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PARTIALLY SELF-INJECTIVE 
REGULAR RINGS 

BY 

ANDREW B. CARSON* 

ABSTRACT. It is proved, for any uncountable cardinal A, that a 
A-complete Boolean ring is A-self-injective. An example shows that 
the converse need not hold. 

1. Introduction. In this paper all rings are commutative and have a nonzero 
identity, and all ring homomorphisms preserve the identity. By a regular ring we 
mean a ring R such that, for each r e R, there txists r' e R such that rrfr=r. We 
call a topological space Boolean if it is compact, Hausdorff, and totally disconnected. 
We say that a subset of a Boolean space X is clopen if it is both open and closed in 
X, and that X is extremally disconnected if, for each open subset U of X, Cl(U) is 
clopen in X. For any ring (R, + , •) let B(R) denote {e e R:e2=e}. It is easily 
verified that (B(R), V, A, ~) is a Boolean algebra and (B(R), + ' , •) is a Boolean 
ring, where eVf=e+f—e •/, eAf=e •/, e~=l—e, and 

* + ' / = * + / - 2 e - / = (e\ff)A(eAf)r. 

In particular, any Boolean ring may be viewed as a Boolean algebra, and vice 
versa. Under both of these viewpoints, the maximal ideals of B(R) are the same. 

Lambeck has shown, in [4, Section 2.4], that a Boolean ring is self-injective if 
and only if it is complete as a Boolean algebra. It is known (see [6, 22.4]) that a 
Boolean algebra is complete if and only if its Stone space is extremally disconnected. 
We generalize these concepts with the following definitions. 

DEFINITION 1.1. Let R be a ring and A a cardinal. 
(i) An ideal in R is a X-ideal if it is generated by some set containing fewer than X 

elements. 
(ii) The ring R is X-self-injective if, for each A-ideal I of R a n d / e HomR(I, R), 

there exists/ ' e HomR(R, R) such t h a t / ' | 7 = / . 
(iii) A Boolean algebra A is X-complete if each subset of A with cardinality less 

than X has a supremum in A. Under these circumstances we also say that the 
Boolean ring A is X-complete. 
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In these terms, the Injective Test Theorem (see [3, p. 49]) states that the ring R 
is self-injective if and only if it is /j-self-injective for each cardinal /x. 

DEFINITION 1.2. Let X be a Boolean space and X a cardinal number. 
(i) Suppose that U^ X. Then U is a X-subset of X if it can be expressed as a 

union of fewer than X clopen subsets of X. 
(ii) The space Xis X-extremally disconnected if, for each A-subset U of X, Cl(U) is 

clopen in X. 
(iii) The space X has the X-disjointness property if, for any ^-subsets U and V of 

X, U n F=<£ implies that Cl(U) n C1(F)=<£. 
To study these concepts we use the representation theory developed by R. S. 

Pierce in [5]. This associates with each commutative regular ring R a unique 
Boolean space X(R), and a unique sheaf k(R) of fields over X(R), such that 
R^T(X(R), k(R))9 the ring of all continuous sections of k(R) over X(R). The space 
X(R) is actually the set of all maximal ideals in B(R) (viewed either as a Boolean 
ring or as a Boolean algebra) with the hull-kernel topology, or equivalently, the 
Stone space of the Boolean algebra B(R). For each M e X(R), the stalk of k(R) over 
M is given by kM(R)=(RIR.M). 

In §2 we note that a characterization of self-injectivity for a regular ring R in 
terms of the pair (X(R), k(R)), given by Pierce in [5, Lemma 23.1], can be modified 
for A-self-injectivity, and relate /l-completeness and A-self-injectivity for a Boolean 
ring with properties of its Stone space. Using these facts we show that, for any 
cardinal X, a 2-complete Boolean ring is A-self-injective. The converse of this is 
false, we show in §3, if A>KX. 

In a later paper we shall apply these results to show that JR[[X]], the ring of 
formal power series with coefficients from R, is coherent if and only if R is Kx-
self-injective and B(R) is ^-complete. 

2. Theorems. In this section i? denotes an arbitrary commutative regular ring 
with unity, k denotes k(R), X denotes X(R), and X denotes an arbitrary cardinal. 
Identify R=T(X, k). We begin by relating the concepts introduced in Definition 
1.2. 

