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Abstract

Szekeres defined a continuous analogue of the additive ordinary continued fraction expansion, which
iterates a map T on a domain which can be identified with the unit square [0, I]2. Associated to it are
continuous analogues of the Lagrange and Markoff spectrum. Our main result is that these are identical
with the usual Lagrange and Markoff spectra, respectively; thus providing an alternative characterization
of them.

Szekeres also described a multi-dimensional analogue of T, which iterates a map Td on a higher-
dimensional domain; he proposed using it to bound d-dimensional Diophantine approximation constants.
We formulate several open problems concerning the Diophantine approximation properties of the map
Td.

1991 Mathematics subject classification (Amer. Math. Soc): primary 11J06, 11J70; secondary 58FO3,
58F08.

1. Introduction

Szekeres f 14] constructed a continuous analogue of the additive ordinary continued
fraction algorithm, which proceeds by iterating a map T from a two-dimensional
space of 'configurations' to itself. This space can be naturally identified with the unit
square [0, I]2. He also defined a multi-dimensional generalization, which iterates a
map Td on a certain multi-dimensional space of 'configurations.' His motivation was
to use these continuous analogues to obtain bounds for Diophantine approximation
constants in dimensions d > 2, as described in Section 6.
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[2] The continuous Diophantine approximation mapping of Szekeres 149

The main purpose of this paper is to study the one-dimensional Szekeres map T
in detail. For this map one can define in a natural way an analogue of the Lagrange
spectrum in one-dimensional Diophantine approximation; we call this the Szekeres
L-spectrum. Recall that the one-dimensional approximation constant of 9 e E. is

(1.1) d(0) = \im Mq{{qO}}
q—*oo

where {{x}} denotes the distance of x to the nearest integer, and that the Lagrange
spectrum J£ is defined by

(1.2) i f = {C,(0)-' :C,(0)>O}.

The Szekeres L-spectrum «5f5 is defined in Section 2, and automatically satisfies
_Sf c j£?s. In Section 3 we prove that the Szekeres L-spectrum coincides with the
Lagrange spectrum. The proof involves a study of the symbolic dynamics attached
to the map T, and, as an aid in this study, in Section 4 we characterize all points in
[0, I]2 having the same forward symbolic dynamics under T.

In Section 5 we obtain analogous results for the Markoff spectrum of indefinite
binary quadratic forms. We show that there is a natural description of the Markoff
spectrum in terms of the Szekeres map T (Theorem 5.1). The proof of this result
constructs a conjugacy of the Szekeres map to a map encoding an additive variant of
the reduction theory of indefinite binary quadratic forms.

A consequence of these results is that the Szekeres map T provides a natural discrete
framework in which to study the Lagrange and Markoff spectra. Basic results on the
Lagrange and Markoff spectra can be found in Cusick and Flahive [6].

In the final Section 6 we turn to the multi-dimensional Szekeres map Td, and state a
number of open problems concerning approximation constants associated to this map.

2. One-dimensional Szekeres map

The Szekeres map is constructed by analogy with the additive form of the one-
dimensional continued fraction algorithm. In that algorithm, the nth stage of ap-
proximating £ e [0,1], specifies that £ is contained in a particular Farey interval
/„ = [p/q, p'/q'] starting from the initial interval Io = [0/1, 1/1]. A Farey interval
is an interval [p/q, p'/q'] such that p'/q' — p/q = \/qq'. The interval /„ is split
into two subintervals at its mediant p + p'/q + q', and the (n + l)-st stage In+1

chooses the subinterval containing £. (There are two choices if § = p + p'/q + q''.)
At each stage a new endpoint rn+\/sn+\ = (p + p')/(q + q') is added, and one of
the two endpoints of /„ is dropped. The endpoint rn+x/sn+\ is called the (n + l)-st
additive continued fraction convergent. These additive convergents are precisely the
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150 Jeffrey C. Lagarias and Andrew D. Pollington [3]

set of convergents and intermediate convergents of the ordinary continued fraction
algorithm (see Richards [12]).

Szekeres' idea is to introduce a continuous parameter w > 1 called the weight,
and then to do a similar process starting instead with the interval /0 = [0/u;, 1/1].
At the nth stage £ is contained in an interval /„ = [a/(a + bw), c/(c + dw)] where

, \ € SL(2, Z). This interval is split at its weighted mediant[c d }

(a + c)/(a + c + (b + d)w),

and the (n + l)-st interval /n+1 is taken to be the subinterval containing £. Call this
procedure the un-normalized Szekeres algorithm. The length of the nth interval is:

Thus | /J —> 0 as n —> oo, since a+b+c+d^ oo, and the nested intervals /„
converge to {£}.

