
ON OUTWARDLY SIMPLE LINE FAMILIES 

JACK CEDER 

In (5) Hammer and Sobczyk defined an outwardly simple line family in the 
plane as a family of lines in the plane having the proper ty t ha t each point 
outside some given circle lies on exactly one line of the family, and they 
characterized planar outwardly simple line families as follows (5): the extended 
diameters 1 of a convex body, whose boundary has no pair of parallel line 
segments in it, form an outwardly simple line family; moreover, each out
wardly simple line family is the family of extended diameters of a convex 
body having constant width. (In the following we shall accordingly consider 
only convex bodies wi thout parallel line segments in their boundaries and for 
expediency such bodies will be referred to as convex bodies.) 

Given an outwardly simple line family 2 let us define a function N, called 
the incidence function of 8, by put t ing, for x £ E2, N(x) equal to the number 
of lines in 2 which pass through x. (If this is infinite, then N(x) = °°.) We 
denote N~1(k) by Nk where k = 0, 1, . . . , °°. The purpose of this paper is to 
s tudy the nature of the sets Nk. 

1. S o m e genera l t h e o r e m s . As notat ion to be used throughout the 
following, if A is any set, then the symbols H (A), A0, À, and Br A will denote 
the convex hull, interior, closure, and boundary respectively of A. In particular, 
if z, w Ç E2, [z, w] = H{{z, w}) and (z, w) = [z, w] — {z, w}. We begin by 
citing the following analytical characterization of an outwardly simple line 
family. 

T H E O R E M 1 (Hammer and Sobczyk, 4). 2 is an outwardly simple line family 
if and only if 2 is the family of lines whose equations are given by 

x sin a — y cos a = p(a), a G [0, 7r], 

where p is a function defined on [0, T] such that p(0) = —p(ir) and p satisfies 
the following two Lipschitz conditions: there exists a k > 0 such that 

\p(x) - p(y)\ <k\x-y\ 

and 

\p(x) +p(y)\ <k\w - (x-y)\ 

whenever 
0 < y < x < 7T. 

Received May 1, 1962. 
XA chord of a convex body is a diameter if there exists a (distinct) pair of parallel support 

lines at its ends. 
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We shall call the above function p the distance function of 8. Then using 
this analytical representat ion of 8, it is easy to prove the following two facts 
(cf. H a m m e r and Sobczyk, 5; 6) : 

T H E O R E M 2. N0 = 0. 

T H E O R E M 3. For some k > 3, iY/c 7e 0. 

In (2) Gri inbaum states wi thout proof t h a t both the centroid and the 
critical point of a convex body with respect to the Minkowski measure of 
symmet ry have (diameter) incidence > 3 . In fact, N e u m a n n (7) has shown 
t h a t there is only one such critical point and there are a t least three chords 
which are divided by the critical point into the critical rat io. I t is easily 
shown t h a t each such chord is a diameter . 

From Theorem 1 we also obtain the following lemma. 

L E M M A 1. Let N and p be the incidence and distance functions of an outwardly 
simple line family. Then Nk j * 0 if and only if there exists a /3 £ (0, ir] and c 
such that csm(a — fi) = p(a) for exactly k values of a in (0, T]. 

Using this lemma and the fact t h a t a non-zero analyt ic function (i.e. repre-
sentable in a Taylor series) on a finite interval can have only a finite number 
of zeros, we can easily derive the following facts, which are useful in con
s t ruct ing examples: 

1. If p is a piecewise analytic (i.e. it consists of a finite number of analyt ic 
arcs) distance function whose pieces are not of the form c s i n ( a — 3) for any 
c and £, then Nm = 0. 

2. If p is a piecewise analyt ic distance function whose pieces are linear or 
of the form csm(a — (3), then N has a finite maximum (i.e., 

max{fe : Nk F^ 0 and k 9e °°} 

exists). 
3. If p is a piecewise analyt ic distance function, then Nm is finite. 
In part icular, if p consists of finitely m a n y non-horizontal line segments, 

then N has a finite maximum and Nœ = 0. Moreover, for each odd number 
n > 3 we can easily construct such a dis tance function whose incidence func
t ion has a finite maximum equal to n. 

