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Abstract

We prove that, under certain conditions, uniform weak mixing (to zero) of the bounded sequences in
Banach space implies uniform weak mixing of their tensor product. Moreover, we prove that ergodicity
of tensor product of the sequences in Banach space implies their weak mixing. As applications of the
results obtained, we prove that the tensor product of uniquely E-weak mixing C∗-dynamical systems is
also uniquely E-weak mixing.
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1. Introduction

Let X be a Banach space with dual space X∗. In what follows, BX denotes the unit ball
in X, that is, BX = {x ∈ X : ‖x‖ ≤ 1}.

Recall that a sequence {xk} in X is said to be:

(i) weakly mixing to zero if

lim
n→∞

1
n

n∑
k=1

| f (xk)| = 0 for all f ∈ X∗;

(ii) uniformly weakly mixing to zero if

lim
n→∞

sup
{1

n

n∑
k=1

| f (xk)| : f ∈ BX∗

}
= 0;

(iii) weakly ergodic if

lim
n→∞

1
n

∣∣∣∣∣n−1∑
k=0

f (xk)
∣∣∣∣∣ = 0 for all f ∈ X∗;
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(iv) ergodic if

lim
n→∞

1
n

∥∥∥∥∥n−1∑
k=0

xk

∥∥∥∥∥ = 0.

From the definitions one can see that uniform weakly mixing implies weakly mixing,
as well as ergodicity implies weak ergodicity. But the converse is not true.

E 1.1 [20]. Let X = L2([0, 1]) and 1 = n1 < n2 < · · · be a sequence in N such
that

n j − 1

n j+1 − 1
≤

1
2
, j ∈ N

(for example, n1 = 1, n2 = 2 and n j+1 = 2n j − 1 for j ≥ 2). Let

1 > t1 > t2 > · · · > 0, t j→ 0,

be real numbers and g j : [0, 1]→ [0,∞), j ∈ N, be continuous functions such that

supp(g j) ⊂ [t j+1, t j] and ‖g j‖2 = 1

for all j ∈ N.
Put

fk = g j for n j ≤ k ≤ n j+1.

Then ( fk)k≥1 is a bounded sequence in L2([0, 1]), which is weakly convergent to zero,
and so is weakly mixing to zero, but which is not uniformly weakly mixing to zero.

Recall [20] that a sequence {xk} in a Banach space X is called convex shift-bounded
if there exists a constant c > 0 such that∥∥∥∥∥ p∑

j=1

λ jx j+k

∥∥∥∥∥ ≤ c
∥∥∥∥∥ p∑

j=1

λ jx j

∥∥∥∥∥, k ≥ 1,

holds for any p ∈ N and λ1, . . . , λp ≥ 0. One can see that every convex shift-bounded
sequence is bounded.

E 1.2. Let U : X→ X be a power bounded linear operator (that is, the sequence
{‖Uk‖} is bounded). Take x ∈ X; then the sequence {Uk(x)} is convex shift-bounded.

The following theorem (see [20]) characterizes weak mixing to zero which is a
counterpart of the Blum–Hanson theorem [6, 11].

T 1.3. For a convex shift-bounded sequence {xk} in a Banach space X the
following conditions are equivalent:

(i) {xk} is weakly mixing to zero;
(ii) {xk} is uniformly weakly mixing to zero.

There is also a characterization of uniformly weak mixing to zero by mean ergodic
convergence.
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T 1.4. For a bounded sequence {xk} in a Banach space X the following
conditions are equivalent:

(i) {xk} is uniformly weakly mixing (respectively, weakly mixing) to zero;
(ii) for every sequence k1 < k2 < · · · in N with supn∈N kn/n < +∞, the sequence {xkn}

is ergodic (respectively, weakly ergodic).

From this theorem we conclude that weakly ergodicity also does not imply
ergodicity.