LEMMA 2.1. Suppose that X is X-extremally-disconnected. Then it has the X-
disjointness property. 

Proof. Suppose that U and V are open subsets of X such that U is a A-subset of 
Xand U n V=</>. Then Kç (X-U) so that 

K g Interior [(X-U)] = [X-C1(U)]. 

Thus, by hypothesis, Cl(K)ç [X-Cl(U)]. Therefore Cl(U) n Cl(V)=(f>. • 
The above proof can be reversed (when V=[X—Cl(U)]) to show that X is 

extremally disconnected if it has the /j-disjointness property for each cardinal [i. 
However this does not establish the converse of Lemma 2.1, for it might be that U 
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is a A-subset of X while (X— Cl(£/)) is not. In §3 we show that the converse of 
Lemma 2.1 is false, if A>X0. 

The following concept will be used to characterize A-self-injectivity for R in 
terms of X and k. 

DEFINITION 2.2. (i) For a subset Y of X let T(Y, k) denote the ring of all con­
tinuous sections of k over Y. 

(ii) The pair (X, k) has the À-extension property if, for each A-subset U of Zand 
a eT(U,k), there exists a' e T(X, k) such that a' \n = a. 

LEMMA 2.3. Suppose that (X, k) has the À-extension property•. Then X has the A-
disjointness property. 

Proof. Suppose that t /and Fare A-subsets of Xsuch that U n F=<£ yet there 
exists x G C1(C/) n C1(F). Define or e T(U u F, £) by <x(t/)=0 G £M for u e U and 
cr(V)=l e ^ for v e V. Since £/ and V are open and disjoint in X, therefore 
aeT(U U V,k). Thus there exists a' e T(Z, k) satisfying a' \U{jV=o. Then 
cr'(x)=0 since x G Cl(t/) and cr/(x)=1 since x G Cl(F). This contradiction establishes 
that C1(C7) n C1(F)=^. • 

THEOREM 2.4. (i) 77ze regular ring R is À-self-injective if and only if(X, k) has the 
X-extension property. 

Now suppose that R is a Boolean ring. Then: 
(ii) R is X-self-injective if and only if X has the À-disjointness property. 
(iii) R is X-complete if and only ifX is X-extremally disconnected. 

Proof, (i) This is a straightforward modification of [5, Lemma 23.1]. 
(ii) Since R is a Boolean ring, each k^, for x e X, is a field satisfying the poly­

nomial identity X2—X=0, and thus is the two element field. In view of (i) and 
Lemma 2.3, it suffices to show that (X, k) has the A-extension property if Xhas the 
A-disjointness property. Let Xhave the A-disjointness property. Suppose that C/is a 
A-subset of X and a G T(U, k). Let 

V = {x G U:a(x) = 0} and W={xe U:a(x) = 1}. 

Then V n W=cf>, V U W= U, and V and W are open in X. Thus V and W are 
disjoint A-subsets of Z s o that, since X has the A-disjointness property, there exists 
a clopen subset C of X such that d(V) n C=</> and Cl(FF)ç C. Then a' e T(X, k) 
and o' \JJ = O, where cr(x)=0 when x <£ C and o(x)=l when xeC. 

(iii) A trivial variation of the proof of [6,22.4], required due to differing concepts 
of A-completeness, establishes this result. • 

We now use Theorem 2.4 to relate the concepts of A-completeness and A-self-
injectivity. 

THEOREM 2.5. (i) IfR is X-self-injective, then so is the ring B(R). 
Now suppose that R is a Boolean ring. Then: 
(ii) IfR is À-complete, then R is À-selfinfective. 
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Proof, (i) Note that B(B(R))=B(R) so that X(B(R))=X(R)=X. If R is /L-self-
injective, then, by Theorem 2.4(i) and Lemma 2.3, X has the A-disjointness prop­
erty. Thus, by 2.4(ii) with B(R) in place of R, B(R) is A-self-injective. 

(ii) If R is A-complete then, by 2.4(iii), X is 2-extremally disconnected so that, 
by Lemma 2.1 and Theorem 2.4(H), R is X-self-injective. B 

The following property of spaces with the 2-disjointness property will be used in 
a later paper determining when i?[pf]] is coherent. 

