
SYSTEMATICS OF DWARF NOVAE 

B . WARNER 

Department of Physics and Astronomy 
Dartmouth College, N.H. USA 
and 
Department of Astronomy 
University of Cape Town 
Rondebosch, S. Africa 

ABSTRACT. From about 30 Dwarf Novae with the best determined 
distances the following relationships are found. 

(i) a tight correlation between absolute magnitude at 
maximum light, Mv(max), and orbital period, P. 

(ii) a correlation between Mv(min) and P showing wide 
scatter. 

(iii) a correlation between Mv(mean), the mean absolute 
magnitude averaged over normal outbursts, and P, again with 
wide scatter. The scatter is shown to correlate strongly 
with outburst timescale Tn. 

(iv) a strong correlation between range, Mv(min) -
Mv(max), and Tn (the Kukarkin-Parenago relationship). 

(v) a strong correlation between range My. (mean) -
Mv(max), and both Tn and P. 

This final correlation is interpreted in terms of the 
disc instability model of dwarf novae and successfully 
predicts the observed width of outburst versus P 
relationship. 

1 . INTRODUCTION 

At a conference such as this, with almost all aspects of 
cataclysmic variables to be critically discussed, an area of 
common interest is that of rates of mass transfer. Crucial 
parameters in the modelling of a CV are the values of M: (a) 
from the secondary, (b) through the disc, (c) onto the white 
dwarf primary and (d) out of the system as a whole. All 
estimates of M are indirect: either from modelling of the 
flux distribution of an accretion disc, or from 
interpretation of absolute flux measurements if the distance 
is know. Results from the former method are very model 
dependent; at least an order of magnitude difference in rate 
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of mass transfer emerges from use of different models (e.g. 
Hassall 1985). The latter method has been less used because 
of uncertainties in the distances to CVs. Here we will 
survey the CVs having the best determinations of distances 
and use these to find systematic trends in absolute magnitude 
and inter-relationships between the various subclasses of 
CVs. This is an extract from a much larger project in 
progress; only the preliminary results for dwarf novae are 
given here and we have omitted the tabular material from 
which the diagrams have been drawn. 

There has been a recent tendency to de-emphasize basic 
absolute magnitudes in favour of the physical properties of 
accretion discs. Relationships such as the variation of M in 
the disc as a function of orbital period P (e.g. Patterson 
(1984)) or the connection between ft and radius Rd of 
accretion disc (e.g. Smak 1982) use derived parameters which 
are highly model-dependent. Our philosophy is to retain as 
far as possible the observational data and empirical 
calibrations (although some of the latter are interpretive 
and model-dependent). The principle is that used in 
colour-magnitude diagrams of clusters: present observed data 
(Mv and B-V for clusters) and interpret these in terms of 
theory. If theories improve later, hopefully the 
observational diagrams will remain fairly invariant. 

Two directions in which we can look for distances and 
hence absolute magnitudes of CVs are (i) infrared 
observations of the secondaries and (ii) membership of 
clusters, binaries, common proper motion pairs, etc. 

The relative proportions of the contributions from 
secondary and disc in the infrared are not always easy to 
unravel and where it is possible to separate them it is 
believed that the resulting distances will be underestimates, 
although usually not seriously so (Berriman et al 1985). The 
distance to the CV, given the K magnitude of the secondary, 
is given by 

log d = K + 1 - Sk + log R2 
5 5 RQ 

where Sk is the surface intensity in the K band (Bailey 
1981) . Sk is constant for M stars and is a function of 
colour for hotter stars. It can be found as a function of CV 
orbital period through empirical relationships given by 
Patterson (1984). Berriman et al (1985) are reluctant to 
apply results from the Roche geometry of CVs to determine the 
radius R2 of the secondary on the grounds that CVs are 
suspected of not following the main sequence mass-radius 
relationship. However, Patterson (1984) has shown that this 
belief arose from comparison of M2 and R2 in CVs with 
theoreti cal M-R relationships for dwarfs, whereas 
observationally there is good agreement with the empirical 
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M-R relationship for the main sequence. Using Patterson's 
empirical relationship between R2 and P, equation (1) becomes 

log d = E - 0.93 + 1.073 log P(h) P < 6.5h (2a) 
5 

= K - 2.14 + 2.56 log P(h) P > 6.5h (2b) 

Use of these equations for CVs with K magnitudes of their 
secondaries, together with distances obtained from cluster 
membership etc., gives absolute magnitudes for about three 
dozen CVs. 

We are interested in the absolute magnitudes of the CV 
accretion discs—these will be relatable to M in the disks. 
After allowance for interstellar absorption (where necessary 
- not, for example, in the DN when using their range) and the 
contribution of secondary or bright spot, it is still 
necessary to adjust the apparent absolute magnitude M' for 
inclination of the disc. We use the correction 

AMv(i) = -2.5 log{(1 + 2 cos i)cos i} (3) 

from Paczynski & Schwarzenberg-Czerny (1980) to derive Mv = 
M' - AMv(i) , i.e. the absolute magnitude of the disc 
viewed at an inclination of 56°. 7. 