I t is readily seen t h a t the distance function of an outwardly simple line 
family generated by the extended diameters of a convex polygon is piecewise 
analyt ic whose pieces are all of the form csin(a — f$) (see § 2 ) , and hence, 
Nm is non-empty and finite and N has a finite maximum. In the general case, 
however, Nœ m a y be e m p t y even if all other Nk are non-empty ; and Nm m a y 
be infinite and non-closed even when the finite maximum is 3. T h e following 
examples i l lustrate this. 

Example 1. Nœ may be e m p t y even with Nk 9e 0 for infinitely m a n y k. 
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For each n > 3 and 0 < m < n we define Inm to be the line segment [a, b] 
where 

(i) if n is even and m even, 

0 = ( ( 1 + 2 ) 2 - - , ( ( I + ^ > - . ) ' ) , 

* = ((1+^>-"-'(('+ !™)H'); 
(ii) if n is even and m odd, 

»-((i+s^>-'-((i+=£V-,)> 
(iii) if w is odd, 

a = (2~w, (2-*)2) and Ô = (2-71-1, (2~n-1)2). 

In addit ion let 70 be the line segment joining (0, T) with (1 /8 ,1 /64 ) . Now let 
p be the "saw-toothed" function defined by p = U {/nw : w > 3 and 
0 < m < w} \J Io T o show tha t p is a valid distance function we need only 
verify the two Lipschitz conditions in Theorem 1. The first condition follows 
from the easily proved fact t h a t the absolute values of the slopes of the 
segments Inm are bounded by 1. For the second condition let 0 < y < x < ir. 
Whenever x — y < w — 1/8 we have p(y) + p(x) < J < 2(ir — (x — y)). 
And whenever x — y > T — 1/8 we have 

p(y) + p(x) <y2 + 6 4 ? r __ g (TT - x) < ir - (x - y). 

Hence p{x) + p{y) < 2(7r — (x — j ) ) for all 0 < y < x < ir. 
T o show x¥œ = 0 we must show by Lemma 1 t h a t there are no c and /? 

for which c s in ( a — /5) = £(<*) for infinitely many a Ç (0, 7r]. Let g be the 
function given by g (a) = cs'm(a — /5), a G [0, 7r]. If g(0) ^ 0, then g is 
bounded away from the origin and clearly can only intersect finitely m a n y 
of the line segments in p. In the case g(0) = 0, we must have c — 0 or f3 = 0 
or j8 = 7T. If c = 0 or 6 = ir, or if j3 = 0 and £ < 0, then g intersects p only 
once in (0, ir]. If /3 = 0 and c > 0, then clearly there exists a ô > 0 such t h a t 
as < a2 < g (a) for 0 < a < 5. Consequently, g does not intersect £ over the 
interval (0, 8] and, hence, can only intersect p finitely many times in (0, ir].. 
Therefore, Nœ = 0. 

Now we show t h a t Nk ^ 0 for infinitely many k. (Actually it can be shown 
tha t each Nk ^ 0 for k ^ oo.) Let m be any even number > 4 ; then by tak ing 
c = -2-m~2 and 0 = TT/2 + 3 -2-m~2 we see t ha t a3 < c s in ( a - 0) < a2 for 
2-m-i ^ a ^ 2 _ w . But this implies N((c, /?)) > m, which completes the proof. 
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Example 2. Nœ may be infinite and non-closed even when the finite maximum 
is 3. 

Let p be defined as follows: for odd n and 2~n~l < a < 2~n define 

p(a) = 2-2n"2sin(a - TT/2 - 3-2~w-2). 