In the papers mentioned above and others related to them (see [5, 7, 11, 12]), the
tensor product of sequences which obey mixing and ergodicity was not considered.
Section 2 of this paper is devoted to the extension of the well-known classical results,
stating that a transformation is weakly mixing if and only if its Cartesian square is
ergodic [1], for the tensor product of sequences in Banach spaces. In Section 3 we
provide some applications of the results obtained to uniquely E-ergodic, uniquely
E-weak mixing C∗-dynamical systems. Note that such dynamical systems were
investigated in [2, 9, 10, 15, 16].

2. Weak mixing vector sequences

Let X, Y be two Banach spaces with dual spaces X∗ and Y∗, respectively.
Completion of the algebraic tensor product X � Y with respect to a cross-norm α
is denoted by X ⊗α Y . By α∗ we denote the conjugate cross-norm to α defined on
X∗ � Y∗.

For the dual Banach spaces X∗ and Y∗, denote

BX∗ � BY∗ =

{ n∑
k=1

λk xk ⊗ yk

∣∣∣∣∣ {xk}
n
k=1 ⊂ BX∗ , {yk}

n
k=1 ⊂ BY∗ , λk ≥ 0,

n∑
k=1

λk ≤ 1, n ∈ N
}
.

Denote by BX∗ ⊗α∗ BY∗ the closure of BX∗ � BY∗ with respect to conjugate cross-
norm α∗. One can see that BX∗ ⊗α∗ BY∗ ⊂ B(X⊗αY)∗ . In what follows we consider the
following two conditions:

(I) BX∗ ⊗α∗ BY∗ = B(X⊗αY)∗ ;
(II) X∗ ⊗α∗ Y∗ = (X ⊗α Y)∗.

One has the following result.

P 2.1. Let X and Y be Banach spaces with a cross-norm α such that property
(I) holds. Then (II) is satisfied.

P. Assume that (I) is satisfied. Now let us take an arbitrary f ∈ (X ⊗α Y)∗, and
show that it can be approximated by elements of X∗ ⊗α∗ Y∗. Indeed, denote g = f /‖ f ‖.
Then g ∈ B(X⊗αY)∗ . Due to (I) we conclude that g ∈ X∗ ⊗α∗ Y∗. Hence, f = ‖ f ‖g belongs
to X∗ ⊗α∗ Y∗. �

In what follows, for given r > 0 and a ∈ X, denote

Br,X(a) = {x ∈ X : ‖x − a‖ ≤ r}.
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P 2.2. Let X and Y be Banach spaces with a cross-norm α. Then property (I)
is satisfied if and only if there exist a number r, 0 < r ≤ 1, and an element y ∈ X∗ ⊗α∗ Y∗

such that
Br,(X⊗αY)∗(y) ⊂ BX∗ ⊗α∗ BY∗ . (2.1)

P. It is evident that (I) implies the last property, since it is satisfied with r = 1
and y = 0. We now prove the reverse implication. To this end, assume that there
exist r0 > 0 and an element y0 ∈ X∗ ⊗α∗ Y∗ such that (2.1) holds. We readily see that
y0 ∈ BX∗ ⊗α∗ BY∗ . To prove the statement, it is enough to establish that B(X⊗αY)∗ ⊂

BX∗ ⊗α∗ BY∗ . Take any x ∈ B(X⊗αY)∗ . Consider an element z = y0 + r0x, which clearly
belongs to Br0,(X⊗αY)∗ . Due to the assumption, we conclude that z ∈ BX∗ ⊗α∗ BY∗ .
Therefore x = (z − y0)/r0 belongs to BX∗ ⊗α∗ BY∗ . �

E 2.3. Let us give some more examples which satisfy conditions (I) and (II).

(i) Let 1 < p, q <∞, with conjugate indices p′, q′ (that is, p′ = p/(p − 1)). Consider
`p, `q. Then for the projective norm π one has (`p ⊗π `q)∗ = `p′ ⊗π∗ `q′ if and only
if p > q′ (see [17, Corollary 4.24, Theorem 4.21]).

