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Abstract

The concepts nilpotent element, j-prime ideal and j-semi-prime ideal are defined for fi-groups. The
class {G\G is a nil fl-group} is a Kurosh-Amitsur radical class. The nil radical of an fl-group coincides
with the intersection of all the .s-prime ideals. Furthermore an ideal P of G is an s-semi-prime ideal if
and only if G/P has no non-zero nil ideals.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 20 N 99; secondary 16 A 12, 16 A
22, 08 A 99.

1. Notation and Definitions

Throughout this paper we shall use the definitions of Higgins [4]. Whenever we
refer to G it is meant to be an fl-group. By P<G we mean that P is an ideal of G,
and g = (gn #2>- • • >8n)

 e ** means that g, e G for / = 1,2,... ,n. Higgins [4]
called words which involve only the operations u e B monomials. We shall call
monomials Q-words.

1.1 DEFINITION. Let Q be a fixed set of operations; w e fi will be called a
trivial operation in the variety K of fl-groups if xw = 0 is satisfied in K, that is, if
for all G e K and for all a e G, aw = 0 holds. We call w e J2 a non-trivial
operation if it is not trivial.

An R-word involving only non-trivial operations will be called a non-trivial
8-word. For example, in the variety of /^-modules 0 is a trivial operation. In the
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[2 ] Nil and s-prime Q-groups 223

variety of rings the binary operation multiplication is non-trivial although it may
sometimes be zero. If f(x) is any word, then f(x, x,...,x) will be denoted by
f(x). Note that if fx(x) and/2(x) are non-trivial S-words then so is/2(/!(x)). If
S QG and/(x) is an B-word then/(5) = {/(s) |s e S}.

2. Nil ^-groups

2.1 DEFINITION. An element a e G will be called nilpotent if there exists a
non-trivial fi-word /(x) such that f(a) = 0. We call S c G a nil subset of G if
each element of S is nilpotent, and S Q G will be called a nilpotent subset of G if
there exists a non-trivial fi-word/(x) such that/(S) = 0.

2.2 COROLLARY. I. If S Q G is nilpotent then S is a nil subset of G.
2. If S c T c G and T is a nil (nilpotent) subset of G then S is a nil (nilpotent)

subset of G.
3. Iff(a) = 0 for a^G and an to-word f(x) then g(f(a)) = 0 for all tt-words

Definition 2.1 generalizes the definition of nilpotent elements for rings and
near-rings. Coppage and Luh [2] defined nilpotent elements for F-rings. A
nilpotent element according to their definition will always be nilpotent in the
sense of 2.1. The converse is not true as can be verified by looking at the residue
classes modulo 6 considered as a F-ring. An element of a non-associative ring is
nilpotent if there exists a product of a with itself, taken n times for a certain
arrangement of the parentheses, which is zero. An element m of the /^-module M
is nilpotent if there exist 0 =* ri^ e R such that mrxr2 • • • rn = 0. Thus an R-moA-
ule which is not faithful is nilpotent. Conversely, an /^-module which is nilpotent
is not faithful if R has no zero-divisors. An element a of the algebra A over the
ring R will be nilpotent if a" = 0 or if akr1r2 • • • rm = 0 where 0 =£ r, e R,
i = 1,2,..., m and n and k are natural numbers.

2.3 LEMMA. Let KG. Then G is nil (nilpotent) if and only if I and G/I are nil
(nilpotent).

PROOF (for nilpotent). Suppose G is nilpotent. From 2.2 it follows that / is
nilpotent. Since G is nilpotent there is a non-trivial fl-word /(x) such that
f(G) = 0. From Higgins [4], Theorem 3A, it follows tha t / (G/ / ) = 0. Conversely,
if / and G/I are nilpotent, there exist non-trivial fl-words /j(x) and /2(x) such
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tha t /^ / ) = 0 and/2(G/7) = 0. But/2(G/7) = (/2(a) + 7|a e G) and therefore
/2(a) e 7 for all a e C , that is/2(G) c 7. From 2.2 it follows that/jC/^G)) = 0.
Since /i(/2(x)) is a non-trivial £2-word, G is nilpotent. The proof for nil is similar.

2.4 LEMMA. Let I, J<G be nil {nilpotent). Then I + J is a nil (nilpotent) ideal of
G.

PROOF. The proof follows from 7 + J/I = J/J n 7 (Higgins [4], Theorem 3C)
and 2.3.

