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Abstract

Let M = ( ρ
−1 0
0 ρ−1 ) be an expanding real matrix with 0 < ρ < 1, and let Dn = {( 0

0 ), ( σn
0 ), ( 0

γn
)} be digit sets

with σn, γn ∈ {−1, 1} for each n ≥ 1. Then the infinite convolution

μM,{Dn} = δM−1D1 ∗ δM−2D2 ∗ · · ·

is called a Moran–Sierpinski measure. We give a necessary and sufficient condition for L2( μM,{Dn}) to
admit an infinite orthogonal set of exponential functions. Furthermore, we give the exact cardinality of
orthogonal exponential functions in L2( μM,{Dn}) when L2( μM,{Dn}) does not admit any infinite orthogonal
set of exponential functions based on whether ρ is a trinomial number or not.
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Keywords and phrases: Moran–Sierpinski measure, orthogonal set, trinomial number, spectral measure.

1. Introduction

A fundamental problem in harmonic analysis is whether EΛ := {e−2πi〈λ,x〉 : λ ∈ Λ}
forms an orthonormal basis for L2( μ), the space of all square-integrable functions with
respect to a probability measure μ. A Borel probability measure μ on Rd is called a
spectral measure if we can find a countable set Λ ⊂ Rd such that the set of exponential
functions EΛ := {e−2πi〈λ,x〉 : λ ∈ Λ} forms an orthonormal basis for L2( μ). If such Λ
exists, then Λ is called a spectrum for μ.

Spectral theory has been studied extensively since it was initiated by Fuglede [11]
in 1974. Jorgensen and Pedersen [13] related spectral measures to fractals and gave
the first example of a singular, nonatomic, fractal spectral measure. They showed
that the one-fourth Cantor measure is a spectral measure, but the one-third Cantor
measure is not. Further research on the spectrality and nonspectrality of measures
treats self-similar measures (see [2] for a recent example), self-affine measures (see
[4, 5]) and Moran measures (see [1]).
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A Sierpinski-type measure μM,D is defined by

μM,D(·) = 1
#D

∑
d∈D
μM,D(M(·) − d),

where M = ( b1 0
0 b2

) with b1, b2 > 1, is an expanding matrix, and D = {( 0
0 ), ( 1

0 ), ( 0
1 )}.

The Sierpinski-type measure plays an important role in fractal geometry and geometric
measure theory (see [10, 12]). In [8], Deng and Lau considered the special case
b1 = b2 = b and proved that L2( μM,D) admits an infinite orthogonal set of exponential
functions if and only if b = (p/q)1/r for some p, q, r ∈ N with 3 | p, and μM,D is a
spectral measure if and only if 3 | b. Dai et al. [5] generalised the results under the
assumption that b1 � b2.

The nonspectral problem on the singular measure μmay be the start of investigating
the completeness of a family of exponential functions in L2( μ). For the Sierpinski-type
measure defined above, Dutkay and Jorgensen [9] discovered that if b1 = b2 = b
and 3 � b, then there exist at most 3 mutually orthogonal exponential functions in
L2( μM,D). Later, Li [14] proved that if M = ( a b

0 c ) with ac � 3Z, then there exist at
most 3 mutually orthogonal exponential functions in L2( μM,D) and the number 3
is best possible. The more general setting with a, b, c ∈ R was considered by Chen
et al. [3]. Recently, Liu et al. [15] considered the matrix M = ( a b

d c ) with ac − bd � 3Z
and showed that there exist at most 9 mutually orthogonal exponential functions in
L2( μM,D) and the number 9 is best possible. All of the known results above are
concentrated on the situation when a (or b, c, d) is the rth root of a rational for r ≥ 1.