Then we extend this p linearly over the interval [0, ir] so that p(0) = P(T) = 0. 
It is easily shown that p satisfies the two Lipschitz conditions and hence is 
a distance function. Using Lemma 1, it is clear that the maximum finite 
incidence is 3 and that the only points having incidence oo are of the form 
(cn, Pn)i where cn = 2~n~2 and f3n — TT/2 + 3 -2~~n~2. Moreover, the origin has 
incidence 1 and belongs to Nœ. 

The set Nm is countable whenever N has a finite maximum (see Theorem 5), 
but in the general case may be uncountable as shown by the following example. 

Example 3. N^ may be uncountable. Define p(a) = sin a sin (log a) for 
a G (0, ir] and p(0) = 0. Then it is easily checked that p has a bounded 
derivative and, hence, will be a distance function. But for each c G [—1, + 1 ] , 
c sin a — p(a) for infinitely many values of a. Therefore, by Lemma 1, 
[ - 1 , + l ] O V c o . 

However, Nœ always has measure zero as shown by the following theorem. 

THEOREM 4 (Hammer and Sobczyk, 6). The measure of Nk where k is even 
or co is zero. 

Of special interest is the case when N has a finite maximum. To investigate 
this case we first establish the following preliminaries. Let 2 be an outwardly 
simple line family and let x 6 E2. Suppose La and L& are two distinct lines 
in £, with directions a and 13 respectively, which pass through x and such 
that x^Ly whenever y Ç Iayp, where Ia^ = (a, j3) if /3 > a and 

Ia,p = [0, P) U (a, TT] if a > p. 

Such an ordered pair of lines in 2 through x will be called a consecutive pair. If 
La, Lp, Ly are distinct lines in 8 we let Ta,p,y denote the closed triangle deter
mined by them. Now, if (La, Lp) is a consecutive pair of lines through x, we 
define Sa,p(x) = (VJ{Ta,p,y : y € I<x,p})° and call it the strip at x determined 
by the consecutive pair (La, Lp). It is easy to see that Sa,p(x) must lie entirely 
in one of the quadrants determined by the lines La and Lp. Finally, by a 
wedge at x we mean any one of the four open quadrants, determined by a 
consecutive pair of lines in 2 at x, which does not intersect any La that con
tains x. Now with the aid of Theorem 1 and Lemma 2 of (6) we can prove 
the following lemma. 

LEMMA 2. (i) If y £ Sa,p(x), then there exist two distinct angles 7, £ Ç Ia,p 
such that y G Ly C\ L^. 

(ii) If y G Ly C\ Br Sa,p(x) and x 6 Ly with x ^ y, then there exists 
a £ G la,p such that y Ç L$. 
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(iii) If y belongs to a wedge determined by a consecutive pair (La, L$), then 
there exists a y G Ia,p such that y G Ly. 

Now we can prove the following theorem. 

THEOREM 5. Suppose the incidence function N has a finite maximum equal 
to m. Then 

(i) m is odd] 
(ii) Nm is open, provided Nm C\ Nœ = 0; 

(iii) Nœ is countable. 

Proof. For (i) let x Ç Nm. Then there are m strips and 2m wedges deter
mined by the m lines passing through x. Each strip intersects exactly m — 1 
wedges, so the total number of intersections of wedges with strips is m{m — 1). 
Now suppose m were even. Then the maximum number of strips intersecting 
any given wedge W would be < \m — 1 ; for if the n strips S\ (x), . . . , Sn (x) 
where n > \m all intersected W, then by Lemma 2 any point in 

wn (n^(x)j 
would have incidence >2w + 1 > m + 1. But since Nm has measure zero, 
there would be a point of finite incidence >ra + 1 in 

wn (n st(x)j, 
which is a contradiction. Now since there are 2m wedges, the maximum 
number of intersections of strips with wedges is thus <2m(Jm— 1) = m2 — 2m, 
which is less than m(m — 1), the actual number. Hence, m must be odd. 

