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Abstract

The goal of this paper is to prove a result conjectured in Föllmer and Schachermayer
(2007) in a slightly more general form. Suppose that S is a continuous semimartingale
and satisfies a large deviations estimate; this is a particular growth condition on
the mean-variance tradeoff process of S. We show that S then allows asymptotic
exponential arbitrage with exponentially decaying failure probability, which is a strong
and quantitative form of long-term arbitrage. In contrast to Föllmer and Schachermayer
(2007), our result does not assume that S is a diffusion, nor does it need any ergodicity
assumption.
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1. Introduction

Let (�,F ,F,P) be a filtered probability space where the filtration F = (Ft )t≥0 satisfies the
usual conditions, and let the price process S = (St )t≥0 initially be any R

d -valued semimartin-
gale. We define, for each T > 0, the set

K
T :=

{∫ T

0
Hs dSs

∣∣∣∣ H ∈ L(S) admissible, i.e.
∫
H dS ≥ −a for some a ∈ R+

}
.

The following form of a long-term arbitrage was considered for the first time in [1]; its name
is taken from [4].

Definition 1.1. The process S = (St )t≥0 allows asymptotic exponential arbitrage with
exponentially decaying failure probability if there exist 0 < T̃ < ∞ and constantsC, γ1, γ2 > 0
such that, for all T ≥ T̃ , there is XT ∈ K

T with

(a) XT ≥ −e−γ1T , P-almost surely (P-a.s.),

(b) P[XT ≤ eγ1T ] ≤ Ce−γ2T .

If S has that property, we can find, for any large enough maturity T , up to an exponentially
(in T ) small probability of failure, an exponentially (in T ) large profit with an exponentially
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(in T ) small potential loss. This gives an explicit relation between any tolerance level of failure
and the necessary time to reach a high level. Furthermore, when T → ∞, we get in the limit
a riskless profit. Thus, asymptotic exponential arbitrage with exponentially decaying failure
probability can be interpreted as a strong and quantitative form of long-term arbitrage.

We define the sets

M
T ,e
m := {Q probability measure on FT | Q ≈ P |FT and (St )0≤t≤T is a local Q-martingale}.

Assumption 1.1. Throughout this paper, we assume that M
T ,e
m �= ∅ for any 0 < T < ∞ and

that the filtration F is continuous, i.e. every local martingale with respect to F is continuous.

We show below that, under Assumption 1.1, any semimartingale in F is in fact continuous.
Moreover, using a result of Schweizer [5], we show in Lemma 2.2 that there exists a predictable,
sufficiently integrable R

d -valued process λ = (λt )t≥0 such that, for any T < ∞ and any
Q ∈ M

T ,e
m , the density process ZQ = (Z

Q
t )0≤t≤T of Q with respect to P |FT is of the form

ZQ = Z
Q
0 E

(∫
−λ dM +NQ

)
=: ZQ

0 E(LQ) on [[0, T ]],

where NQ = (N
Q
t )0≤t≤T is a continuous local martingale with NQ⊥MT and MT is the

continuous local martingale coming from the canonical decomposition of ST . We call λ a
market price of risk for the price process S.

Following Föllmer and Schachermayer [1], we extend the notion of S satisfying a large
deviations estimate.

Definition 1.2. A market price of risk λ = (λt )t≥0 for the price process S = (St )t≥0 satisfies
a large deviations estimate if there exist constants c1, c2 > 0 such that

lim sup
T→∞

1

T
log P

[
1

T

∫ T

0
λtr
s d〈M〉sλs ≤ c1

]
< −c2. (1.1)

The main goal of this paper is to prove that, underAssumption 1.1, if a market price of risk for
the price process S satisfies a large deviations estimate, then S allows asymptotic exponential
arbitrage with exponentially decaying failure probability.

