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POSITIVE MULTIPOINT PADE CONTINUED FRACTIONS

by ERIK HENDRIKSEN and OLAV NjASTAD

(Received 20th January 1988)

1. Introduction

Multipoint Pade fractions were introduced in [2]. They are continued fractions
defined in the following way:

Let {al,a2,...,ap} be given fixed points in the complex plane. For each n ^ l let
an = am where l^m^p and n = m (mod p).

Let An, Bn, Cn be constants, B n / 0 , C n # 0 for all neN. We define

,l() 1 (1.1a)
z —flj 2 — a :

n

^ (1.1b), 2 ( ) 2 +
z —a2 z — a2 z — a

, n ( ) n n

z-an z-an z-an

forn = 3,4,... (1.1c)

The continued fraction K™=: an(z)/bn(z) is then called a multipoint Pade continued
fraction, or MP-fraction (belonging to the set {au...,ap}). The MP-fraction is called
positive if the points {al,...,ap} lie on the real axis and the coefficients An, Bn, Cn are
real and satisfy the conditions

B j C ^ O (1.2a)

BlB2C2>0 (1.2b)

(1.2c)

for n = 3,4,.. . . (1.2d)

Positive MP-fractions are related to positive linear functional on the space SI of
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262 E. HENDRIKSEN AND O. NjASTAD

J?-functions belonging to the points {ai,,..,ap}. This space consists of all rational
functions with no poles in the extended complex plane outside the set {au...,ap}. The
R-functions play a central role in the treatment of moment problems connected with the
set {aj , . . . ,ap}, and in certain multipoint Pade approximation problems connected with
series expansions about the points {al,...,ap}. For more information on R-functions
and their uses, see [7, 8, 9].

In [2] we showed that a positive linear functional O o n f with corresponding regular
orthogonal i?-functions, gives rise to a positive MP-fraction. On the other hand, every
positive MP-fraction whose denominators are regular and of exact degree originates in
this way. (For the concepts of orthogonality of K-functions and of regularity, see [2, 7,
8]).

In this paper we treat positive MP-fractions without reference to the theory of
functionals on 2/1. Our aim is to study mapping properties of the linear fractional
transformations associated with a positive MP-fraction, and from these mapping
properties to obtain results on the structure of the approximants (ordinary and
generalized) of the continued fraction. We show that there exists a situation of nested
discs defined by the linear fractional transformations, analogous to the situation for real
J-fractions (see [5, 12]), APT-fractions (see [3]) and contractive Laurent fractions (see
[10]). These situations can also be treated on the basis of the theory of orthogonal
functions connected with the linear functional <S>, see e.g., [1, 6, 8, 13]. We use the
obtained mapping properties to prove that, except for special values of the parameter T,
the generalized approximants Fn(z, T) of the continued fraction have partial fraction
decompositions of the form

£ ^ (1.3)n ( , ) £ V '
v = l Z — tv

where tve!R, tv^{al,...,ap}, Av>0. The approach to this decomposition problem is
similar to that found in e.g., [3, 4, 10, 11].

For general standard information on continued fractions, we refer to [4].

2. Mapping properties

Let K?=1(an(z)/bn(z)) be an MP-fraction. We denote by Fn(z) = (Pn{z)/Qn(z)) the nth
approximant of the continued fraction, and set P0 = 0, Qo = 1.

We define the linear fractional transformations associated with the continued fraction
in the usual way:
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. Cn(z-an-2)(z-an)-
1

We also define

Pn(z) + w/Vi(z)
Sn(w)= — for n= 1,2,.... (2.2)

Q { z ) + w Q ( z )

Recall that Po =
 0 ' Go= 1. so that SifwHsjf.w). We thus have (cf. [4])

Sn(w) = s 1 o s 2 o - - - o s n ( w ) . (2.3)

We shall in the rest of this section assume that the MP-fraction is positive. We recall
that this means that the points al,...,ap and the coefficients An, Bn, Cn are real and that
Bn,Cn satisfy (1.2).

We shall let FI+ denote the closed upper half plane and FI_ the closed lower half
plane. We always assume in this section that Im z > 0.