For (ii), let x be given in Nm. Let Lai, . . . , Lam denote the m lines passing 
through x with <*i < a2 < . . . < am < ir. Now let C be a circle centred at x 
and choose at G Lai Pi C so that a\, . . . , am are consecutive and in counter
clockwise order around C. We shall say that St = Sai,ai+i(x) is a right strip 
at x if (ai+i, x) C Si- Otherwise it is a left strip. 

Now suppose there are two consecutive right strips among the strips at x, 
say Si and S2- Consider the family © of the 2k — 3 strips {54, 55, . . . , S21c} 
where m = 2k + 1. Then it is clear that if X is a subfamily of © consisting 
of t right (or left) strips, then the open set (P i ï ) r\ Si Pi 52 ^ 0. From this 
it follows that there can be at most k — 2 right strips (and at most k — 2 
left strips) in @, since if there were t right (or left) strips, where t > k — 1, 
then £ + 2 strips would intersect in E2 — Nœ giving a point of finite incidence 
>2(£ + 2) + 1 > 2& + 3, by Lemma 2. Hence the maximum number of 
strips, both left and right, in @ would be <2(& — 2), a contradiction. 

Hence, the strips must alternate from right to left and it then follows that 
each of the 2m wedges at x intersects exactly k strips. Now, assuming x is the 
origin, pick r so that 
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0 < r < min Oi + OLi+l 

Then letting D be the disk of radius r about x we have N(y) > 2k + 1 = m 
for each y G D by Lemma 2 again. Now if x $ Àr

œ, D — Nœ will be an open 
set in Nm containing x. T h u s Nm is open. 

For the proof of (iii), let x G Nœ and wi thout loss of generali ty we m a y 
assume t h a t x is the origin. Then F = £ _ 1 (0) 1S infinite and closed. If G, the 
complement of F, had infinitely m a n y components , there would be infinitely 
m a n y dist inct pairs, {(aai /3a) : a G ^4}, for which aa, /3a £ F and (aa, j3a) C G. 
Let ^li consist of all a ^ A such t h a t £ («) > 0 for a G (aa, fia). Then either 
/ l i or A — Ai is infinite. Wi thou t loss of generali ty we can assume t h a t Ai 
is infinite. For each a G Ai pu t fia) = sup{^>(o:) : a G [aa, ab]\. Now pick m 
dist inct elements from Ai, ai, a<i, . . . , am such t h a t no aai = 0. 

P u t ô = min{/(ai) : 1 < i < m} and 7 = min{aflt- : 1 < i < m j . Then 
clearly if (c, p) £ B = {(c, f3) : 0 < c < ô and 0 < p < 5}, we have t h a t 
c sin (a — P) = £ ( a ) for more than w values of a. Hence, B C A7

œ, which 
contradicts the zero-measure of A7

œ. Therefore, G has only finitely m a n y 
components and thus F contains an interval . So if x G A7

œ, there exist 
&xi Px G [0,7r) such t ha t x G L 7 for each 7 G [a^, /3J. Bu t if [ax, px] were to 
intersect [ay, fiy] for # ^ 3/, we would obtain two parallel lines in the given 
outwardly simple line family. Since there can be a t most only a countable 
number of disjoint intervals on the line, Nœ mus t be countable. 

I t is unknown whether the hypothesis in Theorem 5 (ii) is necessary. 
A ven 7 a t t rac t ive conjecture is t h a t " t h e intermediate value p rope r ty" 

holds for the incidence function; t h a t is, if iV^+i ^ 0, then Nk 9e 0. Although 
unsolved in the general case, it is t rue whenever the distance function is 
analyt ic as shown by the following theorem (it is also t rue in the polygonal 
case; see Theorem 11). 