In Föllmer and Schachermayer [1], the authors considered an R
d -valued diffusion S̃ =

(S̃t )t≥0 defined over a filtered probability space (�̃, F̃ , F̃, P̃), where the filtration F̃ = (F̃t )t≥0
is the P̃-augmentation of the raw filtration generated by an R

N -valued Brownian motion W̃ and
S̃ is of the form

dS̃t = σ(S̃t )(dW̃t + ϕ(S̃t ) dt). (1.2)

In (1.2), σ : R
d → R

d×N and ϕ : R
d → R

N are such that ϕ(S̃t ) ∈ (ker(σ (S̃t ))⊥ for any t ≥ 0
and the process Z̃ = (Z̃t )t≥0 defined by

Z̃t := E

(
−

∫
ϕ(S̃) dW̃

)
t

= exp

(
−

∫ t

0
ϕ(S̃s) dW̃s − 1

2

∫ t

0
‖ϕ(S̃s)‖2 ds

)
(1.3)

is a strictly positive P̃-martingale, where ‖ · ‖ denotes the Euclidean norm on R
N .

Definition 1.3. The market price of risk function ϕ(·) for the price process S̃ satisfies a large
deviations estimate with respect to S̃ if there are constants c1, c2 > 0 such that

lim sup
T→∞

1

T
log P

[
1

T

∫ T

0
‖ϕ(S̃s)‖2 ds ≤ c1

]
< −c2. (1.4)
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Föllmer and Schachermayer [1] formulated the conjecture that if (1.4) holds, then S̃ allows
asymptotic exponential arbitrage with exponentially decaying failure probability. In Mbele
Bidima and Rásonyi [4], the authors proved such a result in a discrete-time version of the
model (1.2) with bounded drift and volatility. In the present paper we can show, as a corollary
of our main theorem, that the conjecture is also true in the stated form for the continuous-time
price process S̃ in (1.2).

2. Main theorem, its proof, and comments

We begin by showing the following result.

Lemma 2.1. Under Assumption 1.1, the process S is continuous.

Proof. This is well known, but we present a proof for completeness. Take any decomposition
S = S0 +M+Awith a local martingaleM and withA of finite variation. Take any T < ∞ and
any Q ∈ M

T ,e
m with density process Z = (Zt )0≤t≤T with respect to P |FT . As F is continuous,

the local P-martingales Z, ZS, and M , and, hence, also 1/Z, are continuous processes up to
time T . So A = (1/Z)ZS −M − S0 and, hence, also S are continuous up to time T , which
gives the result.

Notation. Under Assumption 1.1, we let

S = S0 +M + A

be the canonical decomposition of the continuous semimartingale S, where M is a continuous
local martingale and A is a continuous process of finite variation.

We next characterize for any Q ∈ M
T ,e
m the structure of its density process ZQ with respect

to P |FT . For unexplained notation from martingale theory, we refer the reader to [2].

Lemma 2.2. Under Assumption 1.1, there exists an R
d -valued process λ = (λt )t≥0 ∈ L2

loc(M)

such that, for any T < ∞ and any Q ∈ M
T ,e
m , the density process ZQ = (Z

Q
t )0≤t≤T of Q with

respect to P |FT is of the form

ZQ = Z
Q
0 E

(∫
−λ dM +NQ

)
=: ZQ

0 E(LQ) on [[0, T ]], (2.1)

where NQ = (N
Q
t )0≤t≤T is a continuous local martingale with NQ⊥MT . As a consequence,

we have

〈LQ〉t ≥
∫ t

0
λtr
s d〈M〉sλs (2.2)

for each t ∈ [0, T ]. We call λ a market price of risk for the price process S.

Proof. By Lemma 2.1, the process S is continuous. Since M
T ,e
m �= ∅ for any T < ∞,

Theorem 1 of [5] gives, for any T < ∞, an R
d -valued process λ(T ) = (λ

(T )
t )0≤t≤T ∈ L2

loc(M
T )

such that, for any Q ∈ M
T ,e
m , the density process ZQ = (Z

Q
t )0≤t≤T of Q with respect to P |FT

is of the form

ZQ = Z
Q
0 E

(∫
−λ(T ) dMT +NQ

)
on [[0, T ]], (2.3)

whereNQ = (N
Q
t )0≤t≤T is a continuous local martingale withNQ⊥MT . We point out that the

process λ(T ) need not be unique. However, the stochastic integral
∫
λ(T ) dMT does not depend
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on the choice of λ(T ) satisfying (2.3); see [5]. Extending the process λ(T ) to [0,∞) by setting
λ̄(T ) = λ(T ) 1[[0,T ]], we clearly have λ̄(T ) ∈ L2