2. RESULTS FOR DWARF NOVAE 

The results for Mv(max) and Mv(min) of dwarf novae (DN) are 
shown in Figure 1. Separate symbols are used for SU UMa, Z 
Cam and U Gem subtypes. The Mv (max) show small scatter about 
the relationship 

Mv(max) = 5.64 - 0.259 P(h) (4) 
±0.13 ±0,024 

and it is seen that the stars with distances derived from the 
K magnitude method do not appear significantly shifted from 
those with distances found from independent methods. Vogt 
(1981) suspected that all DN have M^max) =4.70 ±0.14, based 
on a smaller sample than ours. In fact, the trend with P is 
visible for the DN with best determined distances in his 
Figure 10. 

Application of equation (4) to DN of known P but unknown 
distance, together with their observed range, provides 
additional Mv(min) which have been included in Figure 1. 
They follow the linear relationship 

Mv(min) = 9.72 - 0.337 P (h) (5) 
±0.25 ±0.056 
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Figure 1. Absolute magnitude at maximum of outburst, M (max) 
and at minimum light, Mv(min), as a function of orbital 
period P. The same symbols for SU UMa stars, U Gem stars and 
ZC stars as defined here are used in Figures 2-6. Underlined 
symbols for Mv(max) indicate distances not obtained from the 
K magnitude method. Lines of constant rate of mass transfer 
Md are indicated. The linear fits to the point are those of 
equations (4) and (5). 

but with very much greater scatter than for Mv(max). A clear 
correlation is seen in that the Mv(min) for Z Cam stars are 
systematically brighter than the U Gem stars. 

Calibration of Mv against Md of the disc is possible from 
computed V fluxes of model discs. The published models do 
not cover the required range of disc radius Rd and M so we 
have extrapolated the Tylenda (1981) and Wade (1984)Vresults. 
For Rd we adopt Rd = 0.70 RL, where RL is the mean radius of 
the Roche lobe of the primary (Sulkanen et al 1981), which 
leads to 

Rd = 1.14 x 10
10 (Mi/kg) 7i PV3(h) cm (6) 

We can then find an approximate function Mv(Md,P). 
In Figure 1 the Mv(max) for P < 7 hrs follow closely the 

curve for Md = 1.5 x 10
18 g sec-1 = 2.5 x 10"8 M0 yr

_1, for 
assumed Mx = 1M0. As there may be a slight systematic 
increase of Mx with P (Ritter & Burkert 1986), which would 
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brighten the discs at longer P, it is entirely possible that 
Md = constant describes the discs of DN at outburst quite 
well. If so, this may indicate the existence of an upper 
limit on the viscosity that can be generated in their discs. 

For Myfmin) we find that lines of constant Md slope down 
only slightly towards lower orbital periods. We have 
indicated approximate conversions in Figure 1. Clearly at 
minimum light the DN show a wide range of Md at a given P, as 
well as the systematic reduction with P. 

Although Hy.fmin) gives an estimate of Md, from the point 
of view of secular evolution a more important parameter is 
the rate of mass actually lost from the secondary, -ii2 • In 

the disc instability model of DN, most of this mass is stored 
in the disc until outbursts transfer it to the white dwarf 
primary through a high viscosity disc. M2 may be estimated 
by defining an Mv(mean) as the absolute magnitude obtained by 
integrating the visual flux over many outburst cycles 
(Patterson 1984). We have used Patterson's estimates of 
mv(mean) and our distances to obtain Mv(mean). However, for 
the SU UMa stars we have made some adjustments in order to 
integrate over only the normal outbursts: during supermaxima 
there is evidence of greatly increased -M2 (Osaki 1985) 
which, although obviously of concern to the white dwarf 
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Figure 2. Absolute magnitude at mean light, Mv(mean), as a 
function of orbital period. The points are labelled with the 
recurrent times Tn of the dwarf novae normal outbursts. The 
curve is the theoretical line for continuous mass transfer in 
a stable disc. 
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catcher, is not relevant to the study of normal outbursts. 
For the Z Cam stars we assume that mv(mean) = nv̂  (standstill) . 

The resulting Mv(mean) are plotted in Figure 2 and show 
wide scatter at a given P, with the Z Cam stars positioned 
clearly at the top of the heap. According to the disc 
instability model, the Z Cam stars are able to spend part of 
their time in standstill because they have M2 very close to 
the critical value required to maintain an accretion disc in 
the high viscosity state. Smak (1982) has shown that 
Md(crit) can be found from 

M, = &E a T£ it 5d (7) 
a 3 crlt GM-L 

where Tcrit is the minimum temperature for stable accretion. 
Taking Torit from Meyer & Meyer-Hofmeister (1983) and using 
equations (6) and (7) we find 

if, M -0.10 1.80 _i 
Md(crit) = 1.60 x 10

16 ( ^1 ) P (h) g s l (8) 
% 

Conversion of this to the Mv-P plane gives the curve shown in 
Figure 2. It lies about 0.5 mag above the mean region of the 
Z Cam stars, which is probably well within the uncertainty of 
the Mv(Md, P) conversion, and therefore adds considerable 
weight to Smak's conclusion (based on only 2 ZC and 2 DN) 
that the disc instability model is capable of explaining the 
Z Cam phenomenon. 

