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UNICITY THEOREMS FOR MEROMORPHIC
OR ENTIRE FUNCTIONS III

Hong-XUN Y1

This paper studies the unique range set of meromorphic functions and shows that
the set § = {w ] w'® + w'* +1 = 0} is unique range set of meromorphic functions
with 13 elements.

1. INTRODUCTION

By a meromorphic function we shall always mean a meromorphic function in the
complex plane. We use the usual notations of Nevanlinna theory of meromorphic func-
tions as explained in [4]. We use E to denote any set of positive real numbers of finite
linear measure, not necessarily the same at each occurrence. We denote by S(r, f) any
quantity satisfying S(r, f) = o(T(r, f)) (r - o0, r ¢ E).

Let f be a nonconstant meromorphic function and let S be a subset of distinct

elements in the complex plane. Define

Ey(8)= U {z17(z) —a=0},

a€S

where each zero of f(z) — a with multiplicity m is repeated m times in Eg(S) (see
(1]).

In 1976, Gross [2] proved that there exist three finite sets S; (j =1, 2, 3) such
that any two entire functions f and g satisfying E¢(S;) = E4(S;) for j =1, 2, 3 must
be identical, and asked the following question (see (2, Question 6)):

QUESTION 1. Can one find two (or possible even one) finite sets S; (j =1, 2) such
that any two nonconstant entire functions f and g satisfying Ez(S;) = E4(S;) for
7 =1, 2 must be identical?

Now it is natrual to ask the following question:
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QUESTION 2. Car one find two (or possible even one) finite sets S; (5 =1, 2) such
that any two nonconstant meromorphic functions f and g satisfying E;(S;) = E4(S;)
for 7 = 1, 2 must be identical? ‘

Recently, the present author proved the following results which provide positive
answers to Question 1.

THEOREM A. (See [7, Theorem 3].) Let §; = {w | w™ —1 =0}, S; = {a, b},
where n > 6 is a positive integer, a and b are constants such that ab # 0, a™ # b*,
a?™ #£ 1, b2" #£ 1 and a™b™ # 1. Suppose that f and g are nonconstant entire functions
satisfying E¢(S;) = E;(S;) for j=1,2. Then f=g.

THEOREM B. (See [8, Theorem 1].) Let § = {w | w™ + aw™ ™ + b = 0}, where
n and m are two positive integers such that n and m have no common factors and
n 2 2m + 5, a and b are two nonzero constants such that the algebraic equation

w™ -+ aw™ ™ +b = 0 has no multiple roots. If f and g are nonconstant entire functions
satisfying Ef(S) = E4(S), then f=g.

Recently, the present author proved the following result which is a partial answer
of Question 2.

THEOREM C. (See (8, Theorem 2].) Let S = {w | w™ + aw™ ™ + b = 0}, where
n and m are two positive integers such that m > 2, n 2 2m + 7 with n and m having
no common factors, a and b are two nonzero constants such that the algebraic equation
w™ + aw™ ™ + b = 0 has no multiple roots. Suppose that f and g are nonconstant
meromorphic functions satisfying E;(S) = E4(S) and Ef({oco}) = Eg4({o0}). Then
f=g.

The set S such that for any two nonconstant meromorphic functions f and g the
condition Ef(S) = E4(S) implies f = g is called a unique range set (URS in brief)
of meromorphic functions. A similar definition for entire functions can be glven From
Theorem B we immediately obtain the following result.

THEOREM B'. Let S be defined as in Theorem B. Then S is a URS of entire
functions.

As a special case of Theorem B', we deduce that the set § = {w | w"+w®+1 = 0}
in a URS of entire functions with 7 elements. In this paper, we shall exhibit a URS of
meromorphic functions with 13 elements. In fact, we prove more generally the following
theorem, which provides a positive answer to Question 2.

THEOREM 1. Let § = {w | w™ + aw™ ™ + b = 0}, where n and m are two
positive integers such that n and m have no common factors, m > 2 and n > 2m + 8,
a and b are two nonzero constants such that the algebraic equation w™+aew™ ™ +b=10
has no multiple roots. Then S is a URS of meromorphic functions.
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From Theorem 1 we immediately obtain that the set § = {w | w!® +w!! +1 =0}
provides a URS of meromorphic functions with 13 elements, which provides a positive
answer to Question 2.