(ii) We give here a sufficient condition to satisfy (II). The proof can be found in [17,
Theorem 5.33]. Let X and Y be Banach spaces such that X∗ has the Radon–
Nikodym property and either X∗ or Y∗ has the approximation property. Then

(X ⊗ε Y)∗ = X∗ ⊗π Y∗;

here ε and π are the injective and the projective norms, respectively.

Note that more examples can be found in [17].

T 2.4. Let X and Y be two Banach spaces with a cross-norm α such that
property (I) is satisfied. Let {xk} be a bounded sequence in X. Then the following
assertions are equivalent:

(i) for any bounded sequence {yk} in Y, the sequence {xk ⊗ yk} in X ⊗α Y is uniformly
weakly mixing to zero;

(ii) {xk} is uniformly weakly mixing to zero.

P. (i) ⇒ (ii). Let us take any nonzero element y ∈ Y . Define a sequence {yk} by
yk = y for all k ∈ N. For this sequence, due to condition (i), we have

lim
n→∞

sup
{1

n

n∑
k=1

| f (xk ⊗ y)| : f ∈ B(X⊗αY)∗

}
= 0. (2.2)

Now take f = g ⊗ h with g ∈ BX∗ and h ∈ BY∗ , h(y) , 0. Then, from (2.2), one gets

lim
n→∞

(
sup

g∈BX∗

{1
n

n∑
k=1

|g(xk)|
})
|h(y)| = 0,

which implies the assertion.
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(ii)⇒ (i). Let {yk} be an arbitrary bounded sequence in Y , and f ∈ BX∗ , g ∈ BY∗ be
any functionals. Then the Schwarz inequality yields

1
n

n∑
k=1

| f (xk)g(yk)| ≤

√√
1
n

n∑
k=1

| f (xk)|2

√√
1
n

n∑
k=1

|g(yk)|2

≤ max
k
{‖yk‖}‖g‖

√√
1
n

n∑
k=1

| f (xk)|2.

(2.3)

Moreover,

sup
f∈BX∗

{1
n

n∑
k=1

| f (xk)|2
}
≤max{‖xk‖} sup

f∈BX∗

{1
n

n∑
k=1

| f (xk)|
}
→ 0

as n→∞. Therefore, (2.3) implies that

lim
n→∞

sup
f∈BX∗

g∈BY∗

{1
n

n∑
k=1

| f ⊗ g(xk ⊗ yk)|
}

= 0. (2.4)

Hence, using the norm-denseness of the elements
∑m

k=1 λk fk ⊗ gk, { fk} ⊂ BX∗ , {gk} ⊂

BY∗ (where λk ≥ 0,
∑n

k=1 λk ≤ 1 ) in BX∗ ⊗α∗ BY∗ , from (2.4) one gets

lim
n→∞

sup
ϕ∈BX∗⊗α∗BY∗

{1
n

n∑
k=1

|ϕ(xk ⊗ yk)|
}

= 0. (2.5)

Thanks to property (I) one has

sup
f∈B(X⊗αY)∗

{1
n

n−1∑
k=0

| f (xk ⊗ yk)|
}

= sup
w∈BX∗⊗α∗BY∗

{1
n

n−1∑
k=0

|w(xk ⊗ yk)|
}
.

Consequently, (2.5) yields the required statement. �

R 2.5. From the proof of Theorem 2.4 one can see that the implication (i)⇒ (ii)
is still valid without property (I).

Using the same argument as in the proof above, we get the following theorem.

T 2.6. Let X and Y be two Banach spaces with a cross-norm α such that
property (II) is satisfied. Let {xk} be a bounded sequence in X. Then the following
assertions are equivalent:

(i) for any bounded sequence {yk} in Y, the sequence {xk ⊗ yk} in X ⊗α Y is weakly
mixing to zero;

(ii) {xk} is weakly mixing to zero.
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P 2.7. Let X be a Banach space and {xk} be a bounded sequence in X such
that the sequence {xk ⊗ xk} is ergodic in X ⊗α X. Then {xk} is uniformly weakly mixing
to zero.