T H E O R E M 6 If p is piecewise analytic, then N2k ^ 0 implies that Nu+i ^ 0 
and Nzk-i ^ 0- Moreover, if p is analytic, then A ^ + i ^ 0 implies that Nu ^ 0-

Proof. Firs t we establish the following proposition : if is p piecewise analyt ic 
and Wis s, wedge a t x (the origin) which hits exactly m str ips and (c, P) G W, 
then there exists a k G (0, 1) such t h a t N((5c, ft)) — 2m + 1 for each 
<5 G (0, k). For the proof, suppose W hi ts the m dist inct strips Si, . . . , Sm, 
where Si = Sai<yi(x). Then the piecewise analyt ic i ty implies t h a t for each i 
there exists a kt G (0, 1) such t h a t for ô G (0, ki), cd sin (a — P) = p(a) has 
exactly two roots in [au 7 J . Also we find a k0 G (0, 1) such t h a t for each 
à G (0, ko), cô sin (a — f3) = p(a) has exactly one root in the interval corre
sponding to the wedge W. Now take 

k — min ki 
i 

to complete the proof of the proposition. Also we remark t h a t if W\ and 

https://doi.org/10.4153/CJM-1964-001-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1964-001-3


OUTWARDLY SIMPLE LINE FAMILIES 7 

W2 are adjacent wedges a t some x and if W\ hits m strips, then W2 must hit 
m, m — 1, or m + 1 strips. From this it easily follows t ha t if one wedge a t x 
hits m strips and another wedge hits n strips, there exist wedges a t x h i t t ing 
all in termediate values. 

Now suppose p is piecewise analytic and x £ N2k> Wi thou t loss of generality 
we can suppose t h a t x is the origin since a translat ion preserves the piecewise 
analyt ici ty of the distance function. Since there are 4& wedges a t x and 2k 
strips a t x with each str ip hi t t ing 2& — 1 wedges, the tota l number of inter
sections of strips with wedges is 2&(2& — 1) = 4&2 — 2k. Now, if each wedge 
hits >& strips the number of intersections would be >4&-& = 4k2, a contra
diction. Also, if each wedge hits <& — 1 strips the number of intersections 
would be <4&(& — 1) = 4&2 — 4.k, a contradiction. Hence, there exist wedges 
hi t t ing k and k — 1 strips respectively. Now applying the above proposition 
we get t ha t N2Jc+i 9e 0 and N2Jc-i 9e 0. 

For the second part , suppose p is analytic and x £ N2k+i, where again we 
may assume x to be the origin. Let 0 = ao < «i < . . . < am = w, where 
m = 2k + 1, be the zeros of p. Then it is clear t ha t one of two cases arises: 
either (Case I) each wedge a t x hits exactly k strips or (Case II) there are 
adjacent wedges a t x hi t t ing k and k — 1 strips respectively. 

For Case I, for each 0 < i < m let Ct consist of all points (x(a),y(a)) 
such tha t 

x(a) — p' (a) cos a -\- p(a) sin a, 

y (a) = p'(a) sin a — pia) cos a, 

where a ranges throughout the interval [ai} ai+1]. I t is easily checked (by 
just using the existence of pff) t h a t the tangent line to Ci a t a exists and has 
slope equal to tan a, and hence the equation of the tangent line is 

x sin a — y cos a = p(a)y 

which is the same as La. Moreover, each La for a 6 [ait ai+i] intersects Ci 
jus t once, unless Ct is a line, for if Ct is not a line and La hits Ci in two places, 
then by the continui ty of the tangent line to Ct we could find a Lv parallel 
to La. From this it follows t ha t each point on Ct has incidence 1 relative to 
[auai+1]. If a point in Si = Sai,ai+1(x) had incidence 3 or more relative to 
[ait «i+i], then Ci would be tangent to each of three intersecting lines and 
hence would hit one of them more than once. Therefore, each point in St has 
incidence 2 relative to [a7-, aj+i], A similar argument shows t ha t each point 
of any wedge determined by at and ai+ï has incidence 1 relative to [au ai+i]. 
Now let W be any wedge a t x which intersects the k strips SiQ, Sily . . . , Sik_!. 
Let Cim be the above curve associated with Sim. Then it is clear t h a t there 
exists an im and /3i and /32 such t h a t aim < fix < j32 < a*m+i and the set 
C = {(c, 6) d Cim : 0i < p < fi2} is contained in C\n9±m Sin. Then it follows 
t ha t C Ç N2k. 