LEMMA 2.6. Let X have the X-disjointness property. Then, for any X-subsets U and 
VofX, 

C\(U nv) = Cl(U) n c\(V). 

Proof. That Cl(U n V)^Cl(U) n CI(F), is true in general. Suppose that 
x e Cl(U) n C\(V). Let Fx denote the family of all clopen neighbourhoods of x. 
Note that, for any NeFx, N n U and N n V are 2-subsets of X such that 

x G ci(N nu) n Cl(Â  n F). 
Thus 

JV n (£/ n F) = (AT n t/) n (TV n F) ^ f 

Since Fx is a filter converging to x, this yields x G Cl({7 n K). • 

3. Examples. In this section À denotes an infinite cardinal. We construct a 
Boolean space X with the A-disjointness property that is not K-L-extremally dis­
connected. It follows from 2.4 that the Boolean ring of clopen subsets of X is X-
self-injective but not Krcomplete. Since such an X also has the yT-disjointness 
property for each X'<X, and since there are arbitrarily large regular cardinals, 
we assume without loss of generality that X is regular. 

The space X is constructed to be a one point union of the form Y U W\p—q 
where Y is the Stone-Cech compactification of the discrete space N of natural 
numbers,/? G Y—N, and ^ i s a suitable Boolean space. 

The space W is now constructed. Let A be a set of cardinality X and let T be the 
Boolean algebra of all subsets of A of cardinality or cocardinality less than X. Let 
W be the Stone space of T, or equivalently X(T), where T is viewed as a ring. 
That is to say, W is the family of all maximal proper ideals of T with the hull-
kernel topology. Let the ideal q={t e r: |^|<A} of T be viewed as a point in W. 

LEMMA 3.1 (i). Y has the X-disjointness property. 
(ii) W has the X-disjointness property. 

(iii) There is no X-subset U of W such that q e 0— U. 

Proof, (i) This follows from 2.1 since (see [2, ex. 6M]) Y is extremally dis­
connected. 

(ii) This follows from 2.4 (iii) and 2.1 since Tis clearly A-complete. 
(iii) The clopen subsets of W have the form Nt={w e W:t <£w}, where t e T. 

Let L/=U {A^f(a):a<>l/}, where A'<A, be an arbitrary A-subset of W such that 
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q$U. Hence t{œ)eq so that \t{a)\<X, for each a<X'. Let f = U {f(a):a<A'}. 
Then |f|<A, since X is regular. Hence t eq so that # £ JVt. The result will follow by 
establishing that O^Nt. Since iVt is closed, it suffices to show that U^Nt. Suppose 
that w e Nt(a) for some oc</T. Then t{oc) $ w so that, since w is a maximal ideal in T, 
(A-/(a))Gw. Then WGNU for otherwise f e w so that A=(A—f(oc))W G W, 

contradicting w$ A. • 

THEOREM 3.2. TAere ex/sta a Boolean space X that has the X-disjointness property 
{where X is a cardinal) but is not H^extremally disconnected. 

Proof. Let Xbe the one point union Y U W/p=q where Y, W,p, and q are as 
above. It follows by standard topological arguments and Lemma 3.1 that Xis a 
Boolean space with the A-disjointness property. However X is not Xrextremally 
disconnected since iVis an ^-subset of Xyet C\X{N)= Fis not open in X since q 
is not isolated in W. • 

THEOREM 3.3. There exists a Boolean ring R that is X-self-injective {where X is a 
cardinal) but is not ^-complete. 

Proof. Let Xbe the Boolean space from Theorem 3.2 and let R be the Boolean 
ring of all clopen subsets of X. As is well known, the Stone space X{R) ofR (where 
R is viewed as a Boolean algebra) is homeomorphic to X. The Theorem now 
follows from 3.2 and 2.4. • 

REMARK Let N' be an infinite discrete space and Y' be its Stone-Cech compacti-
fication. T. Cramer has remarked in private communication that (Y'—N')9 as a 
subspace of Y', is a Boolean space with the K^disjointness property that is not 
Xj-extremally disconnected. However if the continuum hypothesis holds, then 
{Y'—N') fails to have the X2-disjointness property, no matter how large the 
cardinality of N' is. 

The author would like to thank the referee for alterations which have greatly 
simplified construction of the space Z i n section 3. 
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