P. Ergodicity of the the sequence {xk ⊗ xk} means that

lim
n→∞

1
n

∥∥∥∥∥ n∑
k=1

xk ⊗ xk

∥∥∥∥∥ = 0. (2.6)

Due to the equality

sup
f∈B(X⊗αY)∗

∣∣∣∣∣f(1
n

n−1∑
k=0

xk ⊗ xk

)∣∣∣∣∣ =
1
n

∥∥∥∥∥ n∑
k=1

xk ⊗ xk

∥∥∥∥∥,
one finds that

sup
f∈BX∗

{1
n

∣∣∣∣∣ f ⊗ f
(n−1∑

k=0

xk ⊗ xk

)∣∣∣∣∣} ≤ 1
n

∥∥∥∥∥ n∑
k=1

xk ⊗ xk

∥∥∥∥∥. (2.7)

On the other hand,

sup
f∈BX∗

{1
n

∣∣∣∣∣ f ⊗ f
(n−1∑

k=0

xk ⊗ xk

)∣∣∣∣∣} = sup
f∈BX∗

{1
n

∣∣∣∣∣n−1∑
k=0

f ⊗ f (xk ⊗ xk)
∣∣∣∣∣}

= sup
f∈BX∗

{1
n

n−1∑
k=0

| f (xk)|2
}
,

which with (2.6), (2.7) yields

lim
n→∞

sup
f∈BX∗

{1
n

n−1∑
k=0

| f (xk)|2
}

= 0.

Hence, the Schwarz inequality implies that

sup
f∈BX∗

{1
n

n−1∑
k=0

| f (xk)|
}
≤

√√√
sup
f∈BX∗

{1
n

n−1∑
k=0

| f (xk)|2
}
.

Therefore, we find that {xk} is uniformly weakly mixing to zero. �

Similarly, one can prove the following proposition.

P 2.8. Let X be a Banach space and {xk} be a bounded sequence in X such
that the sequence {xk ⊗ xk} is weakly ergodic in X ⊗α X. Then {xk} is weakly mixing to
zero.

T 2.9. Let X be a Banach space with a cross-norm α on X � X such that
condition (I) is satisfied with Y = X. Let {xk} be a be bounded sequence in X. Then the
following assertions are equivalent:
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(i) the sequence {xk ⊗ xk} is ergodic in X ⊗α X;
(ii) the sequence {xk ⊗ xk} is uniformly weakly mixing to zero in X ⊗α X;
(iii) {xk} is uniformly weakly mixing to zero.

P. The implication (i) ⇒ (iii) immediately follows from Proposition 2.7. The
implication (iii) ⇒ (ii) follows from Theorem 2.4. The implication (ii) ⇒ (i) is
evident. �

Using the same argument as above in the proof of Theorem 2.6, one gets the
following theorem.

T 2.10. Let X be a Banach space with a cross-norm α on X � X such that
condition (II) is satisfied with Y = X. Let {xk} be a bounded sequence in X. Then the
following assertions are equivalent:

(i) the sequence {xk ⊗ xk} is weakly ergodic in X ⊗α X;
(ii) the sequence {xk ⊗ xk} is weakly mixing to zero in X ⊗α X;
(iii) {xk} is weakly mixing to zero.

T 2.11. Let X and Y be two Banach spaces with a cross-norm α on X � Y such
that condition (I) (respectively, (II)) is satisfied. Let {xk} be a bounded sequence in X.
The following assertions are equivalent:

(i) for any bounded sequence {yk} in Y, the sequence {xk ⊗ yk} in X ⊗α Y is ergodic
(respectively, weakly ergodic);

(ii) {xk} is uniformly weakly mixing (respectively, weakly mixing) to zero.