We obtain the Szekeres map T by a renormalization of this procedure, that iden-
tifies the interval with [0, 1] at each step, and also keeps track of a rescaled weight.
Szekeres calls the resulting space (£, w) e [0, 1] x [1, oo) the space of normalized
configurations <€. The initial interval 70 has weight w assigned to its left endpoint
0 and weight 1 assigned to its right endpoint 1. The weighted mediant \/(w + 1)
(which always has l/(w + 1) < 1/2) is assigned the weight w + 1. After the interval
is split, the chosen subinterval is affinely rescaled to have length 1, then a reflection
x —> 1 — x is used if necessary to move the endpoint with larger weight to 0. The
endpoint weights, which are now either (iu + 1, 1) or (w + 1, w), are rescaled to make
the weight at 1 equal to 1, so the resulting new weight w' at the endpoint 0 is:

w w + I
I

w + I if
w+I w+I

The point §' specifies the location of £ in the renormalized subinterval, and the
resulting Szekeres map T : ^ -> ^ is:

OL±1\ if 0
w w + I

W J~ - ' • - > - • y w+l - ' - „ , + !'
(2.2)
In this definition the ambiguity arising in the splitting operation when £ = l/(u> + 1)
is resolved by always choosing the left interval.
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Szekeres assigns to each normalized configuration (£, w) an approximation number

(2.3)

which plays the role of a Diophantine approximation measure.
Now set (£„, wn) = TM(%0, w0). It is easy to check that, if w0 = 1, we recover the

additive continued fraction algorithm, and the weight wn then encodes information
about the denominators of the nth Farey interval /„ = [p/q, p'/q'/], namely,

(2 4) w - I q/q' i f < ? ^ ' '

Furthermore an easy calculation shows that the approximation number F(^n, wn) is
just the Diophantine approximation error

(2.5) T(S*,w«)=qn\qnt;-Pnl

where qn is the nth additive continued fraction convergent. (Here qn is q or q',
whichever is larger.).

We define for a configuration (£, w) the Szekeres continuous Diophantine approx-
imation constant F*(§, w) by

F*(£, w) = liminf T (T(n)($, w))

(2.6) = lim inf §„ wn.
«->00

The Szekeres L-spectrum is

(2.7) J% := I r
 ! ^ : (f, u;) e ^ and r*(f, u;) > 01 .

By the preceding remarks
(2.8) r*(0, 1) = C,(0),

the one-dimensional approximation constant of 0, and this shows that the Szekeres
L-spectrum contains the Lagrange spectrum:

The extra flexibility introduced by allowing continuous variables for the weights w,
rather than discrete ones, allows the possibility that the Szekeres L-spectrum might
be strictly larger than the Lagrange spectrum. However, in Section 3 we show they
are equal.

An important feature of the Szekeres map T is that it is one-to-one off a set of
Lebesgue measure zero. To see this, set T(t;, w) — (f', w'). If case (2.2a) occurs then
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1 < w' < 2, while if (2.2b) occurs then w' > 2. Consequently the map T is uniquely
invertible off the measure zero subset where w' = 1 or 2, and its inverse function is:

(2.9)
(a) ( I — - I d - ^ ' ^ r r Y i if i < «»' < 2,

' + —, w' - 1 if w' > 2.

By restricting the domain of T slightly we make it a bijection. To do this note that
points with w' = 2 have two preimages, both having w = 1, while points with w' = 1
have no preimages. Thus the configuration space naturally partitions into two pieces
<W0U

(tfoo, where *̂ 0 consists of all (§, w) that have some preimage under T with w = 1;
these are exactly all forward orbits of the points {(£,1) : 0 < £ < 1}. The set ^
consists of all other points. We call the points in %) dependent points; the points in
^oc are independent points. T is a bijection on the set ̂  of independent points. The
set of dependent points *̂ o has two-dimensional Lebesgue measure zero.

Finally, we note that the configuration space ^ can be naturally identified with
a measure one subset of [0, I]2, by replacing w with a new variable representing a
point in a 1-simplex A* having barycentric coordinates (w/w + 1, \/w + 1); see
Appendix A.

3. Lagrange spectrum

We prove the following result.

THEOREM 3.1. The Szekeres L-spectrum equals the Lagrange spectrum, that is,

(3.1) &s = &.

PROOF. We already observed that _£? c Jzf5, so it suffices to show that Jzf5 c if.
Suppose that (£, w) e ^ is given, and set

(!„, w j = r ( n ) (§, u;).

We keep track of the iterates of (£, w) using a symbolic dynamics associated to T,
which specifies which of the mappings

L(£,u;)= (1 - (w + 1)| , (u; + l)/u>)

R(|, w) = ((u;

is applied at each step. The itinerary of (§, ID) is described by an infinite word
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in the alphabet [L, R}, with each 5, = L or R. Now given any infinite word
W in {L, R] there exists some £' e [0, 1] such that (£', 1) e % has itinerary W.
This follows because for the initial weight w0 = 1 the map T follows the additive
continued fraction algorithm, for which all symbol sequences are legal. In fact if £'
has the ordinary continued fraction expansion

(3.3) f' = [0, 1+a , , 1 + 0 2 , 1 + a s , - . . ] ,

then the word W = W(£', 1) is given by:

LR-'-'LR-LR--.. i f f l l>0 ,
(3 4) W ( f l ) (
{iA) W ( ? , i ) - j R^+ILR^LR* i f a i = 0 .
A detailed proof of this fact is given in Lemma 4.2 following.

To prove Jzfs c i f we will show that

(3.5) r*($, w)~l = r*(f, l r 1 € se.

The argument has two cases.
Case 1. r*(f, 1) = 0. This case occurs if and only if the continued fraction

expansion of §' has unbounded partial quotients. Thus there exist arbitrarily large a, 's
in (3.3). We will derive from this that for any e > 0 there exist

and this implies F*(f, w) = 0.
Thus we can find (£„, iyn) such that the next symbols in the itinerary are LRa for

arbitrarily large a. The effect of T is calculated using

L(£, w) = (l -

\ w'
R<">($',u/)= t^—^(i-'-l) + l,w' + m .