For Case I I , we can assume tha t W\ is a wedge between «o and a\ and W2 
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is an adjacent wedge between ai and a2 such that W\ hits k — 1 strips and 
W2 hits k strips. Since each strip, except .So and Si, either hits or misses both 
Wi and W2, we see that SL misses both W\ and W2 and 5 0 hits only W2. But 
this implies that p has a relative extreme at «i so that pf'(ai) = 0. Then we 
can show without difficulty that for each i for which St hits both U\ and IF2 
(there are k — 1 such 5 0 , there exists a 5* and fit £ (a0, «i) such that 
csin(a — 0) = p(a) has exactly two roots in [0^,0^+1] whenever c Ç [0, dt] 
and jS Ç (/3i, af). Also we can find a c and a 0 such that 

0 < c < min ôif max fit < (3 < au 
i i 

and csin(a — fi) = p{oc) has exactly two roots in [ao, a j , at one of which 
the two curves c sin (ce — fi) and /?(«) are tangent. Then we clearly have 
N((c,fi)) = 2fe, which finishes the proof of the theorem. (Actually Case II 
works out when p is piecewise analytic too.) 

Now we end this section with the following result, which says that the 
points of incidence > 2 and > 3 are "somewhat star-shaped" (easy examples 
show that they are not necessarily star-shaped from a point). 

THEOREM 7. The sets Nx, E2 — N1} and E2 — (iVi KJ N2) are polygonally 
connected. 

Proof. Let N(x) > 2 and N(y) > 2. And let x £ La P> L0 and y e Ly C\ Lh 

where a 9^ fi and 7 ^ 5. Let P be the interior of the polygon which is the 
union of the four triangles determined by the four possible triples of lines 
selected from {L«, Lp, Ly, Lh]. Then P C\ (Ari \J N2) = 0 eind x,y G Br P , 
from which it follows that E2 — iVx and E2 — (N± W N2) are polygonally 
connected. The fact that Ni is polygonally connected follows easily from a 
result of Hammer and Sobczyk (6, Theorem 6) that says that L — Ari is a 
finite interval for any L in the outwardly simple line family. 

2. Polygonal outwardly simple line families. In this section we shall 
describe the incidence structure for an outwardly simple line family generated 
by the extended diameters of a convex polygon (without pairs of parallel 
sides). Such a family will be called a polygonal outwardly simple line family. In 
the following, P will denote such a polygon and V and 5 its sets of vertices 
and sides respectively. As before 8 will be the family of extended diameters 
of P , and iVwill be the associated incidence function. The following theorems, 
the first two of which are straightforward and are given without proof, will 
then describe fairly well the incidence structure of a polygonal outwardly 
simple line family. 

THEOREM 8. (i) Each vertex has incidence 1 or 00 and each element of Nm is 
a vertex; (ii) each non-vertex boundary point has incidence 1 or 2; (iii) x Ç N^ 
if and only if there exists L Ç 5 such that L is parallel to a support line at x; 
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(iv) x G Br P r\ N2 if and only if there exists a diameter [a, b] G 5 such that 
x G (a, b). 

THEOREM 9. The outwardly simple line family generated by a convex polygon, 
with incidence function N, is the same as the outwardly simple line family 
generated by the polygon H(Nœ). 

From Theorem 9 and the next theorem it follows that any polygonal out
wardly simple line family is the same as one generated by some polygon 
with an odd number of vertices each of which has incidence 00. 

THEOREM 10. The number of points in Nm is odd. 

