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Conformal extensions of exact solutions

Exact solutions to the Einstein field equations are the prime source of geometric

and physical intuition in general relativity. This chapter revisits some of the

classical exact solutions of general relativity (the Minkowski, de Sitter, anti-

de Sitter and Schwarzschild spacetimes) from the point of view of conformal

geometry. In addition, a general discussion of the construction of Penrose

diagrams of static spherically symmetric spacetimes is provided. Most of the

material in this chapter can be considered as classic – complementary discussions

can be found in, for example, Hawking and Ellis (1973) and Griffiths and

Podolský (2009). In view of the applications in the later parts of the book,

particular emphasis is given to the construction of explicit congruences of

conformal geodesics in the exact solutions.

6.1 Preliminaries

6.1.1 Spherical symmetry

In what follows, let SO(3) denote the group of homogeneous linear transfor-

mations of R3 onto itself which preserve the Euclidean length of vectors and

the orientation of the space. A spacetime (M, g) is said to be spherically

symmetric if the group SO(3) acts by isometry on (M, g) with simply

connected, complete, spacelike two-dimensional orbits; see, for example, Ehlers

(1973). Two points p, q ∈ SO(3) are said to be in the same orbit if there is

an element of the group SO(3) taking p to q. Given a spherically symmetric

spacetime it is natural to introduce the quotient manifold Q ≡ M/SO(3),

that is, the manifold obtained from M by identifying points on the same orbit.

The manifold Q inherits from (M, g) a two-dimensional Lorentzian metric γ,

the quotient metric. Let Γ denote the subset of Q corresponding to the fixed

points of the action of SO(3). If Γ is non-empty, then it can be shown that it is

a connected timelike boundary of Q – the centre of symmetry . A spherically

spacetime can have none, one or two centres; see Künzle (1967).
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142 Conformal extensions of exact solutions

Given a spherically symmetric spacetime (M, g), there exists a function � :

Q → R such that the spacetime metric g can be written in the warped product

form

g = γ + �2σ, (6.1)

where σ is the standard metric of S2 given, in the usual spherical coordinates

(θ, ϕ), by

σ = dθ ⊗ dθ + sin2 θdϕ⊗ dϕ.

The function � is not necessarily an areal coordinate.

6.1.2 The 3-sphere

The unit 3-sphere S3 is the three-dimensional submanifold of R4 defined by

S3 ≡ {(w, x, y, z) ∈ R4 |w2 + x2 + y2 + z2 = 1}.

The standard Euclidean metric in R4 induces, in a natural way, a 3-metric

h̄ on S3, the standard metric of S3. The metric h̄ is best expressed using

spherical coordinates (ψ, θ, ϕ) such that

w = cosψ, x = sinψ cos θ, y = sinψ sin θ cosϕ, z = sinψ sin θ sinϕ,

taking the range 0 ≤ ψ ≤ π, 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π. For simplicity of

presentation, in what follows the degeneracy of the spherical coordinate system

(ψ, θ, ϕ) will be ignored as it can be dealt with by introducing further coordinate

charts. In terms of these coordinates one has

h̄ = dψ ⊗ dψ + sin2 ψσ.

Conventionally, the point given by ψ = 0 will be called the north pole, while

the one with ψ = π will be called the south pole.

At every point p ∈ S3 the restriction of the coordinates (w, x, y, z) can be

used to construct suitable local coordinates. For example, if w(p) > 0, then the

coordinates (xα) = (x, y, z) constitute a well-defined system of local coordinates

on the northern hemisphere of S3.

A frame on S3

A direct computation shows that the vector fields on T (R4)

c1 ≡ w
∂

∂z
− z

∂

∂w
+ x

∂

∂y
− y

∂

∂x
, (6.2a)

c2 ≡ w
∂

∂y
− y

∂

∂w
+ z

∂

∂x
− x

∂

∂z
, (6.2b)

c3 ≡ w
∂

∂x
− x

∂

∂w
+ y

∂

∂z
− z

∂

∂y
, (6.2c)
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6.1 Preliminaries 143

are linearly independent and tangent to S3; hence, they can be regarded as

globally defined vectors on T (S3). This point of view will be used systematically

in this book. As ci �= 0 on S3 one has, in fact, a globally defined frame on the

3-sphere. Moreover, it can be shown that

h̄(ci, cj) = δij .

