HJELMSLEV PLANES DERIVED FROM MODULAR LATTICES

BENNO ARTMANN

In several papers, W. Klingenberg has elaborated the connections between Hjelmslev planes and a class of rings, called H -rings $(\mathbf{4} ; \mathbf{5} ; \mathbf{6})$, which are rings of coordinates for the corresponding Hjelmslev planes. Certain homomorphic images of valuation rings are examples of H-rings. In these examples, the lattice of (right) ideals of the ring, say R, is a chain, and the coordinatization of the corresponding Hjelmslev plane yields a natural embedding of the plane in the lattice $L\left(R^{3}\right)$ of (right) submodules of the module R^{3}. Now, $L\left(R^{3}\right)$ is a modular lattice with a homogeneous basis of order 3 given by the submodules $a_{1}=(1,0,0) R, a_{2}=(0,1,0) R, a_{3}=(0,0,1) R$, and the sublattices $L\left(N, a_{i}\right)$ of elements less than or equal to a_{i} are chains. Forgetting about the ring, we find ourselves in the situation of a problem suggested by Skornyakov (7, Problem 23, p. 166), namely, to study modular lattices with a homogeneous basis of chains. Baer (2) and Inaba (3) investigated lattices of this kind with Desarguesian properties and assuming that the chains $L\left(N, a_{i}\right)$ were finite. Representations of the lattices by means of certain rings can be found in both articles.

In this paper, we show that every modular lattice with a homogeneous basis of order 3, consisting of chains, which satisfies two "technical" assumptions (FC) and (S), listed below, leads to a certain Hjelmslev plane. We leave aside all questions about coordinates, since they require assumptions about Desarguesian properties of the lattice (or plane) and a detailed study of the ideal structure of the ring of coordinates. (For the meaning of the properties (FC) and (S) in the ring of coordinates, see Remark 3.) In a subsequent paper, \dagger it will be shown that every uniform Hjelmslev plane can be obtained in the way described here by constructing a lattice from the plane. This gives, also, examples of non-Desarguesian lattices.

Notation. We deal exclusively with modular lattices with a least and a greatest element. The least element of the lattice L is denoted by N, the greatest by U. In order to save brackets, we write $a \cup b \cap c$ instead of $a \cup(b \cap c)$, that is, \cap shall bind closer than \cup. The modular law then reads

$$
a \leqq c \Rightarrow a \cup b \cap c=(a \cup b) \cap c .
$$

$L(a, b)$ is the sublattice of all elements x with $a \leqq x \leqq b$ of L. We have that
\dagger Added in proof. The paper referred to is Uniforme Hjelmslev-Ebenen und modulare Verbünde (to appear in Math. Z.).
$L(a \cap b, b) \cong L(a, a \cup b)$. The expression $a \cup b=c$ stands for $a \cup b=c$ and $a \cap b=N$. If $a \cup^{\prime} c=b \cup^{*} c$, we say that a and b are perspective and c is the centre of perspectivity. The mapping $\pi: x \rightarrow(c \cup x) \cap b$ for $x \leqq a$ is called a projection with centre c of $L(N, a)$ onto $L(N, b)$. In modular lattices, projections are isomorphisms.

Definition 1. A list $F_{3}=\left(a_{1}, a_{2}, a_{3}, c_{12}, c_{13}, c_{23}\right)$ of elements of a modular lattice L is called a frame of order 3 of L, if the following conditions are satisfied:
(i) $\left(a_{1} \cup a_{2}\right) \cup a_{3}=U$,
(ii) $a_{i} \cup c_{i j}=a_{i} \cup a_{j}=a_{j} \cup c_{i j}$ for $i, j \in\{1,2,3\}, i \neq j$,
(iii) $c_{12} \cup c_{13}=c_{12} \cup c_{23}=c_{13} \cup c_{23}$.

The elements a_{1}, a_{2}, and a_{3} of the frame are said to form a homogeneous basis of order 3 of L.

In order to obtain simpler formulas, we shall use the abbreviation $A_{i}=$ $a_{j} \cup a_{k}(\{i, j, k\}=\{1,2,3\})$. We say that the lattice L with frame F_{3} is frame-complemented, if for every $b \in\left\{a_{1}, a_{2}, a_{3}, A_{1}, A_{2}, A_{3}\right\}$ it is true that
(FC) (a) For every $x \in L$ with $x \cap b=N$ there exists a $y \geqq x$ such that $y \cup b=U$;
(b) For every $z \in L$ with $z \cup b=U$, there exists a $y \leqq z$ such that $y \cup b=U$.