Motivated by the above results, we will study the nonspectrality of the planar
Moran–Sierpinski measure μM,{Dn}. Let

M =
(
ρ−1 0
0 ρ−1

)
with 0 < ρ < 1, (1.1)

and

Dn =

{ (
0
0

)
,
(
σn
0

)
,
(

0
γn

) }
⊂ Z2, (1.2)

where σn, γn ∈ {−1, 1} for each n ≥ 1. Then there exists a Borel probability measure
with compact support defined by the infinite convolution

μM,{Dn} = δM−1D1 ∗ δM−2D2 ∗ · · ·, (1.3)

where δE = (1/#E)
∑

e∈E δe for any finite set E, δe is the Dirac measure at the
point e and the convergence is in the weak sense. The measure μM,{Dn} is called a
Moran–Sierpinski measure and its support is the Moran set

T(M, {Dn}) :=
{ ∞∑

n=1

M−ndn : dn ∈ Dn

}
.
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Throughout the paper, we make the convention that all fractions have the simplest
form, that is, for a fraction q/p, we have gcd(p, q) = 1. We denote by r the smallest
integer such that (p/q)r ∈ Q (for example, for ρ = (4/9)1/4 = (2/3)1/2, we take r = 2).

Our first result is the following theorem.

THEOREM 1.1. Let M and Dn be defined by (1.1) and (1.2) and define the Moran
measure μM,{Dn} by (1.3). Then L2( μM,{Dn}) admits an infinite orthonormal set of
exponential functions if and only if ρ = (q/p)1/r for some p, q, r ∈ N with 3 | p.

The theorem indicates some connections between number theory and spectral
theory. We can conclude from Theorem 1.1 that if ρ � (q/p)1/r for any p, q, r ∈ N
with 3 | p, then any orthogonal set of exponential functions for L2( μM,{Dn}) is finite.
In this case, we want to estimate the number of orthogonal exponential functions
in L2( μM,{Dn}) exactly. Specifically, for ρ ∈ (0, 1), we will distinguish the following
cases:

• ρ = (q/p)1/r with p, q, r ∈ N and gcd(p, 3) = 1;
• ρ does not have the form (q/p)1/r for any p, q, r ∈ N.

For simplicity, we call Λ an orthogonal set (respectively a maximal orthogonal
set) for μM,{Dn} if {e−2πi〈λ,x〉 : λ ∈ Λ} is an orthonormal family (respectively a maximal
orthonormal family) for L2( μM,{Dn}).

For the first case above, we obtain the following conclusion.

THEOREM 1.2. Let ρ = (q/p)1/r for some p, q, r ∈ N with gcd(p, 3) = 1 and let M,Dn
and μM,{Dn} be defined by (1.1), (1.2) and (1.3), respectively. If Λ is an orthogonal set
of μM,{Dn}, then the following statements hold:

(i) if gcd(q, 3) = 1, then #Λ ≤ 3, and 3 is best possible;
(ii) if 3 | q, then there may be any number of elements in an orthogonal exponential

set in L2( μM,{Dn}).

If ρ does not have the form (q/p)1/r for any p, q, r ∈ N, we introduce the concept of
trinomial number (see Definition 4.1) and prove the following theorem.

THEOREM 1.3. Let M,Dn and μM,{Dn} be defined by (1.1), (1.2) and (1.3), respectively.
Suppose Λ is an orthogonal set of μM,{Dn}. Suppose furthermore that ρ does not have
the form (q/p)1/r for any p, q, r ∈ N.

(i) If ρ is a trinomial number with degree m, then #Λ ≤ 3m+1.
(ii) If ρ is not a trinomial number, then #Λ ≤ 3 and 3 is best possible.

We organise this paper as follows. In Section 2, we give the proof of Theorem 1.1.
In Section 3, we prove Theorem 1.2. Finally, we prove Theorem 1.3 in Section 4.
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2. The proof of Theorem 1.1

Let μ be a Borel probability measure with compact support on R2. The Fourier
transform of μ is defined as usual by

μ̂(ξ) =
∫

e−2πi〈ξ,x〉 dμ(x)

for any ξ ∈ R2. We denote the zero set of μ̂ byZ( μ̂ ), that is,

Z( μ̂ ) = {ξ : μ̂(ξ) = 0}.

It is easy to show that Λ is an orthogonal set for μ if and only if

(Λ − Λ) \ {0} ⊂ Z( μ̂ ). (2.1)

As the orthogonality of the set Λ is invariant under translations, without loss of
generality, we always assume that 0 ∈ Λ.

By the definition of Fourier transform of μM,{Dn} and (1.3), for any ξ ∈ R2,

μ̂M,{Dn}(ξ) =
∞∏

j=1

δ̂M−jDj (ξ).