Since 1 < io' < 2, on taking m = a the condition (u/ + #*)(£' — \)/w' + 1 > 0 yields
1 > ?' > 1 - 2/a. Hence $nwn := %w < %(w + 1) = 1 - £' < 2/a . Taking a large
enough gives %nwn < €, completing Case 1.

Case 2. F*(f', 1) > 0. In this case the continued fraction expansion of £' has
bounded partial quotients, and we may suppose that all a, < K. Set

(C t o - r(->(|', i).

The partial quotient bound guarantees that

(3.6) 1 + ̂ - { <w'n<K + l
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holds for all n > 2. To prove (3.5) in this case it suffices to show that

(3.7a) |wn — w' | —> 0 as n —> oo,

[7]

(3.7b) as oo,

since (3.6) then guarantees that \%nwn — %'nw'n\ —> 0 as n —> oo.
We deal first with (3.7a). Observe that we can keep track of the second coordinate

wn using the linear fractional transformations

(3.8) ' - [ : * ] • « - [ ; : ] •
since one has wn = SnSn_i • • • Si (w0). Note that det( L) = — 1, which comes from the
inversion x —»• 1 — x used in the Szekeres renormalization of the interval. Thus to
encode the Szekeres map we use matrices in

GL(2, T) = I M = \ a b : M integer and det(M) = ±11 ,

rather than SL(2,1). Now set

(3.9) u^ 0" b:

and observe that det(Un) = ± 1 . Since the word W does not have more than K
f 1 2 1

consecutive letters the same, and since LR = , it is easy to see that
f 1 2 1

= , it is

(3.10) tn = min(a«, bn,cn, dn) > 2l"/2*J,

since tn+\ > tn and tn+2 > 2tn whenever an LR occurs. Now

\wn -w'n\ = | U n i y 0 - Unifg

nw0 + bn anw'0 + b

cnw0 cnw'0

~ W'Q

(cnwQ + dn)(cnw'o + dn)

(3.11)

This proves (3.7a)
Next consider £„ and %'n. If wn, w'n are close, then since (^n, wn), (%'n, w'n) have

identical itineraries
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we can show that this forces §„ to be close to %'n. Consider the linear fractional
transformations and their inverses,

L(u>) =

1 1
W+l W+l

0 1

11

w+l w(w + 1)
1

0
w

These depend on the parameter w. We encode the action of T on £„ for s iterations as:

Consequently
(3.12) §„ = Sn+I(wn)~

l

Note that both L(tu)"1 and R(w)~' are contractions when w > 1. Since no K
consecutive letters are the same, one can show, using the bounded partial quotient
condition (3.6), that the contraction ratio in (3.12) is at least (1 + \/{K + l))~ls/2KS.
Now take nQ so large that \wn — w'n\ < e for all n > n0. We trivially know that
\%n+s — %'n+s | < 1 and using the contracting property in (3.11) and the fact that wn and
w'n are close, it follows that

for all n > n0. We can take s arbitrarily large and e arbitrarily small, which proves
(3.7b). This completes Case 2 and the proof.

4. Characterizing the forward symbolic dynamics of T

In this section we will characterize which initial configurations (§, w) yield the
same word W, and derive (3.4). Let W(£, w) denote the itinerary of the Szekeres map
T on (£, w).

LEMMA 4.1. (a) W(£,, wx) = W(£2, w2) if and only if

In particular,
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(b) W ( | , w) = W(£', 1) if and only if

PROOF. Consider the Szekeres map for an initial pair (£, w) applied without renor-
malization at each stage. The word W then induces a sequence an, bn (as in (2.1)) so
that

(4.1) an/(an + bnw) ->• £ as n -> oo.

But the same word applied to (§', 1) induces the sequence an, bn again where now

(4.2) an/(an+bn) - • f as « -»• oo.

Thus

lim &„/<*» = l /£ ' - 1,

and substituting in (4.1) we obtain

which in turn gives part (b) and then part (a). The converse follows since the word W
is uniquely determined by (£, w).

LEMMA 4.2. / / £ ' has the ordinary continued fraction expansion

with all a, > 0, then the itinerary o/(£', 1) under the Szekeres map T is:

(4.3) W ( § ' , 1) = I fl2+1 a . ' ~" '
[ R LR 3 LR • • • if Qi = 0.

PROOF. TO facilitate the calculations we introduce a new map r : [0, 1] —*• [0, 1]
as follows:

o*. 1
if 0 < x < 1/2, (L)

if 1/2 <x < 1. (R)
x

Let Wt (x) denote the itinerary of x under x. By Lemma 4.1

(4.5) W(x, 2) = V

(4.4) z{x) = _
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Since

we obtain

(4.6)

The continuous Diophantine approximation mapping of Szekeres 157

T(x, 1) =

wo, i) =

(1 - 2 x , 2 )
(2x — 1, 2)

LW(l-2x,2)

RW(2x-l,2)

if x < 1/2,
if x > 1/2,

1 -x '

RW

if x < 1/2,

if x > 1/2.

This shows the connection between T and r. We have

(4.7) W(x, 1) = Wr(*),

where r is a fractional linear transformation defined by the matrices

2 - 1 \ ^ / 2 - 1
if =

1 - 1 7 ' i o r
Let

Then one finds that

(4.8) S£

By considering the action of sf and 38 on the continued fraction we obtain

(4.9)
W r ( [0 , 1 + a , , 1 + a 2 . • • • ] ) = LRa'- 'LRa2LRa

W r ( [ 0 , 1, 1 + a 2 , . . . ] ) = Ra2+1LRfl3LRa4

if a, > 0

This is (4.3).