P. (i) ⇒ (ii). Let us take any nonzero element y ∈ Y . Define a sequence {yk} by
yk = y for all k ∈ N. For this sequence, due to condition (i), we have

lim
n→∞

∥∥∥∥∥1
n

n∑
k=1

xk ⊗ y
∥∥∥∥∥ = lim

n→∞

∥∥∥∥∥1
n

n∑
k=1

xk

∥∥∥∥∥‖y‖ = 0, (2.8)

which means that {xk} is ergodic. The condition yields that {xk ⊗ xk} is ergodic, hence
Theorem 2.9 implies that {xk} is uniformly weakly mixing to zero.

(ii)⇒ (i). Using Theorem 2.4, we find that {xk ⊗ yk} is uniformly weakly mixing to
zero, for every bounded sequence {yk} in Y . Hence, it is ergodic. �

3. Applications to C∗-dynamical systems

In this section Awill be a C∗-algebra with the unity 1. Recall that a linear functional
ϕ ∈ A∗ is called positive if ϕ(x∗x) ≥ 0 for every x ∈ A. A positive functional ϕ is said
to be a state if ϕ(1) = 1. We denote by S(A) the set of all states in A. A linear operator
T : A→ A is called positive if T x ≥ 0 whenever x ≥ 0. We denote by Mn(A) the set
of all n × n matrices a = (ai j) with entries ai j in A. A linear mapping T : A→ A is
called completely positive if the linear operator Tn : Mn(A)→ Mn(A) given by Tn(ai j) =

(T (ai j)) is positive for all n ∈ N. A completely positive map T : A→ A with T1 = 1 is
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called a unital completely positive map. A pair (A, T ) consisting of a C∗-algebra A and
a unital completely positive map T : A→ A is called a C∗-dynamical system (see [18]).
Let B be another C∗-algebra with unit. A completion of the algebraic tensor product
A �B with respect to the minimal C∗-tensor norm on A �B is denoted by A ⊗B, and
it would also be a C∗-algebra with a unit (see [18]). It is known [18] that if (A, T ) and
(B, H) are two C∗-dynamical systems, then (A ⊗B, T ⊗ H) is also a C∗-dynamical
system, since a mapping T ⊗ H : A ⊗B→ A ⊗B given by (T ⊗ H)(x ⊗ y) = T x ⊗ Hy
is a unital completely positive map.

Let (A, T ) be a C∗-dynamical system, and B be a subspace of A. Let E : A→B be
a norm-one projection, that is E2 = E. In [8] (see also [3, 9, 16]) the following notation
is introduced.

D 3.1. A C∗ dynamical system (A, T ) is said to be:

(i) unique E-ergodic if

lim
n→∞

1
n

n∑
k=1

ϕ(T k(x)) = ϕ(E(x)), x ∈ A, ϕ ∈ S(A);

(ii) unique E-weakly mixing if

lim
n→∞

1
n

n−1∑
k=0

|ϕ(T k(x)) − ϕ(E(x))| = 0, x ∈ A, ϕ ∈ S(A).

It can readily be seen (in [3, 9]) that the map E is a norm-one projection onto the
fixed point subspace AT = {x ∈ A : T x = x}. Therefore, in what follows we denote it by
ET . In [2] (see also [3]), (i) is called unique ergodicity with respect to the fixed point
subalgebra, whereas, in [9], (ii) is called E-strictly weak mixing. In addition, when
E = ω(·)1 (that is, when there is a unique invariant state for T ), (i) is the well-known
unique ergodicity, and (ii) is called strict (unique) weak mixing [16]. Note that in [4]
relations between unique ergodicity, minimality and weak mixing were studied.

By using the Jordan decomposition of bounded linear functionals (see [18]), one
can replace S(A) with A∗ in Definition 3.1.

Note that in [9, 15] it has been shown that the free shift on the reduced amalgamated
free product C∗-algebra, and length-preserving automorphisms of the reduced C∗-
algebra of the RD-group for the length function, including the free shift on the free
group on infinitely many generators, enjoy a unique E-mixing property. Such a class
of dynamical systems was defined and studied for the first time in [2]. Note that in [10]
other more complicated unique E-ergodic and unique mixing C∗-dynamical systems
arising from free probability are studied. Note that in [7] sufficient and necessary
conditions for ergodicity in terms of joinings are studied.