Hence,

Z( μ̂M,{Dn}) =
∞⋃

j=1

M jZ(̂δDj ). (2.2)

By a simple calculation,

Z(̂δDn ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
1
3

{ (
1
2

)
,
(
2
1

) }
+ Z2, σn, γn = −1 or σn, γn = 1;

1
3

{ (
1
1

)
,
(
2
2

) }
+ Z2, σn = −1, γn = 1 or σn = 1, γn = −1.

(2.3)

For convenience, we denote

A1 =
1
3

( (1
2

)
+ 3Z2

)
, A2 =

1
3

( (2
1

)
+ 3Z2

)
,

and

A3 =
1
3

( (1
1

)
+ 3Z2

)
, A4 =

1
3

( (2
2

)
+ 3Z2

)
.

Then (2.2) and (2.3) imply that

Z( μ̂M,{Dn}) ⊂
∞⋃

j=1

M j(A1 ∪A2 ∪A3 ∪A4) =
∞⋃

j=1

ρ−j(A1 ∪A2 ∪A3 ∪A4). (2.4)
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For the one-dimensional self-similar measure μρ,m,

μρ,m(·) = 1
m

m−1∑
j=0

μρ,m(ρ−1(·) − j), (2.5)

where 0 < ρ < 1 and m > 1 is an integer, Deng [7] studied when L2( μρ,m) admits an
infinite orthogonal set of exponential functions and obtained the following conclusion.

LEMMA 2.1 [7]. Let μρ, m be defined by (2.5). If m is a prime, then L2( μρ, m) admits an
infinite orthogonal set of exponential functions if and only if ρ = (q/p)1/r for p, q, r ∈ N
with m | p.

For any ξ ∈ R2,

μ̂M,{Dn}(ξ) =
∞∏

n=1

δ̂Dn (M−nξ) =
r∏

i=1

∞∏
j=0

δ̂Djr+i (M
−( jr+i)ξ) =

r∏
i=1

∞∏
j=0

δ̂Djr+i (ρ
jr+iξ).

Take νi = ∗∞j=0δM−( jr+i)Djr+i for 1 ≤ i ≤ r. Then

μM,{Dn} = ν1 ∗ ν2 · · · ∗ νr,
and we have

Z( ν̂i) =
∞⋃

j=0

ρ−( jr+i)Z(̂δDjr+i ) = ρ
−i
∞⋃

j=0

ρ−jrZ(̂δDjr+i ). (2.6)

Moreover,

Z( μ̂M,{Dn}) =
r⋃

i=1

Z( ν̂i) =
r⋃

i=1

ρ−i
∞⋃

j=0

ρ−jrZ(̂δDjr+i ). (2.7)

PROOF OF THEOREM 1.1. Suppose Λ is an infinite orthogonal set of μM,{Dn} with
0 ∈ Λ. Set Λ = ( Λ(1)

Λ(2) ), where Λ(1) is the first coordinate of Λ and Λ(2) is the second
coordinate. By the orthogonality of Λ, we have (Λ − Λ) \ {0} ⊂ Z( μ̂M,{Dn}). This,
together with (2.3) and (2.4), implies that

(Λ(i) − Λ(i)) \ {0} ⊂
∞⋃

j=1

ρ−jZ \ 3Z
3

for i = 1, 2.

It follows that (Λ(i) − Λ(i)) \ {0} ⊂ Z( μ̂ρ,3) for i = 1, 2. Therefore, Λ(i) (i = 1, 2) is an
orthogonal set of μρ,3.

We now claim that Λ(i) is infinite for i = 1, 2. It is enough to prove that Λ(1)

is infinite, since the proof for Λ(2) is similar. Suppose to the contrary that Λ(1) is
finite. By the pigeonhole principle, there exist two distinct elements λ, λ′ ∈ Λ with
λ = ( λ1

λ2
), λ′ = ( λ

′
1
λ′2

), such that λ1 = λ
′
1. Then

λ − λ′ =
(

0
λ2 − λ′2

)
� Z( μ̂M,{Dn}).
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This is a contradiction. Hence, the claim follows and we conclude that Λ(i) (i = 1, 2)
is an infinite orthogonal set of μρ,3. By Lemma 2.1, ρ = (q/p)1/r for some p, q, r ∈ N
with 3 | p.