loc(M). The R
d -valued process λ = (λt )t≥0

defined by

λ :=
∞∑
n=1

λ̄(n) 1((n−1,n]] (2.4)

is then inL2
loc(M), too. Moreover, Q |Fn−1 ∈ M

n−1,e
m for any Q ∈ M

n,e
m , and so (2.3) inductively

yields ∫
λ dM =

∫
λ̄(n) dM =

∫
λ̄(n) dMn on [[0, n]]

for any n ∈ N. So (2.1) follows from (2.3) and (2.4).
Finally, LQ = − ∫

λ dM +NQ on [[0, T ]] and NQ⊥MT imply (2.2) because

〈LQ〉 =
∫
λtr d〈M〉λ+ 〈NQ〉.

Remark 2.1. We do not claim that the market price of risk λ for the price process S is unique.
However, as already used, the stochastic integral

∫
λ dM does not depend on the choice of λ.

This can, for instance, be seen by writing for Q ∈ M
T ,e
m the density process ZQ = Z

Q
0 E(LQ)

and then arguing that − ∫
λ dM must be the projection of LQ onM; this follows because ZQS

is a local P-martingale. As a consequence, the property of satisfying a large deviations estimate
does not depend on the choice of the market price of risk λ either.

Notation. For brevity, we introduce the so-called mean-variance tradeoff process

Kt :=
∫ t

0
λtr
s d〈M〉sλs

for t ≥ 0. This process is finite valued since λ ∈ L2
loc(M), and it does not depend on the choice

of the market price of risk λ; in fact, K = 〈∫ λ dM〉.

Lemma 2.3. Under Assumption 1.1, suppose that a market price of risk λ for the price process
S satisfies a large deviations estimate. Then

K∞ := lim
t→∞Kt = ∞ P-a.s.

Proof. If the above statement is not true, there is a constant C > 0 with

P[K∞ ≤ C] =: P[B] > 0.

As λ satisfies a large deviations estimate, there exist constants c1, c2 > 0 such that

lim sup
T→∞

1

T
log P

[
1

T
KT ≤ c1

]
=: lim sup

T→∞
1

T
log P[VT ] < −c2.

Thus, we can find 0 < T̄ < ∞ such that

C ≤ c1T̄ , P[VT̄ ] ≤ e−c2T̄ /2, e−c2T̄ /2 < P[B].
As C ≤ c1T̄ and K is increasing, we get B ⊆ VT̄ . But then, by the definition of T̄ ,

P[B] ≤ P[VT̄ ] ≤ e−c2T̄ /2 < P[B],
which gives a contradiction.
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Lemma 2.4. Under Assumption 1.1, suppose that a market price of risk λ for the price process
S satisfies a large deviations estimate. Fix 0 < T < ∞, and letL = (Lt )0≤t≤T be a continuous
local martingale with L0 = 0. Then there exists a continuous local martingale L̄ = (L̄t )t≥0
defined for all times t ∈ [0,∞) such that L̄t = Lt for any t ∈ [0, T ] and

〈L̄〉∞ := lim
t→∞〈L̄〉t = ∞ P-a.s.

Proof. Define the process Y = (Yt )t≥T by Yt := ∫ t
T
λs dMs , set Ȳ := Y 1[[T ,∞)) and

L̄ := L 1[[0,T ]] +Ȳ = L 1[[0,T ]] +Y 1[[T ,∞)).

Then L̄ is a continuous local martingale null at 0 like L, Y , and Ȳ , and we have L̄ = L on
[[0, T ]] by construction. Moreover,

〈L̄〉∞ = 〈L〉T + 〈Ȳ 〉∞ = 〈L〉T +
∫ ∞

T

λtr
s d〈M〉sλs = 〈L〉T +K∞ −KT = ∞ P-a.s.

due to Lemma 2.3.

Remark 2.2. In Lemma 2.4, we can replaceAssumption 1.1 and the condition onλ by assuming
instead that there exists a Brownian motion B with respect to the filtration F, which is a much
weaker assumption. Indeed, in that case, we just define in the above proof the process Y by
Yt := Bt − BT for t ≥ T . The rest of the argument then works in the same way.