In this section we apply the results of the previous section to these concepts.

T 3.2. Let (A, T ), (B, H) be two C∗-dynamical systems, and assume that
(A ⊗B)∗ = A∗ ⊗B∗ is satisfied. Then the following assertions are equivalent:
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(i) the C∗-dynamical system (A ⊗B, T ⊗ H) is unique ET⊗H-weak mixing;
(ii) (A, T ) and (B, H) are unique ET -weak mixing and EH-weak mixing, respectively.

P. (i) ⇒ (ii). According to the condition for all arbitrary functionals ψ ∈ A∗ and
φ ∈ S(B),

0 = lim
n→∞

1
n

n−1∑
k=0

|ψ ⊗ φ(T k ⊗ Hk(x ⊗ 1)) − ψ ⊗ φ(ET⊗H(x ⊗ 1))|

= lim
n→∞

1
n

n−1∑
k=0

|ψ(T k(x)) − ψ ⊗ φ(ET⊗H(x ⊗ 1))|.

(3.1)

Hence

lim
n→∞

1
n

n−1∑
k=0

T k(x)

converges weakly, and we denote its limit by ET . Consequently, from (3.1) one finds
that ET⊗H(· ⊗ 1) = ET (·). Moreover, (A, T ) is unique ET -weak mixing. Similarly, we
get unique EH-weak mixing of (B, H).

Let us consider the implication (ii)⇒(i). Let x ∈ A and y ∈B. Define two sequences

xk = T k(x) − ET (x), yk = Hk(y) − EH(y), k ∈ N. (3.2)

Then one can see that the sequences are weakly mixing. Hence, Theorem 2.6 implies
that the sequence {xk ⊗ yk} is weakly mixing as well. This means that for every
ω ∈ (A ⊗B)∗,

lim
n→∞

1
n

n∑
k=1

|ω(T k(x) ⊗ Hk(y)) − ω(T k(x) ⊗ EH(y))

− ω(ET (x) ⊗ Hk(y)) + ω(ET (x) ⊗ EH(y))| = 0.

(3.3)

Now define two functionals ω1 and ω2 on A and B, respectively, as follows:

ω1(·) = ω(· ⊗ EH(y)), ω2(·) = ω(ET (x) ⊗ ·); (3.4)

here ET (x) and EH(y) are fixed. Then, according to the weak mixing condition
(see (ii)),

lim
n→∞

1
n

n∑
k=1

|ω1(T k(x)) − ω1(ET (x))| = 0, (3.5)

lim
n→∞

1
n

n∑
k=1

|ω2(Hk(y)) − ω2(EH(y))| = 0. (3.6)
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Relations (3.5) and (3.6), together with (3.4), mean that

lim
n→∞

1
n

n∑
k=1

|ω(T k(x) ⊗ EH(y)) − ω(ET (x) ⊗ EH(y))| = 0, (3.7)

lim
n→∞

1
n

n∑
k=1

|ω(ET (x) ⊗ Hk(y)) − ω(ET (x) ⊗ EH(y))| = 0. (3.8)

The inequality

|ω(T k ⊗ Hk(x ⊗ y)) − ω(ET (x) ⊗ EH(y))|

≤ |ω(T k(x) ⊗ Hk(y)) − ω(T k(x) ⊗ EH(y))

− ω(ET (x) ⊗ Hk(y)) + ω(ET (x) ⊗ EH(y))|

+ |ω(T k(x) ⊗ EH(y)) − ω(ET (x) ⊗ EH(y))|

+ |ω(ET (x) ⊗ Hk(y)) − ω(ET (x) ⊗ EH(y))|,

together with (3.3), (3.7) and (3.8), implies that

lim
n→∞

1
n

n∑
k=1

|ω(T k ⊗ Hk(x ⊗ y)) − ω(ET ⊗ EH(x ⊗ y))| = 0. (3.9)