For the converse, suppose that ρ = (q/p)1/r for some p, q, r ∈ N with 3 | p. Fix
i ∈ {1, 2, . . . , r}. By the pigeonhole principle, there exists an infinite set T such that
for any distinct j, j′ ∈ T , we have Djr+i = Dj′r+i. Without loss of generality, assume
thatDjr+i = {( 0

0 ), ( 1
0 ), ( 0

1 )} for j ∈ T . Set

Λ = ρ−i
{

p ja : a =
1
3

(
1
2

)
, j ∈ T

}
∪ {0}.

It is clear that Λ \ {0} ⊂ Z( μ̂M,{Dn}) and Λ is an infinite set. Now, it is enough to prove
that Λ is an orthogonal set of μM,{Dn}. For any distinct λ1, λ2 ∈ Λ, we can write

λ1 = ρ
−i p j1 a, λ2 = ρ

−i p j2 a

with j1 > j2. Then

λ1 − λ2 = ρ
−i p j1 a − ρ−i p j2 a = ρ−( j2r+i)(p j1−j2 q j2 − q j2 )a.

Since gcd(3, q) = 1, we have (p j1−j2 q j2 − q j2 )a ∈ Z(̂δDj2r+i ), and thus λ1 − λ2 ∈
Z( μ̂M,{Dn}). Hence,

(Λ \ {0} ⊂ Z( μ̂M,{Dn}).

Therefore, Λ is an infinite orthogonal set of μM,{Dn}. �

3. The proof of Theorem 1.2

We now turn to Theorem 1.2. To prove it, we need the following lemmas.

LEMMA 3.1 [8]. Suppose that b ∈ R admits a minimal integer polynomial qxr − p
(r > 1) and satisfies a1bl + a2bm = a3bn, where a1, a2, a3 ∈ Z \ {0} and l, m, n are
nonnegative integers. Then l ≡ m ≡ n (mod r).

LEMMA 3.2. If b ∈ R has a minimal integer polynomial qxr − p with r > 1 and
satisfies

bn1

(
a11
a12

)
− bn2

(
a21
a22

)
= bn3

(
a31
a32

)
, (3.1)

where ( ai1
ai2 ) ∈ A1 ∪A2 ∪A3 ∪A4 for 1 ≤ i ≤ 3 and n1, n2, n3 are nonnegative inte-

gers, then n1 ≡ n2 ≡ n3 (mod r).

PROOF. From (3.1), {
3bn1 a11 − 3bn2 a21 = 3bn3 a31,
3bn1 a12 − 3bn2 a22 = 3bn3 a32.

It follows from (2.3) that 3aij � 0 for all i = 1, 2, 3 and j = 1, 2. Applying Lemma 3.1,
we have n1 ≡ n2 ≡ n3 (mod r). �
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PROOF OF THEOREM 1.2. (i) Assume for contradiction’s sake that #Λ > 3. Let
Λ = {0, λ1, λ2, λ3} be an orthogonal set for μM,{Dn}. We claim that

(Λ − Λ) \ {0} ⊂ Z( ν̂i) (see(2.6)) (3.2)

for some i with 1 ≤ i ≤ r. Indeed, for any two distinct λi, λj ∈ Λ, we can write

λi = ρ
−ni

(
λi1
λi2

)
, λj = ρ

−nj

(
λj1
λj2

)
,

where ni, nj ≥ 1 and ( λi1
λi2

), ( λj1
λj2

) ∈ A1 ∪A2 ∪A3 ∪A4. From the orthogonality of Λ,
there exists ρ−m( λ1

λ2
) with m ≥ 1 and ( λ1

λ2
) ∈ A1 ∪A2 ∪A3 ∪A4 such that

ρ−ni

(
λi1
λi2

)
− ρ−nj

(
λj1
λj2

)
= ρ−m

(
λ1
λ2

)
.

By Lemma 3.2, ni ≡ nj ≡ m (mod r). Therefore, λi, λj, λi − λj ∈ Z( ν̂i) for some i with
1 ≤ i ≤ r and the claim follows.