2. SOME LEMMAS

LEMMA 1. (See(5].) Let f be a nonconstant meromorphic function, and let P(f)
be a polynomial in f of the form

P(fy=aof"+arf" ' +...+ ansf + an,
where ag (#0), a1, ..., a, are constants. Then
I(r, P(f)) =nT(r, )+ 8(r, 1)

In order to state the second lemma, we introduce the following notation.

Let F be a meromorphic function. We denote by ni(r, 1/(F —a)) the num-
ber of simple a-points of F in |z] < r. Ni(r,1/(F —a)) is defined in terms of
ni(r, 1/(F — a)) in the usual way (see [6]).

Let F and G be two nonconstant meromorphic functions. If F and G have the
same a-points with the same multiplicities, we say F' and G share the value a CM (see

(3])-

LEMMA 2. Let
FII 2FI GII 2Gl
) 7= (F-71) - (& -a23)

where F and G are two nonconstant meromorphic functions. If F and G share 1 CM,

and H #£0, then
1 1
—— 1} £ — .
Nl('r,F_l)\N<r, H)

PROOF: Suppose that z¢ 1s a simple 1-point of F. Let
F(z)=1+ai(z — z9) + az(z — zo)2 + O((z — zo)s),
G(z) =1+ by(z — 20) + ba(z — 20)* + 0((2 - 20)3),
where a; # 0 and b; # 0. Then an elementary calculation gives that
H(z) = O(z — 2q),

which proves that zy is a zero of H. Thus,

W 5ty) <n(n ). !
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3. ProOF oF THEOREM 1

Suppose that f and g are two nonconstant meromorphic functions satisfying
Ef(S) = E4(S). We proceed to prove f = g.

Let
1 —m m 1 n—m m

(2) F=—pf""(f"+a) and G=-1¢"""(¢" +a)
From Lemma 1, we have
(3) T(T, F) = nT(T) f) + S("" f)
and
(4) T(r, G) = nI(r, g) + S(r, 9)-
Let

T(r) = max{T(», f), T(r, 9)}
and

S(r) =o(T(r)) (r— o0, r ¢ E).

Noting § = {w | w™ + aw™ ™ + b = 0}, from E¢(S) = E4(S) we get that F and G
share the value 1 CM.
Let H be given by (1). If H #0, from Lemma 2 we have

(5) Ny ('r, F—l—) < N(r, %) < T(r, H) + O(1).
From (1) we obtain
6) m(r, H) = S(r).

From (2) we have

(7) = —Lpomiagm s ofn - m)f
and
(8) G = —%g"—""l(ng"‘ +a(n —m))g'.
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Since F and G share 1 CM, from (1), (7) and (8),
(9)

N(r, H) < N(r, f) + N(r, g)+N(r, %) +_1\7(1‘, m) + No (1‘, %)

(e 3) 7 ) (0 7)
< (m + 2)T(r, f) + (m +2)T(r, g) + No (1', 3‘_’> + N (1‘, %) +0(1),

where No(r, 1/f') denotes the counting function corresponding to the zeros of f' that
are not zeros of f and F —1, Ng(r, 1/g') denotes the counting function corresponding
to the zeros of g' that are not zeros of ¢ and G — 1. It follows from (5), (6) and (9)
that

(10) N, (r, Fi 1) < (m+2)T(r, f)+(m +2)T(r, g)

+ Ny (1‘, %) + No (1', ;1—,) + S(r).

Suppose that w,, w,, ..., w, are the distinct roots of the equation w™ + aw™ ™ +
b=0. From (2) we have

(11) Fol==3(f = wi)(f —wa)...(f — wn)
and
(12) G——l=-%(g—wl)(g—’lDﬁ...(g-—wn).

By the second fundamental theorem, we deduce

)—No (r, fl) + S(r)
og)eo

(13)

o000 1 <N D+ T (1 1) + 7
<2T(r, f) + W( )

In the same manner as above, we have

(14) nT(r, g) < 2T(r, g) + W(r, = 1_ 1) ~ N, (r, %) + S(r).
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It is obvious that
(15) M(r, =)+ ¥ LI PP
"F_1 "e-1)” T’F 1

)
1) (o)
=)
F=1)

+ T(r, F) 4+ O(1)

N
=
N
'13

"1
|..a

+nT(r, f) + S(r)

I
=
N
=

"3

-1

and

(16) W(r, F—l_—l) +’A_f(r, G—l_—1> <N (r, —ITT) +nT(r, g) + S{r).