5. Markoff spectrum

The Markoff spectrum is associated to binary quadratic forms

Q(X, Y) = AX2 + BXY + CY2

https://doi.org/10.1017/S1446788700038568 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038568


158 Jeffrey C. Lagarias and Andrew D. Pollington [11]

which are indefinite, that is, det(Q) - B2 - A AC > 0. The Markoff constant TM{Q)
ofQis
(5.1) rM(G) = det(er1 / 2inf{ie(/n,n)| :(m,/i) e Z 2 - 0 } .

The Markoff spectrum is

(5.2) Jl = I —^— : rM(Q) > 0 and det(G) > 0
I 1 ( t )

Since rM(aQ) = I~V(<2), there is no loss of generality to consider only forms of
determinant 1. Any such form with A ^ 0 factors as

(5.3) Q(X,Y) = —J— (X + PlY)(X - p2Y)
A + Pi

where px > 0, p2 > 0, and px + p2 > 0. Forms with A = 0 have Markoff constant
TM(G) = 0' and thus play no role in determining the Markoff spectrum.

One can alternatively compute the Markoff constant FM(Q) using the GL(2, T)

action on forms. If M = , e GL(2,1) then
l e d ]

(5.4) MQ(X, Y) := Q(dX - bY, -cX + aY).

Call two forms improperly equivalent, written Q\^Q2, if Qi = MQU for some
M € GL(2, Z). The standard theory of equivalence of forms uses an SL(2, Z)-action:
Q\ is properly equivalent to Q2 if M € SL{2, Z). Note that improper equivalence is
the natural choice for use with (5.1). Then (5.1) becomes

(5.5) rM(<2) = det(0-1 / 2 inf {|£>(l, 0)| : QjQ],

since for any relatively prime (m, n) there are matrices in GL(2, Z) with (c, d) =
(—«, m). The reduction theory of indefinite quadratic forms asserts furthermore that
the infimum in the right side of (5.5) remains TM(Q) when Q is restricted to be a
reduced form. A form (5.3) is called reduced if 0 < px < 1 and p2 > 1, and is called
semi-reduced if 0 < px < 1 and p2 > 0. This definition differs slightly from the
usual definition of reduced indefinite form, which is defined for the SL(2, Z)-action,
and which also calls px > 1 and 0 < p2 < 1 reduced, cf. Dickson [8]. Note that the

matrix M = I , of determinant — 1 takes a reduced form in the latter sense

to one in our sense while keeping |<2(1, 0)| constant.
The Markoff spectrum has a second definition in terms of geodesies in the hyper-

bolic plane H = {z : \m{z) > 0}. Such geodesies are either semicircles normal to
the real axis, specified by their two endpoints in R, or else are vertical lines with
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one endpoint on K and the other at ioo. We associate to the indefinite form (5.3) the
semicircular geodesic G(pu p2) having endpoints at —px and p2. The exceptional
forms with A = 0 correspond to vertical geodesies with one endpoint at ioo. The
height of a semicircular geodesic G is its maximal imaginary part, which is

(5.6) ht(G(pup2)) := ht{pu p2) = ±(p, + p2).

The Markoff spectrum can be described in terms of heights of geodesies, since

(5.7) Q(l, 0) = (p, + ft)-1 = \{ht(G(Pu to)))'1

The linear fractional action of M = , eGL(2,l) sends the geodesic
\_c d \

G(p,,p2) to

MG(puto) = G
-cp\ + d cp2 +

This action of GL(2, Z) on quadratic forms and geodesies then gives

(5.8) 1 ^ : = sup {ht{MG(pup2))}.
• M\U) MeGZ.(2,Z)

The Markoff spectrum has a third definition in terms of a shift on a continued
fraction cf. Cusick and Flahive [6]. Let [... , a_ ; , . . . , a_,, ao,au ... , a , , . . . ] be a
doubly infinite sequence of positive integers denoted by A. Put

kj(A) = [a,-, ai+i,... ] + [0, a,-_i, a,-_2,... ].

The Markoff constant ^(A) for A is

:=supA.,(A).

The Markoff spectrum is the set of values M{ A) as A varies over all doubly infinite
sequences of positive integers. A sequence A corresponds to a quadratic form (5.3)
by

P\ = [ 0 , a _ i , t f _ 2 , • • • ] ,

Pi = [aua2,a3,...].

Note that 0 < px < 1 and p2 > 1, so that these correspond to reduced forms in an
essentially one-to-one fashion.

hi order to associate a Markoff spectrum to T we wish to associate to each con-
figuration (£, w) an indefinite quadratic form. Equivalently we wish to associate an
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oriented geodesic in the upper half-plane H to the orbit of (£, w). It is natural to
expect that the points in ̂ 0 should correspond to vertical geodesies having a starting
endpoint at ioo, and those in ̂  to geodesies with both endpoints on the real axis.
We treat here only the case "^o, which corresponds to the Markoff spectrum.

Our object is to prove the following result.

THEOREM 5.1. For a semi-reduced indefinite quadratic form

Q(X, Y) = — | — ( X + PlY)(X - pjY)
P\ + Pi

with 0 < pi < 1 and p2 > 0 the Markoff constant is given by

(5.9) rM(Q) = mf{wk^k : k e 1}

where {(£*, wk) : k e Z} are the forward and backward iterates under the Szekeres

map T o/(£0, ioo) = (P1P2Q + PiPi)~l, P,"').