3. CORRELATIONS WITH DWARF NOVA OUTBURST TIMESCALES 

We may suspect that the wide spread in Mv(min) and 
Mv(mean) is well outside the range of observational error 
(c.f. the tight correlation for M„(max)) which leads us to 
ask whether this range of Md(min) and M(mean) has any other 
observable influence on the DN. As the mean interval Tn 

between outbursts of DN should be in some way related either 
to Md or M2 (or both) we seek correlations between Tn and our 
other parameters. 

The relationship between Mv(min) and Tn, seen in Figure 
3, shows some correlation but with evidence that the Z Cam 
stars follow a different relationship from that of the SU UMa 
stars (indicated least squares linear fit in Figure 3). In 
fact, the deviation turns out to be merely dependent on P, as 
seen in Figure 4. Similar results are found for the 
correlation of Mv(mean) with Tn. We find 

Mv(min) = 7.11 + 1.44 log Tn - 0.264 P (9) 
+0.44 ±0.24 ±0.037 
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Figure 3. Correlation between Mv(min) and outburst timescale 
T . The lii 
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T . The line is the least squares linear fit to the SU UMa 
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where P is in hrs and Tn in days. This is a generalized 
version of the result M^(min) = 6.55 + 1.40 log Tn found by 
van Paridijs (1985) who based his work on the assumption 
Mv(max) = constant obtained from Vogt (1981) . 

The correlation of M^mean) with P and T is illustrated 
in Figure 2 where we have labelled the individual points with 
their associated Tn. If we remove the dependence on T by 
defining My (mean) = Mv(mean) - 2.06 logTn, then the

 n 

remaining dependence on P is Mv*(mean) = 5.52 - 0.444 P, as 
illustrated in Figure 5. 

As the coefficients of P in equations (5) and (6) are 
similar, it results that there is a significant 
Kukarkin-Parenago relationship for the DN. Defining A = 
Mv(min) - M^max) (which is not the same as mv(min) -^(max) 
because we have made corrections to mv(min) for contributions 
of the secondary and bright spot) we find, from an 
independent analysis to that carried out for M (max) and 
Mv(min) :

 v 

An = 1.08 + 1.671og Tn (10) 
±0.4 6 ±0.24 

independent of P within statistical error; and defining A' = 
Mv(mean) - M^max), we find

 n 

1 1 i i i i i i 

1 2 3 4 5 6 7 8 9 10 

P(hrs) 

Figure 5. Cor re l a t i on between Mv* = M^mean) -2 .0 6 log T. 
and o r b i t a l per iod P. The l e a s t squares l i n e a r f i t i s 
Mv*(mean) = 5.52 - 0.444P. 
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'n = -0.05 + 2.06 log Tn - 0.20 P(h) 
±0.4 6 ±0.2 9 ±0.04 

(11) 

There is evidence, however, that for Tn > lOOd the 
relationship may not be linear (Figure 6). 

There are a number of possible interpretations of 
equations (9), (10) and (11). Here we draw attention to an 
interpretation in terms of the disc instability model. The 
average mass AM accumulated in the disc between outbursts is 
AM = [M(mean) - Md(min)]Tn. During an outburst the DN must 
pass this mass through the disc, and it does so at a rate 
Md(max) Therefore the duration of a normal outburst is 

ATn(days) 
[M(mean) - Md(min)] T 

Md(max) 
(12) 
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Figure 6. Correlation 
between amplitude A'n = 
Mv(mean) - Mv(max) and 
outburst timescale Tn. 
The vertical scatter 
is partly caused by A'n 

being a function of P. 

From equation (11) and the approximate relationship 
Mv ~ -1.851og Md + constant obtained from the Tylenda models, 
equation (12) gives 

log ATn(d) = 0.04 - 0.26 log Tn(d) + 0.11 P(h). (13) 
±0.25 ±0.16 ±0.02 

Within observational error and the uncertainty of converting 
from Mv to M, the coefficient of log Tn in equation (13) is 
not significant, but the coefficient of P certainly is. Thus 
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equation (13) constitutes a prediction based on the empirical 
relationship equation (11) and our adopted simple model for 
DN outbursts. 

The observed widths of outbursts of DN (van Paridijs 
(1983) and Szkody & Mattei (1984), using only parameters for 
'narrow' outbursts to exclude supermaxima in the SU UMa 
stars) are plotted as a function of P in Figure 7. The least 
squares linear fit is 

log ATn(d) =0.00 + 
±0.08 

0.087 P(h). 
±0.016 

(14) 

Figure 7. Correlation 
between outburst width 
AT of dwarf novae and 
orbital period P. The 
linear least squares 
fit is that given in 
equation (14). 
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