Furthermore, we wish that the lattices under consideration have a certain symmetry, as expressed in
(S) (a) Let $p, q \in L$ be complements of A_{k} and g a complement of a_{i} with $g \geqq p, q$. Then there exists a complement h of a_{i} such that $g \cap h=p \cup q$ (for all $i \neq k, i, k \in\{1,2,3\}$);
(b) Let g and h be complements of a_{k} and p a complement of A_{i} with $p \leqq g, h$. Then there exists a complement q of A_{i} such that $p \cup q=g \cap h$ (for all $i \neq k, i, k \in\{1,2,3\}$).

We collect all these conditions in the concept of an H-lattice: A modular lattice L with frame of order 3 is called an H -lattice (for Hjelmslev-lattice), if
the sublattices $L\left(N, a_{i}\right)$ are chains ($i \in\{1,2,3\}$) and L has properties (FC) and (S).

Remark 1. The concept of an H-lattice is self-dual. For, if

$$
C_{i j}=c_{i j} \cup a_{k}(\{i, j, k\}=\{1,2,3\}),
$$

then the list $\left(A_{1}, A_{2}, A_{3}, C_{12}, C_{13}, C_{23}\right)$ is a frame of order 3 of the lattice \bar{L} dual to L, as simple calculations show. Parts (a) and (b) of (FC) and (S) are duals of each other. Finally, $L\left(A_{i}, U\right)$ is a chain since

$$
L\left(N, a_{i}\right)=L\left(A_{i} \cap a_{i}, a_{i}\right) \cong L\left(A_{i}, A_{i} \cup a_{i}\right)=L\left(A_{i}, U\right)
$$

Definition 2. From an H-lattice L we derive an incidence-system

$$
H=\left(P, G, I, \sim_{P}, \sim_{G}\right)
$$

defining:
$P=\left\{p \mid\right.$ there exists $i \in\{1,2,3\}$ such that $\left.p \cup A_{i}=U\right\}$,
$G=\left\{g \mid\right.$ there exists $i \in\{1,2,3\}$ such that $\left.g \cup a_{i}=U\right\}$,
$I=\{(p, g) \mid p \in P, g \in G$, and $p \leqq g\} \subset P \times G$,
$\sim_{P}=\{(p, q) \mid p, q \in P$ and $p \cap q>N\} \subset P \times P$,
$\sim_{G}=\{(g, h) \mid g, h \in G$ and $g \cup h<U\} \subset G \times G$.
P is called the set of points of H, G the set of lines, I the incidence relation, and \sim_{P} and \sim_{G} the neighbour relations for points and lines, respectively. As usual, we write $p I g$ instead of $(p, g) \in I$ and sometimes $p \sim q, g \backsim h$, suppressing the indices P and G, if there is no danger of confusion.

Remark 2. We note that the incidence system \bar{H} defined from the lattice \bar{L} dual to L is nothing other than the "dual" of the system H in the usual geometric meaning, since the definitions of \sim_{P} and \sim_{G} are duals of each other. Therefore, every statement about H implies, automatically, its dual statement.

Theorem 1. The incidence system H derived from an H -lattice as in Definition 2 is a projective Hjelmslev plane.

By a projective Hjelmslev plane, we mean a projektive Inzidenzebene mit Nachbarelementen as defined by Klingenberg (4, pp. 387-88). For the proof we have to show that our relations \sim are the same as the neighbour relations defined in (4) (i.e., two points are neighbours if there are at least two different lines incident with both of them, and dually for lines) and then to check the axioms A1-A6 of (4, pp. 387-88), listed at the end of this proof. This is done by a series of lemmas, in which we always assume that $\{i, j, k\}=\{1,2,3\}$, and where part (b) will be the dual of (a), if stated. We shall not give the dual explicitly, if it is of no specific interest.

Lemma 1. For all $p \in P, L(N, p)$ is a chain.
Proof. There exists an i such that $p \cup A_{i}=U=a_{i} \cup A_{i}$; hence $L(N, p) \cong L\left(N, a_{i}\right)$.

Lemma $2 . \sim_{P}$ and \sim_{G} are equivalence relations.