2.5 COROLLARY. A finite sum of nil (nilpotent) ideals is a nil (nilpotent) ideal.
The sum of all nil ideals of an Q-group G is a nil ideal.

Rjabuhin ([7], Definition p. 151) called a radical class £% absolutely hereditary if
for every B-sub-group A of G, G e 01, it follows that A e 01.

2.6 THEOREM. The class & = {G\G is a nil Q-group] is an absolutely hereditary
radical class.

PROOF. Properties R3, R5 and R7 of Rjabuhin [7] respectively follow from 2.3,
2.5 and 2.3. From Rjabuhin [7], Theorem 1.2 it follows that ^ i s a radical class.
From 2.2 it follows that ^ is an absolutely hereditary class.

3. £-prime and -̂semi-prime ideals

3.1 DEFINITION. U* C G is called a complete system if for each a e U* it
follows that/(a) e U* for all non-trivial Q-words/(x).

S* c G is called an J2-system if S* is closed with respect to all non-trivial
w e f i .

S c G will be called an s-system (a w-system) if 5 contains an Q-system (a
complete system) S*, called the kernel of S, such that for each s e S it follows
that sG D S* ¥= 0 where sG is the ideal generated by 5 in G. 5(5*) denotes an
s-system 5 with kernel 5*. Similarly for «-systems, U(U*).

3.2 COROLLARY 1. Each 9,-system is a complete system.
2. Each s-system is a u-system.
3. Each Sl-system (complete system) is an s-system (a u-system).
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The concept M-system generalizes the concept M-system as defined by Le Roux [6],
for rings and generalized by Groenewald [3], for near-rings, s-systems for rings
and near-rings have been defined by Van der Walt [8], [9].

3.3 DEFINITION. An ideal P of G is called an j-prime (.s-semi-prime) ideal if
^(P) is an s-system (a M-system). G is an .s-prime (.s-semi-prime) Q-group if 0 is
an .s-prime (.s-semi-priine) ideal.

It immediately follows that every .s-prime ideal is also an .s-semi-prime ideal.

3.4 LEMMA. Let P<G. For any Q-word /(x) and for any p e P, g e G, there
exists a p* e P such thatf(p + g) = p* + /(g).

PROOF. The proof will be by mathematical induction on n, the number of
operations involved in/(x). If n = 1, then/(x) = xw for some a e J2. Then

(p + g)« = (p + g)w — gw + g«

= p* + gw where/?* = (p + g)w - gw

G P (Kurosh [5], Section 8.4).

Suppose the lemma is true for all S-words involving k or less than k operations.
Let /(x) be any fi-word involving k + 1 operations. Then /(x) must be of the
form (/!(x)/2(x) • • • /n(x))w where each/(x) involves k or less than k operations.
Note that some of the/(x) could be identity words. Then

/(P + g) = (/i(P + g)/2(P + g) • • • fn(P + g))«>

= (Pi +/i(g))(/>2 +/2(g)) • •• (Pn +

= P*+f(&)
where/?., p* e P, i = 1,2,.. .,n. Thus the lemma follows.

Note that the order is not important in /(p + g) = p* + /(g) since P is a
normal divisor of G.

3.5 LEMMA. Let A<G and S(S*) be a non-empty s-system (u-system) such that
A n S = 0 . Then there exists a maximal s-prime (s-semi-prime) ideal P such that
A c PandP n 5 = 0 .

PROOF (for s-systems). Let./= {I<G\A c / and I n S = 0 }. Applying Zorn's
lemma it follows that J has a maximal element P (say). We show that P is an
.s-prime ideal. Let S* = S* + P = {s + p\s e S*, p e P}. We first show that 5*
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is an B-system. Let <o e Q be non-trivial and av a2,...,an G Sj". Then a, = s, + pt

where J, G S* and />, G P, / = 1,2,... ,n. From 3.4 it follows that axa2 • • • anu
G Sf. X 1 ' n ? = 0 since if a G S? n P then a = * + p, s G 5*, p e P. Thus
j = a - p e P which is a contradiction. Therefore, Sf c # ( P ) . Let Sx = # ( P )
and a e Sv Then a <2 P and thus a a c + P is an ideal such that (aG + P)n
S(S*) # 0 . It follows that we can find p (= P,a' <=aG such that s = a' + p G S.
Then there exists an s* G sG D S* and 5* G SG C a c + P. Thus s* e ( a c + P)
n S*, that is s* = a* + px where / » e P and a* e aG. But then a* = s* - px e
Sf. It follows that SX(SX) is an .s-system and thus that P is an i-prime ideal. The
proof for w-systems is similar.