The formula (5.9) is in parallel with the Szekeres Lagrange spectrum formula (2.6).
As a preliminary to proving Theorem 5.1 we derive an additive variant of the

reduction theory of indefinite quadratic forms. The standard reduction theory of
indefinite quadratic forms (cf. Dickson [8, pp. 72-77]) shows that all reduced forms
lie in an infinite chain: each reduced form [A, B, C] has a unique left neighbor
[*, *, A] and a unique right neighbor [C, *, *] which is reduced. Neighboring forms
are found by a process similar to the ordinary continued fraction. To obtain an additive
version of this process one must include semi-reduced forms as well. The additive
reduction map U takes the roots (pi, p2) of a semi-reduced form to that of its semi-
reduced right neighbor. The map [/ : [0, 1] x R+ -> [0, 1] x R+ is given explicitly
by:

(a) ( 7-^7-, 7 ^ 7 - I if 0 < p, < 1/2,

(5.10)

(b) .
Pi

On the form level it takes a form Q to its semi-reduced right neighbor Q, using the
change of variables (X, Y) -+(X,Y - X) and (X, Y) -+{Y,X- Y), corresponding
to (5.10a) and (5.10b), respectively. (The notion of right-neighbor is not well-defined
if pi = 1/2.) The map U has the almost-every where defined inverse map:

(5.11)

(a) ( " - * - ) i f O < p 2 < l ,
\ 1 + P l 1-/02/

1 + Pi Pi - 1
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This map takes a quadratic form Q to its semi-reduced left neighbor Q, using the
changes of variables (X, Y) -» (X, X + Y) and (X, Y) -* (X + Y, X), respectively.
(The left neighbor is not well-defined if p2 = 1.) Set U(n>(pu p2) = (p\"\ p(f). The
maps U and U~x are one-to-one and onto when restricted to the domain

(5.12) V = I (p,, p2) : for all » 6 Z , p\H) # ^ and p<n) ^

It is easy to check that any semi-reduced form (2 such that (/olt p2) £ ^ has <2(w, «) =
0 for some (m, n) e I2 with g.c.d.(m, n) = 1, hence TM{Q) = 0, and such forms do
not contribute to the Markoff spectrum. If px — 1/2 then 2 ( 1 , —2) = 0 and if p2 = 1
then £>(0, 1) = 0.

LEMMA 5.1. Suppose that Q(X, Y) = (p, + p2)~\X + p\Y){X - p2Y) is semi-
reduced, that is, 0 < p, < 1 and p2>l.If(p\,p2)e& then

(5.13) rM(Q) = mf\^[ht(Uik)(puP2))]~] : k e l \ .

PROOF. It suffices to check that the additive reduction map U finds the complete
chain of reduced forms equivalent to Q. Then one applies the well-known fact that
the infimum in (5.5) is achieved over the set of reduced forms. (Recall that reduced
forms occur exactly when p2 > 1.) We omit the details.

In Appendix B we show that the additive reduction map U is conjugate to a map
F : [0, I]2 —> [0, I]2 called the additive map, which has an especially symmetrical
form, and which is closely related to the additive one-dimensional continued fraction
algorithm.

PROOF OF THEOREM 5.1. We want to explicitly exhibit a conjugating map <J> that
makes the following diagram commute

(5.14) <D

U

We set 0(^0, î o) = iP\. PT)- TO guess what O must be we use the fact that T~l and U
both have symbolic dynamics consisting of two-sided shifts on two symbols, except
that restricting the domain to ^^ (respectively &) eliminates all symbol sequences
having an infinite string of repeated symbols at either end.
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To find the left endpoint — px, we first conjugate the inverse map T ' to a map f '
using the change of variable w = 1 / * . Then 0 < 4> < 1 and we obtain:

(5.15)

((1 - *)f + *, —^ J

f ( l - * ) ( ! - £ ) , —— J

if 0 < 4> < 1/2, (L)

if 1/2 < vl/ < 1. (R)

Comparing this with U, we see that both are driven by one coordinate and have
identical symbolic dynamics. So we associate to (£0, WQ) a geodesic whose left
endpoint is — * , that is, we take Pi(§o. Wo) = l/u>o-

To specify the right endpoint of the geodesic, we associate the point p2 = p2(%o, wa)
whose {/"'-symbolic expansion agrees with that of {T(k)(%0, w0) : k > 1}.

By Lemma 4.1(b) the symbolic expansion W(§0, w0) = W(§', 1), where

(5.16)
1 + (w0 - l)£o

and by (4.7) this in turn equals the symbolic dynamics Wz(%'), where

2x- 1

T(J() =
X - 1

2 x - 1

if 0 < x < 1/2, (L)

if 1/2 <x < 1. (R)

Now observe that the symbolic dynamics of U ' i s driven by its second coordinate
p2, and under the change of variable x — l/(p2 + 1), the map

Pi

V(p2) =
1 - P 2

1

if 0 < p2 < 1,

if P2 > 1,
0 2 - 1

is also conjugated to r(x). Since pi — (1 — x)/x, the right endpoint of the desired
geodesic should be

(5.17) P2 = —

The conjugating map <J> is therefore:

(5.18) (0i,02) =

This map is explicitly invertible:

(5.19) (fo, wo) = <i>
P\Pi

+ P\Pi•iY
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One can now verify by direct substitution that the diagram (5.14) commutes. The
symbolic dynamics guarantees that the domain ^ and range # match.