Proof. From Theorem 9 we can assume all vertices to have incidence 00. 
Now enumerate the points of V counterclockwisely as Vi, . . . , vn and let 
Lk = [vk, vk+i] for k < n and Ln = [vn, Vi]. By Theorem 8 it readily follows 
that for each i there exists a unique kt such that Lki is parallel to a support 
line at vt and, moreover, that Lt and Lt-± are parallel to support lines at 
vki+i and vki respectively. Now letting v2 so correspond to Lk2, the k2 — 1 
vertices v2, . . . , vk2 will correspond to the n — k2 + 2 sides Lk2J . . . , Ln, L\. 
Hence, k2 — \ — n — k + 2 and n = 2k2 — 3. 

THEOREM 11. Let n be the cardinality of Nœ and m = max{& : Nk 9^ 0, k ^ &>}. 
Then 

(i) m is odd and <w; 
(ii) if 0 < k < w, then Nk ^ 0; 

(iii) if k is odd and 1 < k < m} then Nk = GkVJ Fk, where Gk is a non-empty 
open set and Fk is a finite set, which is non-empty if and only if 1 < k < m ; 

(iv) if k is even and 1 < k < m, then Nk consists of finitely many open line 
segments. 

Proof. By Theorem 10 we can assume that V = Nœ. And by Theorem 5 
it follows that m is odd and <w. 

For the proof of (ii), it suffices, according to Theorem 6, to show that 
N2v+\ 9^ 0 implies that N2p 9^ 0. First we shall show that N2p+i 9e 0 implies 
that i\72p+i0 9e- 0. Flence, suppose that we have x Ç N2v+\ — ~N2v+\*. If each 
wedge at x hits exactly p strips, then by the argument in Theorem 5, we 
w7ould have x G N2p+i°. The total number of intersections of wedges with 
strips is 4p2 + 2p. If each wedge hit fewer than p strips, the number of inter
sections would be <2{2p + 1) (p - 1) = 4£2 + 2p - 2. On the other hand, 
if each w êdge hit more than p strips, the number of intersections would be 
>2(2p + l)(p + 1) = 4p2 + 6p + 2. Hence, there exists a wedge hitting 
fewer than p strips and a wedge hitting more than p strips. Therefore, there 
exists a wedge W which hits exactly p strips. Now let 0 be a disk centred 
at x which is disjoint from all [u, v], where x^[u,v] and u, v G V. Then 
clearly 0 C\ W is open and is contained in N2p+i. Hence ¥̂2̂ +1° ^ 0. 

Now pick y G N2p+i°. For each v G F let Tv be the triangle H({v, av, bv}), 
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where avt bv 6 V and [a„, bv] is parallel to a line of support at v. Let {T„ly . . . , 
7%*} be the collection of sets Tv in whose interior y lies. Then clearly 

Q = n r„. 

is a polygon such that <2° £ N2p+i. Moreover, it is not difficult to show that 
Q has the property that if (a, b) C Br (?, then either (a, b) C Ar

2/? H Br A"27?_i 
or (a, J) C iV2p+2 H Br N2p+Z. Now consider the set A = U{Ar

2(7+1 : q > £}, 
which is a union of such polygons as Q above. Let (a, b) Ç B r / 1 . Then by 
the above property we must have (a, b) C JV2p. Hence NoP+i ^ 0 implies 
Af2p * 0. 

For the proof of (iii), let k be odd, and > 1 . (If k = 1, then A\i is easily 
shown to be open.) Let 93Î be the finite collection of diameters of P which 
contain two distinct vertices. Suppose x 6 Nk and {Tn, . . . , 7"?;r(x)} is the 
collection of the sets Tv in whose interior x lies. Let 0 be a disk centred at x 
which misses all diameters in 3JÎ which do not contain x. Now if k — r(x), 
we clearly have that 

/ r(x) \ 
x e0n\Ql

Tvi°)-^ 
so that x € AV. In the case k — r(x) > 1, x must He in two or more members 
of 9JÎ. Hence, there can be only finitely many x for which k — r(x) > 1. In 
the case when k — r(x) = 1, x lies in exactly one [u, v] £ 9W. Then we have 
that 