We give the proof for $\sim_{p}: p \sim p$ and $p \sim q \Rightarrow q \backsim p$ are obvious. Let $p, q, r \in P, p \sim q$, and $q \sim r$; e.g., $p \cap q=a>N$ and $q \cap r=b>N$. a and b are comparable, since both are less than or equal to q and $L(N, q)$ is a chain. We may assume that $b \leqq a$. Then $p \cap r \geqq p \cap q \cap r=a \cap b=$ $b>N$; hence $p \sim r$.

Lemma 3. (a) $p, q \in P$ and $q \leqq p$ implies $p=q$.
(b) $g, h \in G$ and $g \leqq h$ implies $g=h$.

Proof. (a) Let $p \cup^{\cdot} A_{i}=U=q \cup A_{j}$. From $q \leqq p$ we have that $p \cup A_{j}=U$. If $p \cap A_{j}=x$, then x and q are comparable, as $L(N, p)$ is a chain. Now, $q \leqq x$ is impossible, since it would imply that

$$
q \cap A_{j}=q \cap x \cap A_{j}=q \cap x=q .
$$

Hence, we have that $x \leqq q$ and $p \cap A_{j}=x \cap A_{j} \leqq q \cap A_{j}=N$, and therefore $p \cup A_{j}=U$. This yields $p=q$ by the incomparability of complements in modular lattices. (b) is the dual of (a).

Lemma 4. Let $p, q \in P$. There exists an i such that $(p \cup q) \cap a_{i}=N$.
Proof. We assume that $p \cup A_{k}=U$. If $(p \cup q) \cap a_{j}=N$, then there is nothing to prove. Thus, we may assume that $(p \cup q) \cap a_{j}>N$. If we put $z=(p \cup q) \cap A_{k}$, then we have that $z \cup p=(p \cup q) \cap\left(A_{k} \cup p\right)=p \cup q$. Now, from the isomorphisms

$$
L(p \cap q, q) \cong L(p, p \cup q)=L(p, p \cup z) \cong L(p \cap z, z)=L(N, z)
$$

we know that $L(N, z)$ is a chain. Furthermore,

$$
(p \cup q) \cap a_{j}=(p \cup q) \cap A_{k} \cap a_{j}=z \cap a_{j}>N
$$

(by assumption), and as $L(N, z)$ is a chain, this implies that $(p \cup q) \cap a_{i}=$ $z \cap a_{i}=N$, since otherwise $a_{j} \cap a_{i}>N$.

Up to now we have not made use of the properties (FC) and (S) of L; however, for the following lemmas we need property (FC).

Lemma 5. (i) If $p \cup A_{k}=U$ and $p \cap A_{j}=N$, then $p \cup A_{j}=U$;
(ii) If $p \cup A_{k}=U$ and $p \cup A_{j}=U$, then $p \cup A_{j}=U$.

Proof. (i) By (FC) (a) there exists a complement q of A_{j} with $p \leqq q$. But then $p, q \in P$, and, by Lemma $3, p=q$.
(ii) By (FC) (b), there exists a complement r of A_{j} with $r \leqq p$. Again we have that $r, p \in P$, and therefore $r=p$ by Lemma 3.

Lemma 6. Let $p \cup A_{k}=q \cup A_{k}=U, g=p \cup a_{j}, h=q \cup a_{j}, q \cup g=$ $U=p \cup h$. Then $z=(p \cup q) \cap A_{k}$ is a common complement of g and h, and the projection from g onto h with centre z maps points onto points.

Proof. First we note that $g, h \in G$. Now

$$
\begin{aligned}
& z \cup g=z \cup p \cup a_{j}=(p \cup q) \cap\left(A_{k} \cup p\right) \cup a_{j} \\
&=p \cup q \cup a_{j}=p \cup h=U
\end{aligned}
$$

and similarly $z \cup h=U$.

$$
z \cap g=(p \cup q) \cap A_{k} \cap g=(p \cup q \cap g) \cap A_{k}=N
$$

and also $z \cap h=N$. Let π be the projection of $L(N, g)$ onto $L(N, h)$ with centre z. We have that $p^{\pi}=(p \cup z) \cap h=(p \cup q) \cap h=q$. We look at $r \in P, r \leqq g$, and claim that $r^{\pi} \in P$. In order to establish this, we distinguish the cases (i) $r \cap A_{k}=N$ and (ii) $r \cap A_{k}>N$. (i) $r \cap A_{k}=N$ implies, by Lemma 5, that $r \cup A_{k}=U$, and

$$
\begin{aligned}
& r^{\pi} \cap A_{k}=(r \cup z) \cap h \cap A_{k}=(r \cup z) \cap a_{j} \\
&=(r \cup z) \cap g \cap a_{j}=(r \cup z \cap g) \cap a_{j}=r \cap a_{j}=N, \\
& r^{\pi} \cup A_{k}=(r \cup z) \cap h \cup A_{k} \cup z \\
&=(r \cup z) \cap(h \cup z) \cup A_{k}=r \cup z \cup A_{k}=U .
\end{aligned}
$$