Following Föllmer and Schachermayer [1], we now define the notion of (ε1, ε2)-arbitrage
(up to time T ).

Definition 2.1. Fix any T < ∞, and let 0 < ε1, ε2 < 1. The process S admits an (ε1, ε2)-
arbitrage up to time T if there exists XT ∈ K

T such that

(a) XT ≥ −ε2, P-a.s.,

(b) P[XT ≥ 1 − ε2] ≥ 1 − ε1.

Our next preliminary result is a direct consequence of Proposition 2.3 of [1]. More precisely,
the result follows by the implications (ii) ⇒ (iii) ⇒ (i) in that proposition. See also Remark 2.4
of [1].

Lemma 2.5. Fix any T < ∞, and let 0 < ε1, ε2 < 1 be such that, for each Q ∈ M
T ,e
m , there

is a set AQ
T ∈ FT with P[AQ

T ] ≤ ε1 and Q[AQ
T ] ≥ 1 − ε2. Then, for any 0 < ε̃1, ε̃2 < 1 with

21+α max(ε1, ε
α
2 ) ≤ ε̃1ε̃

α
2 for some 0 < α < ∞, S admits an (ε̃1, ε̃2)-arbitrage up to time T .

Note that ε1 and ε2 in the assumption of Lemma 2.5 are exogenously given and unrelated
toT . The point of the next result is that it allows us to choose them both exponentially small inT ,
if S satisfies the extra condition of a large deviations estimate. This is the key for subsequently
proving our main result.

Proposition 2.1. Under Assumption 1.1, suppose that a market price of risk λ for the price
process S satisfies a large deviations estimate. Then there exist constants C̃, γ1, γ2 > 0 and
1 ≤ T0 < ∞ such that, for all T ≥ T0, we can find, for any Q ∈ M

T ,e
m , a set AQ

T ∈ FT with

P[AQ
T ] ≤ C̃e−γ1T < 1 and Q[AQ

T ] ≥ 1 − e−γ2T .
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Proof. By assumption, there exist constants c1, c2 > 0 such that, as in (1.1),

lim sup
T→∞

1

T
log P

[
1

T
KT ≤ c1

]
< −c2.

We take any constant 0 < δ < c1/2 and set

γ1 := min

{
(c1 − 2δ)2

8c1
,
c2

2

}
> 0, γ2 := δ > 0, C̃ :=

√
2c1

(c1 − 2δ)
√
π

+1 > 0. (2.5)

By the definition of lim supT→∞, we find 1 ≤ T0 < ∞ such that, for all T ≥ T0,

C̃e−γ1T < 1 and P[KT ≤ c1T ] ≤ e−c2T /2. (2.6)

Fix T ≥ T0 and Q ∈ M
T ,e
m . For any stopping time σ ≤ T , Lemma 2.2 gives

dQ

dP

∣∣∣∣
Fσ

= ZQ
σ = exp

(
LQ
σ − 1

2
〈LQ〉σ

)
with 〈LQ〉σ ≥ Kσ . (2.7)

We define the set GQ
T := {〈LQ〉T > c1T }. Then (2.6) and (2.7) imply that

P[(GQ
T )
c] = P[〈LQ〉T ≤ c1T ] ≤ P[KT ≤ c1T ] ≤ e−c2T /2. (2.8)

Now, Lemma 2.4 yields a continuous local martingale L̄Q = (L̄
Q
t )t≥0 with L̄Q = LQ on [[0, T ]]

and 〈L̄Q〉∞ = ∞, P-a.s. We define the stopping times

τ
Q
t := inf{s > 0 | 〈L̄Q〉s > t}

for any t ≥ 0 and the process BQ = (B
Q
t )t≥0 by

B
Q
t := L̄

Q

τ
Q
t

. (2.9)

Then the Dambis–Dubins–Schwarz theorem (see Theorem 3.4.6 of [3]) implies that BQ is a
Brownian motion. Set τQ := τ