The norm-denseness of the elements
∑m

i=1 xi ⊗ yi in A ⊗B with (3.9) yields

lim
n→∞

1
n

n∑
k=1

|ω(T k ⊗ Hk(z)) − ω(ET ⊗ EH(z))| = 0,

for arbitrary z ∈ A ⊗B. So, (A ⊗B, T ⊗ H) is unique ET ⊗ EH-weak mixing. �

C 3.3. Let (A, T ) and (B, H) be unique ET -weak mixing and EH-weak
mixing, respectively. Then one has ET⊗H = ET ⊗ EH .

R 3.4. Note that in [13, 19] certain spectral conditions of tensor products of
dynamical systems defined on von Neumann algebras were studied. We have to stress
that in those papers, dynamical systems have faithful normal invariant states. For such
weak mixing dynamical systems the condition ET⊗H = ET ⊗ EH is proved as well.

E 3.5. Now let us provide an example of a C∗-dynamical system which does
not have any invariant faithful state, but where ET⊗H = ET ⊗ EH .

Let A = C2 and B = C3 and

T =

(
1
2

1
2

0 1

)
, H =

1 0 0
0 1 0
0 1

2
1
2

 .

https://doi.org/10.1017/S0004972711002772 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711002772


56 F. Mukhamedov [11]

It is clear that

A
T = {(x, x) : x ∈ C},

B
H = {(x, y, y) : x, y ∈ C}.

One can check that all invariant states for H have the form

(p, q, 0), p, q ≥ 0, p + q = 1,

which is not faithful.
Direct calculations show that

lim
n→∞

T n(x, y) = ET (x, y), lim
n→∞

Hn(x, y, z) = EH(x, y, z),

which mean that T and H are unique ET -weak mixing and EH-weak mixing,
respectively. Here

ET (x, y) = (y, y), EH(x, y, z) = (x, y, y).

Now let us calculate (A ⊗B)T⊗H . To do so, one can see that

T ⊗ H =
1
2

(
H H
0 2H

)
.

Denote x = (x1, x2, x3), y = (y1, y2, y3). Then from T ⊗ H(x, y) = (x, y) we find that

1
2 H(x + y) = x, Hy = y.

Simple algebra shows that x = y. Consequently,

(A ⊗B)T⊗H = {(x1, x2, x2, x1, x2, x2) : x1, x2 ∈ C},

which yields that (A ⊗B)T⊗H = AT ⊗BH . This implies that ET⊗H = ET ⊗ EH .
Moreover, by the same argument we may show that the equality EH⊗H = EH ⊗ EH

holds as well.

R 3.6. The theorem proved above extends some results of [14, 15]. We note that
in [4, 13, 19] similar results were proved for weak mixing dynamical systems defined
over von Neumann algebras.

Note that some examples of C∗-algebras which satisfy the condition (A ⊗B)∗ =

A∗ ⊗B∗ can be found in [15] (see also [17]).

T 3.7. Let (A, T ) be a C∗-dynamical system. Then for the following assertions:

(i) (A, T ) is unique ET -weak mixing;
(ii) for every (B, H)-unique EH-ergodic C∗-dynamical system with ET⊗H = ET ⊗ EH

and A∗ ⊗B∗ = (A ⊗B)∗, the C∗-dynamical system (A ⊗B, T ⊗ H) is unique
ET ⊗ EH-ergodic;

the implication (i)⇒ (ii) holds true.
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P. Let (B, H) be a C∗-dynamical system as in (ii). Now take arbitrary elements
x ∈ A and y ∈B, and consider the corresponding sequences {xk} and {yk} given by (3.2).
Then, due to the condition, {xk} is weak mixing and {yk} is weak ergodic. Hence,
Theorem 2.11 yields that {xk ⊗ yk} is weak ergodic, which means that, for every
ω ∈ (A ⊗B)∗,

lim
n→∞

1
n

n∑
k=1

(ω(T k(x) ⊗ Hk(y)) − ω(T k(x) ⊗ EH(y))

− ω(ET (x) ⊗ Hk(y)) + ω(ET (x) ⊗ EH(y))) = 0.