We write a, for the angle a, = Arg(z — a,), i=\,...,p. For simplicity we may (without
loss of generality) assume that the points {a!,...,ap} are arranged in increasing order:
ax<a2< ••• <ap. It follows that 0<a ,<a i + 1 <n for i= 1,2,...,p— 1.

We define the half planes Qn = fin(z) by the conditions

fio = n _ (2.4a)

^n-at} if Bi>0

^ - a j if B!<0

for n= 1,2,.... (2.4c)

Theorem 2.1. The inclusions sn(Cln)<=Qn_i hold for n = l,2,

Proof. This result can be proved by using elementary mapping properties of linear
fractional transformations, the various sign combinations of Bn, Bn-Y, Cn being taken
into account. We shall illustrate the method by going through the argument in one case.

Let n ^ 4 (modp) and assume that Bn>0, Bn_,<(). Then by the positivity condition
(1.2d) we have Cn>0. Let we£ln. Then

We have

arg >ln(z - an_ ! ) ( z - a , ) " : = <xn_!-<xn- 7i
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or

and so An(z — ̂ -^(z — a,,)"1 eQn. Since 0 < a n _ 2 < a n _ i <n and Bn>0, we also have

and so B n (z -a n _ 2 ) (z -a n )~ 1 e f i n . It follows that D(z) = An(z-an_i)(z-an)'
l

Bn(z —an_2)(z —a, , . , ) " 1 +weQ n . Consequently, since Cn>0, we have

«„-«„_! ^Arg(C n -—

Since arg[(z —an_2)(z —a
n)"1] = an-2 —an. w e conclude that

in other words

which means that sn(w) £Q n _ l 5 since Bn_i<0.
The other cases can be treated in the same way. •

We write An = An(z) for the images of Qn by Sn, that is: An = SB(fin), n = l ,2 , . . . .

Theorem 2.2. The following statements about An = An(z) hold for every z with Im z > 0:

(a) An<=An_, for n = 2,3,....
(b) A,cn_/orn=l,2
(c) An is a closed disc.

Proof.
(a) By taking into account that sn(f l , )cQn. , (Theorem 2.1) we obtain

(b) It follows from Theorem 2.1 that A1 = S1(ni) = s1(f i1)cQ0 = n _ , and hence from
(a) we get An c: n _ for all n.

(c) Since Sn is a linear fractional transformation, An is either a closed half plane, a
closed disc or the exterior of an open disc. Since Bl^0, BleU, the denominator
of Si(w) is not zero for any w on the boundary dCli of fl,. It follows that
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Thus A! is not a half plane. Since A i d " ! . , it follows that Aj
is a closed disc. We now conclude by (a) that all An are closed discs. •

It follows from Theorem 2.2 that the intersection A ,̂ (z) = (°)"=1 An(z) is either a single
point or a closed disc. It was shown in [8] by methods using properties of orthogonal
R-functions that Aco(z) is either a single point for every z with Imz>0 or a closed disc
for every z with Imz>0. We may thus speak of a limit point—limit circle situation,
independent of z. It is not our aim to undertake a treatment of this problem by
continued fractions methods in this paper.

3. Partial fraction decomposition

Let K?=1(an(z)/bn){z)) be an MP-fraction, and let Pn(z)/Qn(z) be the nth approximant.
Then the denominators Qn satisfy the following recurrence relations:

(3.1a)1)Q0z-ai J z-at

A2(z-a1) + B2 C2
Q +(z-a2)

AAza.-J + Blza.-J Clza.-J {oin = 3 A _ ( l l c )
z-an z-an

with initial conditions Q0 = l, 6 - i = 0. The numerators Pn satisfy the same recurrence
relations, with initial conditions Po = 0, P_ t = 1.

It is easily verified by induction that we may write

fi(l) «<"> fl(") «(n) fl<")

a w - f l ^ — + ••• + - ^ - + r ^ 5 + - +, V I + T - A (32)
( ) 2 ( ) « + 1 (

z-at zap (zai) ( z a n _ ! ) (z
where q is the integer part [n/p] of n/p. Equivalently Qn and Pn may be written in the
following way:

where

Nn(z)=(z-a1)"
+1---(z-any

 + 1(z-an + 1)"---(z-ap)'', (3.5)

and Un and Vn are polynomials such that deg Vn^n, deg t / n ^« — 1. We call Kn and Qn
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degenerate if degKn^n. We shall say that Qn is of exact degree if 0n
B)/O. This is

equivalent to an not being a zero of VJ^z). We say that Qn is regular if pi"lljt0. This is
equivalent to an^x not being a zero of V&z). It follows from the recurrence relations (3.1)
that if all Qn are of exact degree, then all Qn are regular, since all B n #0 .