3.6 LEMMA. / / {Pa\a e A] is a family of s-semi-prime ideals then r\a£APais an
s-semi-prime ideal of G.

PROOF. We have to show that ^(C\aeA PJ = DaeA V(Pa) is a w-system.
is a w-system with kernel Ua (say). Let U* = Uae/4f/a. Then U* is a complete
system and U* c U = U a e / ( ^(P,,). It easily follows that U(U*) is a «-system.

3.7 COROLLARY. An intersection ofs-prime ideals is an s-semi-prime ideal.

3.8 LEMMA. I<G is an s-prime (s-semi-prime) ideal if and only if G/I is an
s-prime (s-semi-prime) Q-group.

3.9 LEMMA. / / U(U*) is a u-system and s e U(U*) then there exists an s-system
S(S*) such that s G S(S*) c U(U*).

PROOF. Since s e U(U*) there exists an s ' e / n U*. Let S = {s, s*} U
{/(j*)|/(x) a non-trivial fi-word} and S* = {s*} U {/(J*) | /(X) a non-trivial
fl-word}. S(S*) is an j-system such that s <= S(S*) c U(U*).

3.10 THEOREM. Le? P<G. P is an s-semi-prime ideal in G if and only if G/P
contains no non-zero nil ideals.

PROOF. Suppose G/P contains no non-zero nil ideals. Let U* = {r e
<g(P)\f(r) e ^(P) for all non-trivial fl-words/(x)}. U* is a complete system by
definition. Put U = V(P). We shall show that U(U*) is a w-system.

Let a G U. Since G / P has no non-zero nil ideals ac + P / P is not a nil ideal.
Thus there exists an ax G aG such that f(ax) $ P for all non-trivial Q-words.
Furthermore ax £ P , for if ax e P then/(aj ) G P for all fl-words/(x) since P is
an ideal. Thus ax G U* and we have shown that U(U*) is a w-system. Thus P is
an j-semi-prime ideal.
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Suppose P is an .s-semi-prime ideal. From 3.8 it follows that G/P is an
5-semi-prime Q-group. Thus #(0) is a w-system with kernel U* (say) in G/P.
Suppose A/P is a non-zero nil ideal of G/P. For each non-zero element a + P in
A/P there exists a non-trivial B-word/(x) such that/(a + P) = 0. But a + P ¥= 0
and therefore (a + P)G/P n U* * 0 . But

(a + P)G/P = {a8)Ge = (aG)0 (Higgins [4], Lemma 3.1)

= aG + P/P where 6 is the natural homomorphism.
Therefore there exists a i e ( a c + P)/P such that b <= U* and also f(b) e [/*
for all non-trivial fl-words/(x). Thus/(ft) # 0 for all non-trivial fi-words/(x). It
follows that A/P is not a nil ideal, which is a contradiction. Therefore G/P has
no non-zero nil ideals

3.11 DEFINITION. Let A<G. The j-radical of A, written s(A), is the set of all
g G G with the property that each s-system S with g e S has non-empty intersec-
tion with A. s(0) will be called the s-radical of G. In particular, s(0) = {g e G\
0 G 5 for each s-system 5 with g e S } .

3.12 COROLLARY U C S(A).

2. A and s(A) are contained in precisely the same s-prime ideals.

The proof is similar to that of Van der Walt ([9], Theorem 3).

3.13 THEOREM. s(A) = f){P<G\P o A and P is an s-prime ideal) and in
particular s(0) = fl{P<G\P is an s-prime ideal).

PROOF. The proof is similar to that of Van der Walt ([9, Theorem 3]).

Using 3.7 we get:

3.14 COROLLARY. S(A) is an s-semi-prime ideal.

3.15 THEOREM. S(A)/A is a nil ideal in G/A and s(A) is precisely the set of
a e G such that aG + A/A is a nil ideal in G/A.