(3.10)

Using similar arguments as in the proof of Theorem 3.2, we find that

lim
n→∞

1
n

n∑
k=1

|ω(T k(x) ⊗ EH(y)) − ω(ET (x) ⊗ EH(y))| = 0, (3.11)

lim
n→∞

1
n

n∑
k=1

(ω(ET (x) ⊗ Hk(y)) − ω(ET (x) ⊗ EH(y))) = 0. (3.12)

From ∣∣∣∣∣1n
n∑

k=1

(ω(T k ⊗ Hk(x ⊗ y)) − ω(ET (x) ⊗ EH(y)))
∣∣∣∣∣

≤

∣∣∣∣∣1n
n∑

k=1

(ω(T k(x) ⊗ Hk(y)) − ω(T k(x) ⊗ EH(y))

− ω(ET (x) ⊗ Hk(y)) + ω(ET (x) ⊗ EH(y)))
∣∣∣∣∣

+
1
n

n∑
k=1

|ω(T k(x) ⊗ EH(y)) − ω(ET (x) ⊗ EH(y))|

+

∣∣∣∣∣1n
n∑

k=1

(ω(ET (x) ⊗ Hk(y)) − ω(ET (x) ⊗ EH(y)))
∣∣∣∣∣

and using (3.10)–(3.12), we obtain

lim
n→∞

1
n

n∑
k=1

(ω(T k ⊗ Hk(x ⊗ y)) − ω(ET ⊗ EH(x ⊗ y))) = 0.

Finally, the density argument shows that (A ⊗B, T ⊗ H) is unique ET ⊗ EH-
ergodic. �

R 3.8. We note that all the results of this section extend the results of [14, 15]
to uniquely E-ergodic and uniquely E-weak mixing dynamical systems.

R 3.9. We have to stress that the unique ergodicity of T ⊗ H does not imply
unique weak mixing of T . Indeed, let us consider the following examples.
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E 3.10. Let A = C2 and

T =

(
0 1
1 0

)
.

It is clear that AT = C1, so T is ergodic, that is,

lim
n→∞

1
n

n∑
k=1

T k(x, y) =
x + y

2
(1, 1), x, y ∈ C.

From the equality ∣∣∣∣∣T k(x, y) −
x + y

2
(1, 1)

∣∣∣∣∣ =

∣∣∣∣∣ x − y
2

∣∣∣∣∣,
we infer that T is not unique weak mixing.

On the other hand, the equality

(A ⊗ A)T⊗T = {(x, y, y, x) : x, y ∈ C}

implies unique ET⊗T -ergodicity of T ⊗ T .

E 3.11. Let A = C3 and B = C2. Consider the a mapping P : A→ A given by

P(x, y, z) = (y, x, uy + vz), (3.13)

where u, v > 0 and u + v = 1. It is clear that P is positive and unital. Direct calculations
show that AP = C1, which means that P is uniquely ergodic.

Now consider the mapping P ⊗ T , where T is defined as above. One can see that
such a mapping acts as follows:

P ⊗ T (x, y) = (Py, Px)

where x, y ∈ A. Hence, we find that

(A ⊗B)P⊗T = {(x, Px) : x ∈ AP2
}.

Therefore, from (3.13) one immediately gets

P2(x, y, z) = (x, y, ux + uvy + v2z).

Thus, we find that

A
P2

=

{(
x, y,

x + vy
1 + v

)
: x, y ∈ C

}
.

On the other hand, we have AP ⊗BT = C1, so that (A ⊗B)P⊗T , AP ⊗BT .
Similarly, reasoning as in Example 3.10 we can show that P ⊗ T is uniquely EP⊗T -

ergodic.
Note that, from these examples, we infer the importance of the condition ET⊗H =

ET ⊗ EH .
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