It follows from the above claim that

Λ \ {0} ⊂ (Λ − Λ) \ {0} ⊂ Z( ν̂i),

for some i ∈ {1, 2, . . . , r}. This together with (2.6) implies that we can rewrite λk as

λk =
1
3
ρ−i

( p
q

)nk
(
λk1
λk2

)
,

where nk ≥ 0 and ( λk1
λk2

) ∈ 3(A1 ∪A2 ∪A3 ∪A4) for k = 1, 2, 3. Introduce
N = max{nk : k = 1, 2, 3}. Then

Λ \ {0} = 1
3qN ρ

−i
{

pnk qN−nk

(
λk1
λk2

)
: k = 1, 2, 3

}
.

Set

Λ(1) = {pnk qN−nkλk1 : k = 1, 2, 3}.
Since 3 � pnk qN−nkλk1 for k = 1, 2, 3, by the pigeonhole principle, there exist j � l ∈
{1, 2, 3} such that

pnj qN−njλj1 ≡ pnl qN−nlλl1 (mod 3).

That is, 3 | (pnj qN−njλj1 − pnl qN−nlλl1). Then

λj − λl =
1

3qN ρ
−i
(
pnj qN−nj

(
λj1
λj2

)
− pnl qN−nl

(
λl1
λl2

) )
� Z( ν̂i),

which contradicts (3.2). Hence, #Λ ≤ 3.
Next, we construct an appropriate orthogonal set to show that 3 is best possible. Let

Λ0 = ρ
−( jr+i){λk : λk ∈ Z(̂δDjr+i )} ∪ {0}

for some j ≥ 0 and i ∈ {1, 2, . . . , r}. It is obvious that (Λ0 − Λ0) \ {0} ⊂ Z( ν̂i) and
#Λ = 3. Hence, the number 3 is best possible.
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(ii) For any n ≥ 1, either Z(̂δDn ) = A1 ∪A2 or Z(̂δDn ) = A3 ∪A4. Applying
the pigeonhole principle, there exists an infinite set T and k ∈ {1, 3} such that
Z(̂δDn ) = Ak ∪Ak+1 for all n ∈ T . Without loss of generality, we assume that
Z(̂δDn ) = A1 ∪A2 for all n ∈ T . By the pigeonhole principle again, there exist
i ∈ {1, 2, . . . , r} and an infinite set T ′ such thatZ(̂δDjr+i ) = A1 ∪A2 for all j ∈ T ′. Set
T ′ = { jn}∞n=1 with j1 < j2 < · · · . For any N ≥ 1, define

ΛN =

{
λn = ρ

−i p jn+jN

3q jn

(
αn
βn

)
:
(
α0
β0

)
=

(
0
0

)
and

(
αn
βn

)
=

(
1
2

)
for 1 ≤ n ≤ N

}
.

As 3 � p, we have ΛN \ {0} ⊂ Z(̂νi) ⊂ Z( μ̂M,{Dn}) by (2.6) and (2.7). For any distinct
elements λn, λm ∈ ΛN , we can write

λn = ρ
−i p jn+jN

3q jn

(
αn
βn

)
, λm = ρ

−i p jm+jN

3q jm

(
αm
βm

)
with n < m. Then

λn − λm = ρ
−i p jm

3q jm

(
p jn+jN−jm q jm−jn

(
αn
βn

)
− p jN

(
αm
βm

) )
.

Since 3 � p and 3 | q,(
p jn+jN−jm q jm−jn

(
αn
βn

)
− p jN

(
αm
βm

) )
∈ 3(A1 ∪A2).

It follows that λn − λm ∈ Z( μ̂M,{Dn}). Hence, ΛN is an orthogonal set of μM, {Dn}. By the
arbitrariness of N, the proof is completed. �

4. The proof of Theorem 1.3

In this section, we prove Theorem 1.3. We begin with the important concept of a
trinomial number.

DEFINITION 4.1. We say that ρ ∈ (0, 1) is a trinomial number if there exist α, β, γ ∈
Z \ 3Z and m, n ∈ N with m > n > 0, such that

αρ−m + βρ−n + γ = 0. (4.1)

The smallest m satisfying (4.1) is called the degree of the trinomial number ρ.