/ r(x) \ 
0 ^ ° n \ Qi r*v n T u ° n r*° - ^+1' 

which means that Nk+i has positive measure. Hence k — r(x) is never 1 
and we have Nk = GkKJ Fk, where Gk is the open set {x : k = r(x)\ and j ^ 
the finite set {x : k — r(x) > 1}. From the proof of (ii) it follows that each 
Gk is non-empty and Theorem 5 implies that Fm — 0. To show that F,c ^ 0 
for 1 < k < m, consider any p for which 5 < 2p + 1 < m. Let A = ^J{N2q+1: 
g > p\. Then clearly we can find two non-parallel line segments (a, b) and 
(&, c) in Br ^4, which necessarily are contained in Ax

2p. From this it follows 
that b £ 7%-i, which completes the proof of (iii). 

For the proof of (iv) let x £ N2p. If x $ W39Î, then there are distinct tri
angles Tvl, . . . , 7\2p such that 

2P 

If 0 is a disk centred at x which misses \JM, then we have that N.v contains 
the non-empty open set 

On\01
 TlV ' 
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which contradicts the zero-measure of N2p. Hence N2p Q ^JWft. Moreover, by 
employing arguments similar to those above we can show that if x £ N2p, 
then there exists (a, b) such that x Ç (a, b) C Br N2p+i O Br N^p-i C N2p, 
which completes the proof of the theorem. 

With regard to Theorem 11, m is not necessarily the same as n, since one 
can easily construct a polygon where n — 9 and m = 7, where incidentally, 
Ni is not connected. 

One interesting problem is to what extent the incidence properties of 
polygons as exemplified in Theorem 11 can be generalized to more general 
outwardly simple line families. In particular, Theorems 4, 5, and 6 provide 
some answers to this question. 

Finally we have the following result which attests to the "extreme" nature 
of the triangle relative to the incidence of its diameters. 

THEOREM 12 (Eggleston, 1, p. 122). Let N be the incidence function associ
ated with a convex body C. Then, C° C N% if and only if C is a triangle. 

3. Further aspects. It should be noted that outwardly simple line 
families occur in other connections besides the extended diameters of a con
vex body. For example, the family of all lines which divide a given convex 
curve into two equal (in arc length) arcs is an outwardly simple line family. 
Also, all lines which divide a given bounded, open set whose closure is con
nected into two equal (in measure) parts form an outwardly simple line 
family. 

For further aspects of outwardly simple line families, including some possi
bilities for generalizing the notion of an outwardly simple line family to En, 
the reader is referred to Hammer (3), Smith (8), and Sobczyk (9). 

REFERENCES 

1. H. G. Eggleston, Problems in Euclidean space: Application of convexity (New York, 1957). 
2. B. Griinbaum, Measures of symmetry for convex sets, Proc. Symposium on Convex Sets, 

Seattle, 1961. In press. 
3. P. C. Hammer, Diameters of convex bodies, Proc. Amer. Math. Soc, 5 (1954), 304-306. 
4. Convex curves of constant Minkowski breadth, to appear in Amer. Math. Soc. Sym

posium on Pure Math., 1963. 
5. P. C. Hammer and A. Sobczyk, Planar line families I, Proc. Amer. Math. Soc , 4 (1953), 

226-233. 
6. Planar line families II, Proc. Amer. Math. Soc , 4 (1953), 341-349. 
7. B. H. Neumann, On some affine invariants of closed convex regions, J. London Math. Soc , 

U (1939), 262-272. 
8. T. J. Smith, Line families in the plane, Univ. of Wisconsin Thesis, 1961. 
9. A. Sobczyk, Simple line families, P a c J. Math., 6 (1956), 541-552. 

University of California, Santa Barbara 

https://doi.org/10.4153/CJM-1964-001-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1964-001-3