Q
c1T

∧ T . By definition, τQ is a stopping time with respect to F

and values in [0, T ]. Moreover, as L̄Q = LQ on [[0, T ]] and 〈L̄Q〉 is continuous, we obtain

G
Q
T = {〈L̄Q〉T > c1T } ⊆ {τQ

c1T
< T } = {τQ

c1T
= τQ < T }. (2.10)

We also note that, for any standard normal random variable U , we have the estimate

P[U > ab] ≤ 1√
2πa

e−a2b2/2 (2.11)

for any a > 0 and b ≥ 1. For the set AQ
T := {ZQ

τQ > e−δT } ∈ FτQ ⊆ FT , (2.10), (2.7),
Lemma 2.4, (2.9), (2.11), and (2.8) then yield

P[AQ
T ] = P[{ZQ

τQ > e−δT } ∩GQ
T ] + P[{ZQ

τQ > e−δT } ∩ (GQ
T )

c]
≤ P

[
Z

Q

τ
Q
c1T

> e−δT , τQ
c1T

= τQ < T
] + P[(GQ

T )
c]

= P
[
L

Q

τ
Q
c1T

− 1
2 〈LQ〉

τ
Q
c1T

> −δT , τQ
c1T

= τQ < T
] + P[(GQ

T )
c]

= P
[
L̄

Q

τ
Q
c1T

− 1
2 〈L̄Q〉

τ
Q
c1T

> −δT , τQ
c1T

= τQ < T
] + P[(GQ

T )
c]
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≤ P
[
B

Q
c1T

− 1
2c1T > −δT ] + P[(GQ

T )
c]

= P

[
B

Q
1 >

c1 − 2δ

2
√
c1

√
T

]
+ P[(GQ

T )
c]

≤ 2
√
c1

(c1 − 2δ)
√

2π
exp

(
− (c1 − 2δ)2

8c1
T

)
+ exp

(
−c2

2
T

)
.

Combining this with (2.5) and (2.6) gives

P[AQ
T ] ≤ C̃e−γ1T < 1.

Moreover, we deduce, from the definition of AQ
T and as δ = γ2, that

Q[AQ
T ] = 1 − Q[(AQ

T )
c] = 1 − E[ZQ

τQ 1
(A

Q
T )

c ] ≥ 1 − e−γ2T .

Thanks to the quantitative strengthening achieved in Proposition 2.1, we are now able to
prove the announced result.

Theorem 2.1. Under Assumption 1.1, suppose that a market price of risk λ for the price process
S satisfies a large deviations estimate. Then S allows asymptotic exponential arbitrage with
exponentially decaying failure probability.

Proof. By Proposition 2.1, there exist 1 ≤ T0 < ∞ and constants C̃, γ1, γ2 > 0 such that,
for any T ≥ T0, we can find for any Q ∈ M

T ,e
m a set AQ

T ∈ FT with

P[AQ
T ] ≤ C̃e−γ1T =: ε1,T < 1 and Q[AQ

T ] ≥ 1 − e−γ2T =: 1 − ε2,T .

In particular, γ1T > log C̃. For any T ≥ T0, we define

αT := log C̃ − γ1T

−γ2T
> 0.

Thus, αT converges increasingly to γ1/γ2 as T → ∞, and we have

ε1,T = ε
αT
2,T . (2.12)

We take T0 ≤ T̃ < ∞ and a constant γ3 with 0 < 2γ3 < γ2/2 such that, for any T ≥ T̃ ,

e(γ2/2−γ3)T − 1 ≥ eγ3T and 21+γ1/γ2
√
C̃e−γ1T < 1. (2.13)

Now fix any T ≥ T̃ , and set ε̃1,T := 21+γ1/γ2
√
ε1,T < 1 and ε̃2,T := √

ε2,T < 1. By construc-
tion, due to (2.12), we have

ε̃1,T ε̃
αT
2,T = 21+γ1/γ2

√
ε1,T

√
ε
αT
2,T ≥ 21+αT √

ε1,T

√
ε
αT
2,T = 21+αT max(ε1,T , ε

αT
2,T ).