(ii) $r \cap A_{k}=r \cap g \cap A_{k}=r \cap a_{j}=x>N$. From $r \cap a_{j}>N$ and $a_{j} \cap A_{j}=N$, we see that $r \cap A_{j}=N$, as in the proof of Lemma 3, and hence $r \cup A_{j}=U$, since $r \in P$.

Now, $r^{\pi} \cap a_{j}=r \cap a_{j}=x>N$, as all elements less than or equal to a_{j} are fixed by π. This implies that $r^{\pi} \cap A_{j}=N$, as $L\left(N, r^{\pi}\right)$ is a chain. Therefore, by property (FC), there exists an $s \geqq r^{\pi}$ such that $s \cup^{*} A_{j}=U$. Hence, $L(N, s)$ is a chain, and $s^{\pi^{-1}} \geqq r$ implies that $s^{\pi^{-1}} \cap A_{j}=N$, since otherwise $r \cap A_{j}>N$. Therefore, there exists a $t \geqq s^{\pi^{-1}}$ with $t \cup A_{j}=U$, and by Lemma 3 we have that $t=r=s^{\pi^{-1}}$; therefore, $s=r^{\pi} \in P$.

Lemma 7. If $p \cup A_{k}=U$ and $p \cap A_{i}>N$, then $p \cup\left(c_{i k} \cup a_{j}\right)=U$.
Proof. Let $p \cap A_{i}=x>N$. As $L(N, p)$ is a chain, $p \cap\left(c_{i k} \cup a_{j}\right)=y$ is comparable with x, and $y \cap x=p \cap\left(c_{i k} \cup a_{j}\right) \cap A_{i}=p \cap a_{j}=N$, therefore $y=N$. Also, $L\left(p \cup a_{j}, U\right)$ is a chain, since

$$
\left(p \cup a_{j}\right) \cap a_{i}=\left(p \cup a_{j}\right) \cap A_{k} \cap a_{i}=N,
$$

and hence $L\left(N, a_{i}\right)=L\left(\left(p \cup a_{j}\right) \cap a_{i}, a_{i}\right) \cong L\left(p \cup a_{j}, p \cup a_{i} \cup a_{j}\right)=$ $L\left(p \cup a_{j}, U\right)$. By Lemma 5 (ii), we know that $p \cup A_{i}<U$ since $p \cup A_{i}=U$ would imply that $p \cap A_{i}=N$. Therefore, $p \cup a_{j} \cup c_{i k}=z$ is comparable with $p \cup a_{j} \cup a_{k}=w<U$, and $z \cup w=p \cup a_{j} \cup a_{k} \cup c_{i k}=U$; hence $z=U$.

Lemma 8. (a) Let $p, r \in P$. Then $p \cap r=N$ implies $p \cup r \in G$.
(b) Let $g, h \in G$. Then $g \cup h=U$ implies $g \cap h \in P$.

Proof. (a) By Lemma 4, we may assume that $(p \cup r) \cap a_{i}=N$, and it remains to show that $p \cup r \cup a_{i}=U$.
(i) Let $p \cap A_{j}=x>N$ and $p \cap A_{k}=y$. Then

$$
N=p \cap a_{i}=p \cap A_{j} \cap p \cap A_{k}=x \cap y
$$

and therefore $y=N$, as $L(N, p)$ is a chain. Thus, we have that $p \cap A_{j}=N$ or $p \cap A_{k}=N$. Let us assume that $p \cap A_{k}=N$.
(ii) $p \cup\left(r \cup a_{i}\right) \cap\left(p \cup a_{j}\right) \cup a_{i}=p \cup\left(r \cup a_{i}\right) \cap\left(p \cup a_{j} \cup a_{i}\right)=$
$p \cup r \cup a_{i}$, so we may also assume that $r \leqq p \cup a_{j}$ without loss of generality.
(iii) By Lemma 7, we have that either $p \cap A_{i}=N$ or that $p \cap\left(a_{j} \cup c_{i k}\right)=$ N. When $p \cap A_{i}=N$, we apply Lemma 6 with $q=a_{k}$ and have that $g=p \cup a_{j}, h=a_{k} \cup a_{j}=A_{i}$, and the isomorphism π as defined in Lemma 6 (hence $p^{\pi}=a_{k}$). Now, $(r \cap p)^{\pi}=r^{\pi} \cap a_{k}=N, r^{\pi} \leqq A_{i}$ implies $r^{\pi} \cap A_{j}=N$, and, by Lemmas 5 and 6 , we know that $r^{\pi} \cup A_{j}=U$ which yields $r^{\pi} \cup a_{k}=$ $A_{i}=a_{k} \cup a_{j}$. From this equation we derive $r \cup p=p \cup a_{j} \in G$ by applying π^{-1}, so that $r \cup p \in G$.