Lemma 3.1. Assume that all Qn are of exact degree. Then the polynomials Vn and
Vn_i do not both have a zero at ax for any fixed i=l,2,...,p. Similarly Vn and Vn-i are
not both degenerate.

Proof. The recurrence relations (3.1) can be rewritten in the following form:

(3.6a)

z-a1) (3.6b)

-a(1_2)K«_2 for n = 3,4, . . . .

(3.6c)

Let n ^ 3, and assume that Vn and Vn _ x have a common factor (z — a,). This factor is not
(z — an) or (z —an_i), since Qn and Qn_x are of exact degree. It follows that (z — a) is also
a factor of Vn+1. By repeating this argument at most p — 2 times, we conclude that
(z — at) is a factor of Vpq+i for some q, which contradicts the assumption that all Qn are
of exact degree. Also V2 and F, have no common factor (z — a,), since C2 # 0.

The proof of the second statement is similar: If degFn<n, d e g F n _ ! < n — 1 , then
degKn_2<n —2, and by repeating the argument we get d e g F 1 < l , which is impossible
since Bt ^ 0 . •

The generalized approximants of the MP-fraction are defined by

™-W>-t6R- (3-7)
where for any r e C ,

Pn(z,T) = Pn(z) + T ^ ^ ^ - P n _ 1 ( z ) , « = 3 ,4, . . . , (3.8a)

n^(z), n = 3 s 4 , . . . . (3.8b)

Lemma 3.2. For an arbitrary T e C, Pn(z, x) and Qn{z, T) have no common zeros outside
the set {au...,ap}.

https://doi.org/10.1017/S0013091500028662 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028662


POSITIVE MULTIPOINT PADE CONTINUED FRACTIONS 267

Proof. Assume that Pn(z,T) and QJ^z,x) have a common zero outside {alt...,ap}, for
some T e C. Then the determinant

is zero for this value of z. The product formula for continued fractions in our case reads

Pn(z)Qn- i(z) -P.- i ( r ) e ^ ) = ( - 1)"" ' , C l C y C n (3.9)

which gives a contradiction. •

Theorem 3.3. Let a positive MP-fraction be given, and assume that the denominators
are of exact degree. Then every generalized approximant Fn{z,x), except for at most p
values of T, has a partial fraction decomposition of the following form:

where £<">(T)€R, ^ ' ( T ) * {a „ . . . . a,}, W(r)>0.

Proof. Comparing (3.7)-(3.8) with (2.2) and the definitions of fin(z), An(z), we find (for
a positive MP-fraction): For a fixed z e l l + (the open upper half plane) and a fixed xeU,

and T ^ ^
z-an ) z-an

so that Fn(z,T)edAn(n). By Lemma 3.2, Pn{z,r) and Qn(z,r) have no common zeros
outside the set {a,, . . . ,ap} for any T. Since Fn(z,z)eAn(z), we must then have (2n(z,T)#0,
since otherwise Fn(z, T) = OO, which contradicts Theorem 2.2c. It follows that for a fixed
reU, Qn(z,T) has no zeros in II+. Then also Qn(z,x) has no zeros in 11° (the open lower
half plane), since non-real zeros appear in conjugate pairs. (All the coefficients An, Bn, Cn

are real and hence all coefficients in QJ(Z,T) are real.) Consequently all the zeros of
Qn(z, T) are real.