PROOF. Let a e s(A) such that a £ A (that is a + A is a non-zero element of
s(A)/A). Now K = {a) U {f(a)\f(x) a non-trivial Q-word} is an fi-system and
thus also an s-system with a e K. It follows that A C\ K ^ 0. Since a $ A there
exists a non-trivial fl-word/(x) such that/(a) e A. But then a + A is nilpotent in
G/A and therefore s(A)/A is a nil ideal of G/A. By 2.2, each element of s(A)/A
generates a nil ideal in G/A.
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Let a £ s(A). Then there exists an .s-system S(S*) such that S n A = 0 and
a e S. But then there exists an a* e ac n 5* and therefore f(a*) e 5* for all
non-trivial Q-words/(x). Since A O S* = 0 it follows that aG + A/A is not a nil
ideal in G/A.

3.16 COROLLARY 1. s(0) is a nil ideal.
2. s(A) equals the sum of all the ideals B such that B/A is a nil ideal in G/A.

In particular s(0) concides with the sum of all the nil ideals of G, that is with
the nil radical of G. Thus the property "The Q-group G is equal to its ^-radical
s(0)" is a radical property.

3.17 THEOREM. An ideal P of G is an s-semi-prime ideal if and only ifs(P) = P.

PROOF. If s(P) = P the result follows from 3.7 and 3.13. Conversely, suppose P
is an .s-semi-prime ideal. If P = G then the result follows. If P =* G suppose
P c s(P). Then there exists an a e s(P) such that a £ P. But # (P) is a
non-empty M-system and by 3.9 there exists an .s-system S such that a e S c #(/*).
Since a e s(P) we have P n S ¥= 0 which is a contradiction. Therefore J ( / " ) = P.

3.18 COROLLARY. P<G is an s-semi-prime ideal if and only if P is an intersection
of s-prime ideals.

3.19 DEFINITION. An .s-prime ideal P is a quasi-minimal .s-prime ideal belonging
to the ideal A if A c P and there exists a kernel S* for the .s-system S = ^(P)
such that if S* is any fi-system properly containing S* then Sf n A =t 0.

3.20 THEOREM. S(A), the s-radical of A<G, is the intersection of all the quasi-
minimal s-prime ideals belonging to A.

PROOF. The theorem will follow from 3.13 if we can show that each .s-prime
ideal P containing A also contains a quasi-minimal .s-prime ideal belonging to A.

Let P be an .s-prime ideal containing A. By definition ^(P) is an .s-system,
S(S*) say, such that S n A = 0 . Consider

</>= { T*\T* D S* and T* n A = 0 where T* is an fi-system).

By applying Zorn's lemma to S? it easily follows that there exists a maximal
Q-system Sf such that Sf n .4 = 0 and Sf 2 5*. Define 5X = {a e G|aG n Sf
=£ 0 }. Then Sf c Sx and S^Sf) is an .s-system. 5j n ^ = 0 because if a e ^
n 4̂ then there exists an a* e aG n S* and a* G a c c ^ which is a contradic-
tion. We now show that S^S*) is the complement of an .s-prime ideal containing

https://doi.org/10.1017/S1446788700023089 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700023089


[ 81 Nil and .s-prime 12-groups 229

A. From 3.5 it follows that there exists a maximal .s-prime ideal B such that
A Q B and B n S1 = 0 . It follows that S2= 'Z(B) is an j-system with S, c 52.
From the proof of 3.5 it follows that Sf c S* (where S2* = Sf + B). But Sf is a
maximal fl-system such that A n S* = 0 . Therefore Sf = S^. From the defini-
tion of S1! it follows that 5X = 52 = # ( # ) . Thus 5 = ^(S^ is a quasi-minimal
.s-prime ideal belonging to A such that B c /».

3.21 COROLLARY. /•<(/ w a« s-semi-prime ideal if and only if P is the intersection
of quasi-minimal s-prime ideals belonging to P.

3.22 COROLLARY. If P<G then s(P) is the smallest s-semi-prime ideal in G (in
the set theoretic sense) which contains P.

From Rjabuhin ([7], 3.13 and 3.8) it follows

3.23 THEOREM. The s-radical of G, s(0), is zero (that is G is nil semi-simple) if
and only if G is the subdirect sum of s-prime Q-groups.
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