Similarly, if $p \cap A_{i}>N$, then by Lemma 7 we have that $p \cup\left(c_{i k} \cup a_{j}\right)=$ U and by $c_{i k} \cap\left(p \cup a_{j}\right)=c_{i k} \cap\left(c_{i k} \cup a_{j}\right) \cap\left(p \cup a_{j}\right)=N$, we also have that $c_{i k} \cup^{*}\left(p \cup a_{j}\right)=U$. Thus, we may apply Lemma 6 with $q=c_{i k}$, $g=p \cup a_{j}, h=c_{i k} \cup a_{j}$, and $p^{\pi}=c_{i k}$. Here, we find that $r^{\pi} \cap c_{i k}=N$, $r^{\pi} \leqq c_{i k} \cup a_{j}$; hence, $r^{\pi} \cap A_{j}=N$ and, as above, $r^{\pi} \cup^{*} A_{j}=U$. This implies that $r^{\pi} \cup c_{i k}=c_{i k} \cup a_{j}$. By applying π^{-1} as before we obtain $r \cup p=$ $p \cup a_{j} \in G$.

Lemma 9. (a) Let $p, r \in P$. Then $p \cup r \in G$ implies $p \cap r=N$. (b) Let $g, h \in G$. Then $g \cap h \in P$ implies $g \cup h=U$.

Proof. Let $(p \cup r) \cup a_{i}=U$. Then we have that $p \cap a_{i}=r \cap a_{i}=N$ and by Lemma 8 (a), $p \cup a_{i}, r \cup a_{i} \in G$. On the other hand,

$$
p \cup a_{i} \cup r \cup a_{i}=U
$$

by assumption, therefore by Lemma 8 (b), $\left(p \cup a_{i}\right) \cap\left(r \cup a_{i}\right) \in P$. However, $\left(p \cup a_{i}\right) \cap\left(r \cup a_{i}\right) \geqq a_{i}$; hence, we have that

$$
\begin{aligned}
a_{i} & =\left(p \cup a_{i}\right) \cap\left(r \cup a_{i}\right) \quad(\text { by Lemma 3) } \\
& =\left(p \cup a_{i}\right) \cap r \cup a_{i} .
\end{aligned}
$$

This implies that $\left(p \cup a_{i}\right) \cap r \leqq a_{i}, p \cap r \leqq\left(p \cup a_{i}\right) \cap r=\left(p \cup a_{i}\right) \cap r \cap a_{i}=$ N.

Proposition 1. Without assuming the axiom (S) in L, we have the following:
(a) For any $p, q \in P$, there exists a $g \in G$ with $p, q \leqq g$. g is unique if $p \cap q=N$;
(b) For any $g, h \in G$, there exists a $p \in P$ with $p \leqq g, h$. p is unique if $g \cup h=U$.

Proof. (a) By Lemma 4, there exists an i such that $(p \cup q) \cap a_{i}=N$. Hence, by property (FC), there exists a $g \geqq p \cup q$ with $g \cup a_{i}=U$. If $p \cap q=N$, then by Lemma 8 we have that $p \cup q \in G$, and therefore $g=p \cup q$ by Lemma 3 (b). (b) is the dual of (a).

Remark 3. For the last lemma, we are now going to use the symmetry axiom (S) of an H-lattice. Actually, a somewhat weaker form of (S) would be sufficient for our purposes; however, we prefer (S) because of its meaning for the ring of coordinates which sometimes can be constructed. Essentially, it states that there exists a dual isomorphism of the chain of principal right ideals
onto the chain of principal left ideals given by the construction of the annihilator ideal. From property (FC), we have that the principal right (and left) ideals form a chain (see the factorization property in $\mathbf{6}, \mathrm{p} .198$).