Therefore, it follows from Lemma 2.5 that S admits (ε̃1,T , ε̃2,T )-arbitrage up to time T , which
means that there is X̄T ∈ K

T such that

(a) X̄T ≥ −e−γ2T /2, P-a.s.,

(b) P[X̄T ≥ 1 − e−γ2T /2] ≥ 1 − 21+γ1/γ2
√
ε1,T .
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We set XT := e(γ2/2−γ3)T X̄T ∈ K
T , γ4 := γ1/2 > 0, and C := 21+γ1/γ2

√
C̃ > 0. Owing to

the definition of XT and (2.13), we obtain

P[XT ≥ eγ3T ] ≥ P[XT ≥ e(γ2/2−γ3)T − 1]
≥ P[XT ≥ e(γ2/2−γ3)T − e−γ3T ]
= P[X̄T ≥ 1 − e−γ2T /2].

Thus, we conclude from the above properties of X̄T and the definition of ε1,T that

(a) XT ≥ −e−γ3T , P-a.s.,

(b) P[XT ≤ eγ3T ] ≤ Ce−γ4T ,

which proves the assertion.

As a direct corollary, we can prove the conjecture in [1].

Corollary 2.1. Let (�̃, F̃ , F̃, P̃) be a filtered probability space where the filtration F̃ = (F̃t )t≥0

is the P̃-augmentation of the raw filtration generated by an R
N -valued Brownian motion W̃ .

Moreover, let S̃ be the diffusion process defined in (1.2). Suppose that the market price of risk
function ϕ(·) satisfies a large deviations estimate with respect to S̃. Then S̃ allows asymptotic
exponential arbitrage with exponentially decaying failure probability.

Proof. By our assumption (1.3) on the diffusion process in (1.2) and the choice of the
filtration F̃, the martingale representation theorem implies Assumption 1.1 for P̃. Moreover, it
is well known that, for every T < ∞ and any equivalent martingale measure Q̃ for (S̃t )0≤t≤T ,
the density process Z̃Q̃ with respect to P̃|F̃T is of the form

Z̃Q̃ = E

(∫
−ψ Q̃ dW̃

)
=: E(L̃Q̃),

where (ψ Q̃
t )0≤t≤T is a predictable R

N -valued process with ψ Q̃
t − ϕ(S̃t ) ∈ ker(σ (S̃t )) for any

t ∈ [0, T ]. As a consequence, we have

〈L̃Q̃〉t =
∫ t

0
‖ψ Q̃

s ‖2 ds ≥
∫ t

0
‖ϕ(S̃s)‖2 ds

for any t ∈ [0, T ]. For details, we refer the reader to Section 3 of [1]. Therefore, if we compare
Definitions 1.2 and 1.3 and look at Lemma 2.2, we see that we get the result directly by using
the same computations as in Proposition 2.1 and Theorem 2.1, replacing LQ by L̃Q̃ and K by∫ ‖ϕ(S̃s)‖2 ds.

Föllmer and Schachermayer [1] considered the diffusion process S̃ defined in (1.2) and
introduced a quantitative form of long-term arbitrage. This is almost the same as asymptotic
exponential arbitrage with exponentially decaying failure probability, with the difference that
there is no relation between the tolerance level of failure and the necessary time to reach a
level. The authors introduced the notion of having an average squared market price of risk
above a threshold c > 0, which is a growth condition on the mean-variance tradeoff process.
They proved that if S̃ satisfies this then there exists the above kind of long-term arbitrage (see
Theorem 1.4 of [1]). Furthermore, the authors wrote that one should expect to have asymptotic
exponential arbitrage with exponentially decaying failure probability (in the sense of the present
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paper) under the stronger assumption that the market price of risk function ϕ(·) for S̃ satisfies
a large deviations estimate. They even sketched an argument how one could try to prove this
conjecture using a large deviations approach, but left the details and precise assumptions open.
In Mbele Bidima and Rásonyi [4], the authors proved such a result in a discrete-time version of
the model (1.2) by using a large deviations estimate for a martingale difference sequence (see
Theorem 4 of [4]). The main contribution of the present paper is a rigorous proof based on a
time-change argument instead of a large deviations approach. In addition to avoiding any extra
assumptions, this has also allowed us to prove the result not only for diffusions, but for general
continuous semimartingales (satisfying Assumption 1.1).
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