The next lemma is inspired by [6, Lemma 4.1].

LEMMA 4.2. Let P(x) be an integer polynomial with all its coefficients divisible by 3
except for one, and let Q(x) be an integer polynomial whose first and last coefficients
are not divisible by 3. Then P(x) and Q(x) are coprime.

PROOF. Note that Q(x) is not monomial. We divide the proof into two cases.

Case I: Q(x) is irreducible in Q[x]. We argue by contradiction. Suppose that P(x) and
Q(x) are not coprime. Then there exists H(x) ∈ Z[x], such that P(x) = H(x)Q(x). Set
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Z3 = Z \ 3Z. Denote by P′(x), Q′(x), H′(x) ∈ Z3[x] the polynomials whose respective
coefficients are congruent to the coefficients of P(x), Q(x), H(x) modulo 3. Then

P′(x) = H′(x)Q′(x).

The assumption of Lemma 4.2 implies that P′(x) is a monomial but Q′(x) is not, which
gives a contradiction. Thus, P(x) and Q(x) are coprime.

Case II: Q(x) is reducible. Then we can write Q(x) = Q1(x)Q2(x) · · ·Qk(x), where
each Qi(x) is irreducible for 1 ≤ i ≤ k. By Case I, P(x) and Qi(x) are coprime for
i = 1, 2, . . . , k. Therefore, P(x) and Q(x) are coprime. �

Now we have all ingredients for the proof of Theorem 1.3.

PROOF OF THEOREM 1.3. (i) Assume that #Λ > 3m+1. Let Λ = {0, λ1, . . . , λ3m+1} be an
orthogonal set for μM,{Dn}. Since ρ is a trinomial number with degree m, there exist
α, β, γ ∈ Z \ 3Z and m, n ∈ N with m > n > 0, such that

αρ−m + βρ−n + γ = 0. (4.2)

Now we claim that for any k ∈ N, there exist {ck,0, ck,1, . . . , ck,m−1} ⊂ Z such that

αkρ−k =

m−1∑
s=0

ck,sρ
−s, (4.3)

where ck,s ∈ Z \ 3Z ∪ {0}. Indeed, if k < m, then (4.3) obviously holds. If k ≥ m, we
denote k = s1m + t1 (0 ≤ t1 ≤ m − 1), then (4.2) implies that

αkρ−k = (αρ−m)s1ρ−t1αk−s1 = (−βρ−n − γ)s1ρ−t1αk−s1 .

If s1n + t1 < m, then (4.3) follows. If s1n + t1 ≥ m, we set s1n + t1 = s2m + t2 with
0 ≤ t2 ≤ m − 1). Then

αk−s1ρ−(s1n+t1) = αk−s1ρ−(s2m+t2) = αk−s1−s2 (αρ−m)s2ρ−t2 = αk−s1−s2 (−βρ−n − γ)s2ρ−t2 .

After finitely many steps, we reach r ∈ N, such that srn + tr < m. Then the claim
follows. By the pigeonhole principle, there exist mutually different ki, kj, kl ∈
{1, . . . , 3m+1}, such that

cki,s ≡ ckj,s ≡ ckl,s (mod 3) (4.4)

for s = 0, 1, . . . , m − 1. Denote the corresponding λi, λj, λl by

λi =
1
3ρ
−ki ai, λj =

1
3ρ
−kj aj, λl =

1
3ρ
−kl al,

where ai, aj, al ∈ {( 1
2 ), ( 2

1 ), ( 1
1 ), ( 2

2 )} + 3Z2. Let N = max{ki, kj, kl}. Denote by
a(1)

i , a(1)
j , a(1)

l the first coordinates of ai, aj, al, respectively. Applying the pigeonhole
principle again, there exist two elements of {λi, λj, λl} (which we might as well denote
as λi, λj), such that

αN−ki a(1)
i ≡ α

N−kj a(1)
j (mod 3). (4.5)
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By the orthogonality of Λ, there exists 1
3ρ
−kij aij ∈ Z( μ̂M,{Dn}) with kij ≥ 1 and

aij ∈ {( 1
2 ), ( 2

1 ), ( 1
1 ), ( 2

2 )} + 3Z2, such that
1
3ρ
−ki ai − 1

3ρ
−kj aj =

1
3ρ
−kij aij. (4.6)

Applying (4.3), we have

αNρ−ki a(1)
i − α

Nρ−kj a(1)
j = α

kiρ−kiαN−ki a(1)
i − α

kjρ−kjαN−kj a(1)
j

=

m−1∑
s=0

(cki, sρ
−sαN−ki a(1)

i − ckj, sρ
−sαN−kj a(1)

j )

=

m−1∑
s=0

(cki, sα
N−ki a(1)

i − ckj, sα
N−kj a(1)

j )ρ−s.

