 determines F and the only component of g̃ determines f .
By Lemma 3.8

N(F,id),i

λ̃nεX2 F
−−−−−−→N(F,i). (5.8)

From (5.7), (5.8) and the commutative diagram

λnΛnλn(X1)
λnΛn(h)//

λnεX1

��

λnΛnλn(X2)

λnεX2

��
λn(X1) h // λn(X2)

we see that λ̃nεX1 is defined on all N
(h
−1

(F),̃hF ),i
, F ∈ X2, i ∈ {1, . . . , n + 1}, and moreover

h̃F = id. Hence the action of h̃F is given by N
h
−1

(F),i
7→ NF,i which implies that

h = λn(ĥ). �

Let λn(BS) be the category whose objects are λn(X), where X is a Boolean space,
and whose arrows are λn( f ), where f is a morphism of Boolean spaces.
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C 5.8. The category of Eilenberg–Moore algebras of the monad (T, η, µ) is
isomorphic to the category λn(BS). Consequently, the adjunction Λn a λn is monadic
for every n ≥ 0.

P. The first statement follows from Theorem 5.7. The second statement holds
because the category λn(BS) is obviously isomorphic to the category BSop. �

C 5.9. The category λn(BS) is a reflective subcategory of the category Skew.
The reflector is given by the functor Λnλn.
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