Lemma 10. Let $p, q \in P$ and $g \in G, p \cup q \leqq g$. If g is unique, then $p \cap q=N$.
Proof. Let us assume that $p \cap q>N$. If $p \cup A_{k}=U$, then also $q \cup A_{k}=$ U since $p \cap q>N$ implies $q \cap A_{k}=N$ in this case. As in the proof of Lemma 4, we have that either $(p \cup q) \cap a_{i}=N$ or that $(p \cup q) \cap a_{j}=N$. Hence, we may assume that $(p \cup q) \cap a_{i}=N$ and $g \cup a_{i}=U$, without loss of generality. Now by (S), there exists an $h \in G$ such that $h \cap g=$ $p \cup q$. From $p \cap q>N$, we obtain $p \cup q<g$ since $p \cup q=g$ implies $p \cap q=N$ by Lemma 9 ; therefore, we have that $h \cap g<g$, i.e. $h \neq g$, hence two different lines incident with p, q.

We are now ready for the following proof.
Proof of Theorem 1. (i) By Proposition 1 and Lemma 10 we have that $p \backsim q$ if and only if there exist $g, h \in G$ such that $g \neq h$ and $p, q \leqq g, h$, and by duality, $g \backsim h$ if and only if there exist $p, q \in P$ such that $p \neq q$ and $p, q \leqq g, h$. Therefore, the relations \sim_{P} and \sim_{G} are the same as the neighbour relations defined in (4, p. 387).
(ii) We consider the axioms of (4, pp. 387-88) separately.
(A1) Let $p, q \in P$. There exists $g \in G$ with $p, q I g$. This was proved in Proposition 1.
(A2) Let $g, h \in G$. There exists $p \in P$ with $p I g, h$. This is the dual of (A1).
(A3) There exist $p_{1}, p_{2}, p_{3}, p_{4} \in P$ such that $p_{i} \nsim p_{k}$ and $p_{i} \cup p_{k} \nsim p_{i} \cup p_{j}$ for $i \neq j \neq k \neq i, i, j, k \in\{1,2,3,4\}$. For the proof we may choose $p_{1}=$ $a_{1}, p_{2}=a_{2}, p_{3}=a_{3}, p_{4}=\left(a_{3} \cup c_{12}\right) \cap\left(a_{2} \cup c_{13}\right)$, and the desired properties hold because of the properties of the normalized frame ($a_{1}, a_{2}, a_{3}, c_{12}, c_{13}, c_{23}$).
(A4) Let $p \in P, f, g, h \in G$ and $p I f, g, h$. If $f \sim g$ and $g \nsim h$, then $f \nsim h$. This is true since \sim is an equivalence relation (Lemma 2).
(A5) Let $f, g, h \in G$. If $f \sim g$ and $g \nsim h$, then $f \cap h \sim g \cap h$. For the proof we first note that we have $p=f \cap h \in P, q=g \cap h \in P$, and $f \cup g<U$ by hypothesis. We have to show that $p \cap q>N$.

$$
p \cup q=f \cap h \cup g \cap h=(f \cap h \cup g) \cap h \leqq(f \cup g) \cap h<h
$$

since $f \cup g<U, L(h, U)$ is a chain, and $f \cup g \geqq h$ would imply that $g \cup h \leqq f \cup g \cup h<U$, in contradiction to $g \nsim h$. This shows that $p \cap q>N$ by Lemma 8.
(A6) Let $p, q, r \in P$. If $p \sim q$ and $q \nsim r$, then $p \cup r \sim q \cup r$. This is the dual of (A5).

References

1. B. Artmann, On coordinates in modular lattices with a homogeneous basis (to appear in Illinois J. Math.).
2. R. Baer, A unified theory of projective spaces and finite abelian groups, Trans. Amer. Math. Soc. 52 (1942), 283-343.
3. E. Inaba, On primary lattices, J. Fac. Sci. Hokkaido Univ. Ser. I 11 (1948), 39-107.
4. W. Klingenberg, Projektive und affine Ebenen mit Nachbarelementen, Math. Z. 60 (1954), 384-406.
5. - Desarguessche Ebenen mit Nachbarelementen, Abh. Math. Sem. Univ. Hamburg 20 (1955), 97-111.
6. -Projektive Geometrien mit Homomorphismus, Math. Ann. 132 (1956), 180-200.
7. L. A. Skornyakov, Complemented modular lattices and regular rings (Oliver and Boyd, London, 1964).

Universitaet,
Giessen, Germany