Combining this with (4.6) gives
m−1∑
s=0

(cki, sα
N−ki a(1)

i − ckj, sα
N−kj a(1)

j )ρ−s = αNρ−kij a(1)
ij .

Define

P(x) =
m−1∑
s=0

(cki, sα
N−ki a(1)

i − ckj, sα
N−kj a(1)

j )x−s − αNa(1)
ij x−kij , Q(x) = αxm + βxn + γ.

From (4.4) and (4.5), cki, sα
N−ki a(1)

i − ckj, sα
N−kj a(1)

j ∈ 3Z for 0 ≤ s ≤ m − 1. Then by
Lemma 4.2, P(x) and Q(x) are coprime. However, P(ρ−1) = 0 and Q(ρ−1) = 0. This
gives a contradiction. Hence, #Λ ≤ 3m+1.

(ii) We argue by contradiction. Suppose that #Λ ≥ 4, and let Λ = {0, λ1, λ2, λ3} be
an orthogonal set for μM,{Dn}. By (2.1) and (2.4), we can write

λi =
1
3
ρ−ki ai with ai ∈

{ (
1
2

)
,
(
2
1

)
,
(
1
1

)
,
(
2
2

) }
+ 3Z2, ki ≥ 1,

for i = 1, 2, 3. Applying the pigeonhole principle, there exist distinct λi, λj ∈ Λ, such
that a(1)

i ≡ a(1)
j (mod 3) and ki ≥ kj. By the orthogonality of Λ, there exist 1

3ρ
−kij aij ∈

Z( μ̂M,{Dn}) with aij ∈ {( 1
2 ), ( 2

1 ), ( 1
1 ), ( 2

2 )} + 3Z2, such that
1
3ρ
−ki ai − 1

3ρ
−kj aj =

1
3ρ
−kij aij.

It follows that
ρ−ki a(1)

i − ρ
−kj a(1)

j = ρ
−kij a(1)

ij . (4.7)

Now we distinguish three cases.

Case I: ki, kj, kij are mutually different. We might as well assume that ki > kj > kij since
the proof in the other cases is similar. Then (4.7) implies that

ρ−(ki−kij)a(1)
i − ρ

−(kj−kij)a(1)
j = a(1)

ij .

This means that ρ is a trinomial number, which is a contradiction.
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Case II: Only two elements of {ki, kj, kij} are equal. We might as well assume that
ki > kj = kij. From (4.7),

ρ−(ki−kij)a(1)
i − a(1)

j = a(1)
ij .

It follows that ρ = (a(1)
i /(a

(1)
j + a(1)

ij ))1/(ki−kij), which contradicts the fact that ρ is not of
the form (q/p)1/r for p, q, r ∈ N.

Case III: ki = kj = kij. Then a(1)
i − a(1)

j = a(1)
ij . As a(1)

i ≡ a(1)
j (mod 3), we have

a(1)
ij ≡ 0 (mod 3). This is impossible. Hence, #Λ ≤ 3.

Finally, let

Λ0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
1
3
ρ−1

{ (
0
0

)
,
(
1
2

)
,
(
2
1

) }
if Z(̂δD1 ) =

1
3

{ (
1
2

)
,
(
2
1

) }
+ Z2;

1
3
ρ−1

{ (
0
0

)
,
(
1
1

)
,
(
2
2

) }
if Z(̂δD1 ) =

1
3

{ (
1
1

)
,
(
2
2

) }
+ Z2.

It is easy to verify that (Λ0 − Λ0) \ {0} ⊂ Z( μ̂M,{Dn}) and #Λ0 = 3. Therefore, the
number 3 is best possible. �
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