A NOTE ON A FULLY ORDERED RING

Kwangil Koh

A ring R (associative ring) is said to be fully ordered provided that R is a linearly ordered set under a relation \leq such that for any a, b and c in R, $a \leq b$ implies that $a + c \leq b + c$ and if c > 0 then $ca \leq cb$ and $ac \leq bc$. We say a subset K of R is convex provided that if a, b ϵ K such that $a \leq b$ then the interval [a,b] is a subset of K. Obviously an additive subgroup K of R is convex if and only if b ϵ K and b > 0 implies $[0,b] \subseteq K$. We observe that if K_1 , K_2 are convex subsets of R such that K_1 and K_2 are additive subgroups of R respectively then either $K_1 \subseteq K_2$ or $K_2 \subseteq K_1$. In this note, we will prove that a fully ordered semi-prime ring is an integral domain. This generalizes a result of Birkhoff-Pierce that a fully ordered semi-simple ring with the minimum condition for right ideals is a division ring (See [1:p.115]).

LEMMA. Let R be a fully ordered ring and K be a convex subset of R which is also a right ideal of R. Then for any a ϵ R, the right ideal (K:a) = {r ϵ R | ar ϵ K} is convex. Similarly, if K is a left ideal of R which is convex then the left ideal (K:a)_L = {r ϵ R | ra ϵ K} is convex.

<u>Proof.</u> We observe that (K:a) = (K:-a). Let $b \in (K:a)$, b > 0 and $x \in R$ such that 0 < x < b. Then $0 \le |a| x \le |a| b$ where |a| = a if $a \ge 0$ and |a| = -a if a < 0. Since $|a| b \in K$ and K is convex, $|\bar{a}| x \in K$. Hence $x \in (K:a)$. A similar argument shows that $(K:a)_L$ is also convex when K is a left ideal.

THEOREM. A fully ordered semi-prime ring $\,R\,$ is an integral domain.

<u>Proof.</u> Suppose there exist non-zero elements x and y in R such that xy = 0. We may assume x > 0 and y > 0. If x > y > 0 then $0 = xy > y^2 > 0$ implies that $y^2 = 0$.

Similarly if $y \ge x > 0$ then $0 = xy \ge x^2 \ge 0$ implies that $x^2 = 0$. Let us assume $x^2 = 0$. Then $x \in ((0) : x)$ and $x \in ((0) : x)_L$. By LEMMA, $((0) : x)_L$ and ((0) : x) are convex sets which are additive subgroups of R. Hence either $((0) : x)_L \subseteq ((0) : x)$ or $((0) : x) \subseteq ((0) : x)_L$. If $((0) : x)_L \subseteq ((0) : x)$ then $((0) : x)_L \cdot R \subseteq ((0) : x)$ and $(0) = xR((0) : x)_L \cdot R \supseteq xRxR$. This is impossible since R is a semi-prime ring and so contains no non-zero nilpotent right ideals. On the other hand if $((0) : x) \subseteq ((0) : x)_L$ then $R((0) : x) \subseteq ((0) : x)_L$ and $(0) = R((0) : x)Rx \supseteq RxRx$. This is again impossible. Thus R must be an integral domain.

REFERENCES

1. L. Fuchs, Partially Ordered Algebraic Systems, Pergammon Press (1963).

North Carolina State University Raleigh