From (10), (13), (14) and (15) we obtain

=

nT(r, g) < (m + 4)T(r, f) + (m + 4)T(r, g) + S(r).
From (10), (13), (14) and (16) we obtain
nT(r, f) < (m + 4)T(r, f) + (m + 4)T(r, g) + S(r).
Thus,
(17) nT(r) < (m +4)T(r, f)+ (m + 4)T(r, g) + S(r)
< (2m + 8)T(r) + S(r).

Since n > 2m + 8, (17) is a contradiction. From this we derive H = 0. By integration
we have from (1),
1 A
=2 4B
G-1 F-1"7

where A (# 0) and B are constants. Thus,
(B+1)F+(A—B-1)

(18) C="—Br+(-B
From (18),

T(r, G) =T(r, F)+ O(1)
and
(19) T(r) = T(r, f) + S(r, f).
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From (2) we have

(20) N(r, F) = N(r, f) < T(r),
(21) N(r, G) = N(r, g) < T(r),
(22) ﬁcy—> _( ! +N( a)g@n+nﬂﬂ+OOL

(23) W(r é) - ﬁ(r, ;) + N(r, gm1+ a) < (m + 1)T(r) + O(1).
We discuss the following three cases.

CASE 1. Suppose that B # 0, —
If A— B—-1#0, from (18) we have

— 1 — 1
w(r, — L -_—N(r, _>.
( F+A3511> G

From this and the second fundamental theorem, we have

= - 1 R 1
T(T,F)(N(T,F)+N(T, F>+N<T, F!_*_—A-—B——l> +S(7‘,F)

B+1
= N(r, F) + W(r, %) + W-(r, é) + S(r, F).
Combining this with (3), (19), (20), (22) and (23), we obtain
nT(r) < (2m + 3)T(r) + S(r),
which contradicts the assumption n > 2m + 8. Thus A— B —1 = 0. From (18),

(B+1)F
BF +1°

ﬁ(r, F—i—g) - N(r, G).

Again from the second fundamental theorem, we obtain

T(r, F) < N(r, F) +'1V(r, %) +W(r,

G =

From this we have

1
F+ g

) + S(r, F)

= N(r, F) +N(r, —IF-,) + N(r, G) + S(r, F).

Combining this with (3), (19), (20), (21) and (22), we obtain
nT(r) < (m+ 3)T(r) + S(r),

which is impossible.
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CAsE II. Suppose that B = —-1.

From (18) we have

A

If A+1#0, from (24) we obtain

N (1‘, F—_(ZTT)) = N(r, G).

Thus, in the same manner as above, we have a contradiction. From this we obtain

A+1=0. Again from (24) we derive F- G =1. This and (2) yield

(25) (- a))(f—a)...(f—am)g" " ™(g™ +a) = b2,

where a1, a3, ..., a;ym are the distinct roots of the equation w™ +a = 0.
Suppose that zg is a zero of f of order p. From (25) we know that z is a pole of
g. Suppose that zg is a pole of g of order ¢q. From (25) we obtain

(26) (n —m)p = ng.
Noting that n and m have no common factors, from (26) we get n < p. Thus,

27) N<r, -lf) < %N(r, %) <11, 5) + 0Q).

n

Suppose that z; (j =1,2,...,m) is a zero of f — a; of order p;. From (25) we know
that z; is a pole of g. Suppose that z; is a pole of g of order ¢;. From (25) we obtain

pj =ngj.

Thus n < p; and hence

(28) W(r, f—l—) < %N(r, ! ) < ~T(r, ) +0(1).