The rational function Fn(z, T) may be written as

(Recall that Nn(z) = (z — an)Nn.l(z).) Except possibly for one value of T, the denominator
is a polynomial of degree n. (Recall that by Lemma 3.1, degKn_1=n—1 if degKn<n.)
The numerator is a polynomial of degree at most n— 1. Except possibly for p— 1 values
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of T, none of the zeros of the denominator can be among the points au...,ap. For since
Vn and Kn_! have no common zeros among these points (by Lemma 3.1) and aB_i is not
a zero of Vn (since Qn is regular), the value of T must be T , = —
K(ai)Uai — an-i)K-i(ai)^~1 i° order that a, shall be a zero of the denominator. Except
for these at most p — 1 values of T, the numerator and denominator have no common
zeros, by Lemma 3.2.

Therefore Fn(z, x) has, except for at most p values of r, a partial fraction decompo-
sition of the form

{ 3 1 2 )

where tt,...,tseU, tj^{al,...,ap), m1+m2+ •• •+ms = n. (Here tv, cvJ are constants
depending on T and m.)

For points close to tv the dominating term in the decomposition (3.12) of Fn(z, T) is
cv, mv/(z — tv)mv When (z — fv) varies over an angle n in II + , then (l/(z-rv)mv) varies over
an angle mv-n. For this to be possible, the exponent mv cannot be greater than 1, since
we know that

Fn(z,T)e An(z)cn_ for all zeU0,

(Theorem 2.2(b)). Thus the zeros tt,...,ts are simple, and s = n. The decomposition (3.12)
therefore must have the special form

Fn(z,x)= t -~- (3-13)
v = l z 'v

Again for z close to tv the dominating term is cv/(z — tv). For the inclusion Fn(z,T)ell_
for all z e l l + to hold, it is necessary that cv>0. Writing A(

v
n)W f o r cv. 4n)(T) f o r fv. we get

(3.10).
D

REFERENCES

1. N. I. AKHIEZER, The Classical Moment Problem and Some Related Questions in Analysis
(Hafner Publishing Company, New York 1965).

2. E. HENDRIKSEN and O. NJASTAD, A Favard theorem for rational functions, J. Math. Anal.
Appl., to appear.

3. W. B. JONES, O. NJASTAD and W. J. THRON, Continued fractions and strong Hamburger
moment problems, Proc. London Math Soc. (3) 47 (1983), 363-384.

4. W. B. JONES and W. J. THRON, Continued Fractions: Analytic Theory and Applications
(Addison-Wesley Publ. Co., Reading, MA 1980).

https://doi.org/10.1017/S0013091500028662 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028662


POSITIVE MULTIPOINT PADE CONTINUED FRACTIONS 269

5. W. B. JONES and W. J. THRON, Survey of continued fractions methods of solving moment
problems and related topics, Analytic Theory of Continued Fractions (Eds. W. B. Jones, W. J.
Thron and H. Waadeland, Springer Lecture Notes in Mathematics 932, Berlin (1982), 4-37.

6. H. J. LANDAU, The classical moment problem: Hilbertian proofs, J. Fund. Anal. 38 (1980),
255-272.

7. O. NJASTAD, An extended Hamburger moment problem, Proc. Edinburgh Math. Soc. (Series
II) 28 (1985), 167-183.

8. O. NJASTAD, Unique solvability of an extended Hamburger moment problem, J. Math. Anal.
Appl. 124 (1987), 502-519.

9. O. NJASTAD, Multipoint Pade approximation and orthogonal rational functions, Nonlinear
Numerical Methods and Rational Approximation (Ed.: A. Cuyt, Reidel Publ. Co. 1988), 259-270.

10. O. NJASTAD, Contractive Laurent fractions and nested discs, J. Approx. Theory, to appear.

11. O. NJASTAD and W. J. THRON, Rational functions and quadrature formulae, Analysis, to
appear.

12. O. PERRON, Die Lehre von den Kettenbriichen, 3. Auflage, Band 2 (Teubner, Stuttgart 1957).

13. J. A. SHOHAT and J. D. TAMARKIN, The Problem of Moments (Mathematical Surveys N o . 1,
Amer. Math. Soc, Providence, RI 1943).

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS
UNIVERSITY OF AMSTERDAM UNIVERSITY OF TRONDHEIM-NTH

ROETERSSTRAAT 15 N-7034 TRONDHEIM
1018 WB AMSTERDAM NORWAY
THE NETHERLANDS

https://doi.org/10.1017/S0013091500028662 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028662