Finally we observe that under the map O the resulting height is:

2 2

This yields (5.9), and completes the proof of Theorem 5.1.

6. Multi-dimensional approximations

This section describes open problems concerning the d-dimensional Szekeres map
Td, for d > 2. The somewhat complicated definition of Td is given in Appendix
A. It is constructed as a continuous analogue of the Szekeres [13] multi-dimensional
continued fraction.

Szekeres introduced the maps Td as a possible approach to get bounds for supremum
norm Diophantine approximation constants. The {sup-norm) approximation constant
of6 = ( 0 i , . . . ,9d) e Kdis

(6.1) Cd{6) = liminf ( max r̂{{<5r0,}}d ) ,
</->oo \ 15'<d /

where {{x}} is the distance to the nearest integer, and the d-dimensional {sup-norm)
approximation constant is

(6.2) Cd = supeeR,C,,(0).

Szekeres [14] defined a d-dimensional continuous approximation constant Sd asso-
ciated to Td (see Appendix A) and showed that it is related to the d-dimensional
approximation constant by
(6.3) Sd>Cd.

He also wished to use it to study the d-dimensional algebraic Diophantine approx-
imation constant Ad which is defined similarly to (6.1) except that 0 runs only over
vectors for which [ 1 , 0 ] , . . . , 9d] is a Q-basis of a real algebraic number field of degree
d + 1, and which obviously satisfies

Cd > Ad.

It is well-known that C\ = A\ = 1/V5, and Szekeres [14] announced without proof
that
(6.4) S, = C, = A, = 1/V5.
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This result now follows from Theorem 3.1 in Section 3. In the two-dimensional
case Cassels [3] proved that A2 > 2/7 and Adams [1] later showed that A2 = 2/7.
Szekeres [15] presents numerical evidence supporting the conjecture that in fact

(6.5) S2 = C2 = A2 = 2/7.

Subsequently Szekeres [16] went on to study the three-dimensional case by numerical
experiments. These experiments suggested that 53 > A3, and also that 'extremal'
configurations for the three-dimensional continuous algorithm which are near to at-
taining the constant S3 do not consist of algebraic numbers from a fixed number field.
It is not known, however, if Sd is finite for any d > 2.

The first open problem is: For which dimensions d is Sd finite? This problem
arises in studying the Diophantine approximation properties of the multi-dimensional
continued fraction algorithm of Szekeres [13]. Szekeres expressed the hope that his d-
dimensional algorithm produces good Diophantine approximations for all 6 e [0, l]d.
This is so if the Szekeres continuous approximation constant Sd is finite.

The second open problem is: For which d does Sd = Cdl The evidence of
Szekeres [15, 16], suggests that an exact bound Sd = Cd can be hoped for only in
the two-dimensional case. Cusick [5] proves a result for a ternary linear form which
provides mild support for the possibility that S2 = C2. However at present we do not
even know that 52 is finite.

A third open problem concerns analogues of algebraic Diophantine approximation
for the multi-dimensional Szekeres map Td. This consists of the study of the set
of purely periodic points &d of the maps Td"\ In the one-dimensional case these
points are analogues of real quadratic irrationals. We call the spectrum of continuous
approximation numbers they determine the Szekeres algebraic spectrum. We define
the Szekeres algebraic constant S*d to be the supremum over Szekeres continuous
approximation numbers (defined by (A.7)) for purely periodic points. This definition
is analogous to the algebraic Diophantine approximation constant Ad in the sense that
any purely periodic point necessarily has coordinates in an algebraic number field.
One has Sx = 5* by the results of Section 3. We propose the conjecture:

CONJECTURE 6.1. Sd — S*dforalld > 1.

This rather speculative conjecture asserts that purely periodic trajectories can ap-
proximate (in the continuous approximation measure) extremal trajectories for the
continuous approximation measure (A.7). It is known, however, that not all trajector-
ies can be approximated by purely periodic trajectories even in the one-dimensional
case; indeed the purely periodic trajectories determine exactly the Lagrange spectrum
but do not determine the Markoff spectrum, see Cusick [4].
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Appendix A: Multi-dimensional Szekeres map

The multi-dimensional version Td of the Szekeres map has a configuration space
Ad x A*d x Y*d, where Ad and A^ are each J-simplices, regarded as embedded in \Rd+i

by barycentric coordinates

(A.I) Ad = {(*„, xu ... , xd) : £?=ox, = 1 and all x, > 0 j ,

and Yd is a compact space of 'simplex shapes'.
The space T*d is a compactification of the set Td of all J-simplices in Rd of volume

1 with barycenter at 0. A general J-simplex in Rd can be mapped to one in Yd by a
homothety to make its volume equal to 1, followed by a translation. The space Td is
not compact, but can be conveniently compactified to get Y*d as explained below in
the two-dimensional case. In the one-dimensional case F, = F* is a point, hence it
never needs to be mentioned in Sections 2 - 4 .

We write (£, w, s) e Ad x A^ x T*d and let

(A.2) TAS, w, s) = ($', w', s').

Here £ identifies a point inside the simplex of shape s, and w is a set of weights
attached to the vertices of s.