—a; f-a;

By the second fundamental theorem, from (27) and (28) we have

(m — )T(r, f) < W(r, %) +§W(r, f_la,.) + S(r, f)

m+1
n

<

T(r, f) + S(r, f),

which is impossible.
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Caske III. Suppose that B = 0.
From (18) we have

F+(A-1)

(29) ¢=—""7

If A—1#0, from (29) we obtain

7 mr) =70 3)

Thus, in the same manner as above, we have a contradiction. From this we obtain
A—1=0. Again from (29) we derive F = G. This and (2) yield

(30) fn _ gn — _a(fn—m _ gn—m).
If f* # g™, from (30) we obtain

a(h — v)(h - vz) . (h - v"’m_l)

(3 9= T s wh—w) . (b

where k= f/g, u = exp((2mi)/n) and v = exp ((27i)/(n — m)). From (31) we know
that h is a nonconstant meromorphic function. Since n and m have no common
factors, we have u/ #v* (j=1,2,...,n—1;k=1,2,...,n —m —1). Suppose that

z; (j=1,2,...,n—-1) is a zero of h — u’ of order p;. From (31) we have p; > m.
Thus

- 1 1 1 1
(32) N(T, h—uj) < ;N(T, m) < ET(T, h) + O(1).

By the second fundamental theorem, from (32) we obtain

1

— i

(n—3)T(r, k) < ,.z;: N(n - ) + 8(r, k)

-1
< 2"T(r, b) + S(, h),
which is impossible. Thus f* = g™ and f*~™ = ¢g"~ ™. However, since n and m have
no common factors, weget f =g.
This completes the proof of Theorem 1. 0
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4. SUPPLEMENT OF THEOREM 1

It is reasonable to ask: What can be said if m = 1 in Theorem 1?7 In this section,
we prove the following theorem, which is a supplement of Theorem 1.

THEOREM 2. Let S = {w | w™ + aw™ ! + b = 0}, where n > 10 is a pos-
itive integer, a and b are two nonzero constants such that the algebraic equation
w™ + aw™ ! + b = 0 has no multiple roots. If f and g are two distinct nonconstant
meromorphic functions satisfying E;(S) = E4(S), then

ah(h™! 1) a(h”"1-1)
fer—por o es T
where h is a'nonconstant meromorphic function.
PROOF: Let
1 1
(33) Fz—gf”'l(f+a) and Gz—zg"_l(g+a).

Proceeding as in the proof of Theorem 1, we have F-G =1 or F = G. We distinguish
the following two cases.

CASE I. Assume F-G=1.
From (33) we have
(34) U+ a)g" (g + a) = b2

Suppose that 2; is a zero of f of order p. From (34) we know that zp is a pole of g.
Suppose that 2q is a pole of g of order ¢. From (34) we obtain (n — 1)p = ng. From
this we get n < p. Thus

(35) ¥(r7) <3¥(n3) <376, n o).

Suppose that z; is a zero of f + a of order p;. From (34) we know that z; is a pole
of g. Suppose that 2; is a pole of g of order ¢;. From (34) we obtain p; = ng;. Thus
n £ p1 and hence

(36) ‘ﬁ(r, ﬁ) < lN(r, TiT;) < %T(r, f) +0Q).

=
n

In the same manner as above, we have

(37) W(r, 3) <170, )+ 0Q1),

(38) W(r, 1 )s

Jim e

T(r, g) + O(1).
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From (34) one sees easily that the poles of f can only be from the zeros of g and g+ a.

— — 1 — 1
N(r, fY< N{r,- |+ N~ .
9 (r g) (T 9+a>
From this, (37) and (38) we obtain

Consequently,

T(r, g) + OQ1).

S|

(39) N(r, f) <
By the first fundamental theorem and Lemma 1, from (34) we have
T(r, g) =T(r, f) + S(r, f).

From this and (39) we obtain

ER

(40) J_V-(T, f) < T(T‘, f) + S(T’ f)

By the second fundamental theorem, from (35), (36) and (40) we get

T(r, f) < Tv'(r, %) +'ﬁ(r, ﬁ) + N(r, f) + S(r, f)

< ST(r, ) + S(r, ),

which is impossible.

Casg I1. Assume F =G.
From (33) we have

(41) fn _ gn = _a(fn-l _ gn—l)'
Noting f # g, from (41) we obtain

3 a,(h"_1 - 1)

42 =
(42) g CE

where h = f/g. From (42) we know that h is a nonconstant meromorphic function.
Thus, from (42) we have

ah(h™™1 -1
This completes the proof of Theorem 2. 0
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