Geometrically the map Td proceeds by splitting the simplex s into two subsimplices,
by adding a new vertex along one of its edges. The simplex shape s alone determines
the edge that is to be split. The Szekeres splitting rule is to choose the edge of s of
greatest length in the sup-norm, that is, if v0 = (u 0 1 , . . . , vOd) and Vj = (i>n,... , vid)
are two vertices of s, then the edge length is

(A.3) ||v0 - v,||SUp := max \vOi - vu\.
l<i<d

(If s has two maximal-length edges, a suitable tiebreaking rule is used.) The weight
vector w is then used to determine the location of the new vertex on the edge to be split
in s. If w = (wQ,... , wd) are the weights corresponding to the vertices (v 0 , . . . , vd)
of s and if [v0, v j is the edge to be split, the new vertex is

(A.4) v = • v0 H • vi .

The new vertex splits s into two subsimplices s<0> and s(1) which are the convex hulls
of the new vertex plus all the vertices of s excluding one of the original vertices of
the split edge. The new simplex shape s' is the simplex containing the point x? with
barycentric coordinates £, and §' are the barycentric coordinates of this point in the
new simplex s'. (If this point x? is in both subsimplices s(0) and s(1), then a tiebreaking
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rule is used to decide which of s(0) or s(1) is taken as s'.) The new vertex v' is assigned
the sum of the weights w0 + w\ of the original vertices on the split edge. Now the
weights assigned to the vertices of s' add up to more than 1, and w' are these weights
rescaled multiplicatively to add up to 1. (It is useful to think of the weights w as being
in R++1, with all Aw with A € R+ treated as the same.)

The sup-norm edge lengths (A.3) are preserved under the action of the group of
symmetries of the cube, which has 2dd\ elements. We can treat two simplex shapes
as being the same under this action, provided that the entries of both £ and w are
permuted simultaneously under this action. This freedom to permute coordinates
allows us to define the Szekeres map Td in such a way that the edge [VQ, V', ] of s' is the
longest edge of s' in the norm. T2 will be described more explicitly later.

Let (§, w, s) denote a configuration. Given a sequence of iterates

( £ ^ w("\ s(n)) := Tjn) ( £ ^ w<0\ s(0)),

one associates to it a multi-dimensional continued fraction expansion [P(n) : n > 0}
with each P(n) e GL(d + 1,1), as follows. One defines

'<"> := A(n)---A(1)A

where

A < 0 ) =

1 0 0 ••• 0
1 1 0 0
1 1 1 0

1 1 1 1

and each A0' e GL(d + 1, Z) indicates how the simplex weights w0) were obtained
from w(i~l\ that is, which two vertices were split and which of these were discarded,
in terms of the original numbering of the vertices. For example, if at the y'th iteration
the edge (v,, vk) was split and vk was discarded, then A(J) = I + E*,,-, where E*,, is
the matrix having a one in the (k, /)-th entry and zeros elsewhere. The matrices A(j)

are called the partial quotients of the multi-dimensional continued fraction expansion
and P0 ) are the convergents, cf. Szekeres [13], Lagarias [10, 11].

The sup-norm Diophantine approximation number attached to vertex j of a con-
figuration (£, w, s) is

(A.5)
(\\bx$-bvj\\sup)

d

• WJ Vol(s)

(Vol(s) appears explicitly in (A.5) in order that this expression remains invariant
under homotheties s —> As.) In the special case where §(0) = (1, 9\,... ,9d) with
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1 > #i > 62 > • • • > 9d > 0, where w(0) = (1/n, l/n,..., \/n), and where s(0) is
the shape of the simplex in Rd having vertices at v0 = (0, 0, . . . , 0) and

v , = e, +e2-\ he,- = (1, 1,0, . . . ,0) , (/' ones),

for 1 < i < d, then the map Td exactly imitates the action of the multi-dimensional
continued fraction algorithm of Szekeres [13] on (^ i , . . . , 0d). In addition

(A.6) , 0<j<d

sup

is just the sup-norm Diophantine approximation quantity for the y"th row of the nth
approximation matrix

P\o

_ P\d

PdO

Pdd
An)

produced by the Szekeres algorithm. The formula (A.6) is the ^-dimensional gener-
alization of (2.5).

Now define the Szekeres continuous approximation number by

(A.7) *(§, w, s) = liminf Yu,d

where jn is the new vertex of s(n>, that is, the vertex of s(n> which is not a vertex of
s(" ". The Szekeres continuous approximation constant is

(A.8) Sd := sup{r^(§, w, s) : admissible(§, w, s)},

where (£, w, s) is admissible if all its iterates under Td are well-defined. (That is, we
exclude a measure-zero subset of 'bad' configurations.)

For the case (£(0), w(0), s(0)) corresponding to 9 = ( 0 , , . . . , 0d) e Rd, by (A.6) we
have
(A.9) r^(^( 0 ) , w<0), s(0)) > Cd(9),

where Cd(0) is the sup-norm constant for 0, given by

(A.10) Cd{9) = liminf (? min \\qO - p\\d ) .
q—>-oo

Consequently one has
(A.11) Sd > Cd.
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We follow Szekeres [15] to specify an explicit form for the two-dimensional
Szekeres map T2, as well as a compactified space of normalized configurations F2. We
permute coordinates in the space of configurations F2 of shapes of triangles [v0, v,, v2]
in K2 of area 1 so that [v0, v j is the largest edge in the metric ||sup. Next we dilate
the triangle so that this edge has length 1, translate it so as to have one endpoint at 0,
and by suitable symmetries of the cube reduce to the case that

vo = (O,O), v, = ( l , 6 ) , v2 = (x,y),

withO < b < 1,0 < x < l,x < y < \; see Figure A.I. We break ties when two edges
have length 1 by requiring that if y = 1 then b > x and if y = 1, b — x then the point
£ = (£o, £i, £2) 6 A2 has £, < £2; cf. Figure A.I. Szekeres calls this a normalized
configuration and F2 denotes the (three-parameter) set of such configurations.

(0,1)

v0 = (0, 0)

weight v

(1,1)

v, = (1,6)

weight w

(1,0)

FIGURE A.I. A Configuration for the Two-Dimensional Szekeres Map.

With this normalization £ = (£l5 £2) determines the interior point x? = (
%2b) in the triangle. Szekeres chooses to scale the weight vector w = (w0, wit w2)
to have w2 = 1 and to use the parameters v = wo/w2, w = W\/w2, so that a
configuration is labelled [£i, §2; v, w; b, x, y] in A2 x A2 x F^. The Szekeres map
then splits the edge [v0, v j at the point

v3 =
v w

V + W
vo V + W

Now the triangle s is split into two subtriangles s( ) = [v0, v2, v3] and s( ' = [V), v2, v3].
2(0)The point £ is assigned the triangle it is in, and is assigned s if it is on the boundary
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between s<0) and s(1) (an arbitrary tiebreaking rule). The new configuration s' is then
normalized, and this defines the map T2. Explicit formulae for the map T2 involve
twelve cases according to which edge of s' is longest, and which vertex of s' is mapped
to 0 in the normalization step; we omit these formulae.

The approximation number for the updated point v3 with respect to x̂  is:

Y =
(v + w)2

vw (y — bx)max
bw

V + U)

Appendix B: Additive map F and additive continued fraction map F

The additive map F : [0, I]2 -> [0, 1] is defined by

(B.I)

It is invertible almost everywhere, with inverse function

——, —^— | i f O < * < l / 2 ,
i + e I - * / - -(B.2)

9

The additive map F is one-to-one and onto when restricted to the domain

(B.3) 9 = {(9, * ) : For all n e Z , neither coordinate of F(n){9, * )

isO, 1/2, or 1}.

The domain J> has Lebesgue measure one in [0, I]2. On this domain F and F"1 are
completely symmetric, being conjugate to each other by the involution a (9, * ) =
(*, 9), that is,
(B.4) F~l =a oF oa.

The symbolic dynamics of the additive map are particularly simple. Under both
forward and backward iteration it is driven by the Farey shift map

S(x) = l-x
l-x

if 0 < x < 111,

if 1/2 < x < 1.
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whose symbolic dynamics are a Bernoulli shift on two symbols.
The additive map F is conjugate to the additive reduction map U of Section 5, by

the map

(B.5)

that is, the following diagram commutes:

F

(B.6) *

U

The map 4* has inverse map

(B.7) ^'"'(pi, p2) := +P2

From (B.6) and (5.14) one calculates that the conjugation map <t> from the Szekeres
map T to the additive map is:

(B.8) (0, f) = *(&, w0) := (—,

The map 4> has inverse map:

(B.9) (§, w) = $>~l(6, * ) := I—^—,

The height function associated to geodesies in (6, iff) -coordinates is

The additive map F is also related in a simple way to the additive continued fraction
map F(a, /3, X, fj.) constructed in Arnoux and Nogueira [2]. They define the additive
continued fraction map F on each domain

3>H = {(a, p,k,[i):c<k + Pn = H,P>a>0,k>0,n>0}

with H > 0 by

,P-a,k + fi,fi) if a < 0 - a,
(B.10) F(a,0,k,ii)= . . . , , -, a

' (P-a, a, fi,k + fi if a >p-a.
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The quantity H = ak + 0/x is invariant under this map; each domain 3>H is three
dimensional. The map F is one-to-one on &H off a set of measure zero and has the
inverse function

[a, a + 0, k — ix, ix) if k > fx,
[0, a + 0, k, ix — k) if A. < ix.

Both F and F" 1 are defined on

9 = {J{2>H • H > 0} = {{a, 0, k, ii) : 0 > a > 0, A. > 0, ix > 0}.

We obtain the two-parameter map F as a quotient of F . Observe that F and F~l

are both homogeneous in (a, 0) and in (A., fx). Consequently the point (a, 0, k, /x)
and any point (^a, r,j6, t2k, t2fx) for ?i > 0, t2 > 0 have exactly the same symbolic
dynamics when iterated forwards under F and when iterated backwards under F~ ' .
So we may rescale t\ and t2 at each step without affecting the symbolic dynamics. The
map F onS> thus induces a well-defined quotient action on two-dimensional pencils

(B.12) [(a, 0, k, ix)] = {(tia, t\0, t2k, t2fx) : t\ > 0, t2 > 0}.

We choose a canonical representative in [(a, 0, k, fx)] by taking t\ = 1/0 and t2 =
\/{k + ix) to get {a/0, \,k/{k + ix), fx/{k + fx)). There are then only two free
parameters 9 = a/0 and \j/ = ix/{k + /x), and this point is {9, 1, 1 — \jr, \}r). The
induced quotient action of F on the first and last coordinate yields the additive map

9 \fr

This quotient action of F yielding F is unrelated to the geometric interpretation of
F given in Arnoux and Nogueira [2, §4]. Their geometric interpretation depends on

the invariance of the quantity H (that is, the 2 x 2 matrix I I has determinant
\ —A. ix )

H), which is not preserved in the identification of the quotient map on pencils (B.12).
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