Accordingly, the vectors {ci} are h̄-orthogonal. A direct calculation shows that

[c1, c2] = 2c3, [c2, c3] = 2c1, [c3, c1] = 2c2.

The above expressions can be more concisely written as

[ci, cj ] = 2εij
kck,

where εijk denotes the components of the volume form in R3. In particular,

one has that ε123 = 1. The above commutators can be combined with

the Cartan structure equations – see Equations (2.41) and (2.42) – to compute

the connection coefficients γi
j
k with respect to the frame {ci}. One obtains the

concise expression

γi
j
k = −εi

j
k.

The compactification of R3 into S3

An important example of conformal compactification is the so-called point

compactification of the Euclidean space R3 into S3. Let

δ = dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θdϕ⊗ dϕ

denote the standard (negative definite) three-dimensional Euclidean metric in

spherical coordinates with 0 ≤ r < ∞, 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π.

An explicit computation shows that the Cotton tensor – see Equation (5.18) –

of the metrics δ and h̄ vanish so that they must be conformally related; compare

Theorem 5.1. In order to make this correspondence explicit, write

h̄ = ω2δ (6.3)

where ω is a conformal factor to be determined. Expressing the radial coordinate

as r = r(ψ), one finds from Equation (6.3) the conditions

ω2r′2 = 1, r2ω2 = sin2 ψ, (6.4)

where ′ denotes the derivative with respect to ψ. A solution to the equations in

(6.4) is given by

ω =
2

α
sin2

ψ

2
, r(ψ) = α cot

ψ

2
, (6.5)

where α is a real constant. Notice that r → ∞ as ψ → 0. Thus, the transformation

given by (6.5) is a compactification of R3 sending the north pole of S3 to the
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144 Conformal extensions of exact solutions

point at infinity in R3, while the south pole of S3 is sent to the origin of R3. An

alternative solution to equations (6.4), sending the south pole to the point at

infinity and the north pole to the origin, is given by

ω =
2

α
cos2

ψ

2
, r(ψ) = α tan

ψ

2
, (6.6)

as can be verified by an explicit computation.

6.1.3 The Einstein static universe

The Einstein static universe – sometimes also called the Einstein cosmos

or Einstein cylinder – is the spacetime (ME , gE ) given by

ME ≡ R× S3, gE ≡ dT ⊗ dT − h̄. (6.7)

It can be readily verified that ∂T is a timelike Killing vector of gE so that the

solution is indeed static. Moreover, as (S3,σ) is a homogeneous and isotropic

Riemannian manifold, it follows that (ME , gE ) is spatially homogeneous and

isotropic.

A computation shows that

Weyl[gE ] = 0, R[gE ] = −6, (6.8a)

Schouten[gE ] =
1

2
(dT ⊗ dT + h̄). (6.8b)

Hence, one sees that (ME , gE ) is conformally flat. A discussion of the properties

of the Einstein static universe as a solution to the Einstein field equations with a

perfect fluid matter source can be found in, for example, Griffiths and Podolský

(2009) and Hawking and Ellis (1973).

Finally, it is observed that the Einstein static universe is spherically symmetric.

Comparing the metric gE in (6.7) with the warped product metric (6.1) it is

natural to set

γE ≡ dT ⊗ dT − dψ ⊗ dψ, �E ≡ sinψ,

so that (T, ψ) can be used as coordinates of the quotient manifold QE ≡ (R ×
S3)/SO(3) ≈ R× [0, π].

A class of conformal geodesics in the Einstein static universe

In what follows, consider the congruence of curves on (ME , gE ) given by

x(τ) = (τ, x�), τ ∈ R, (6.9)

with x� ∈ S3 fixed. Varying x� over S3 one obtains a non-intersecting timelike

congruence covering the whole of ME . It can be verified that the curves (6.9)

are geodesics for gE with proper time τ and tangent vector ẋ = ∂T .
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6.2 The Minkowski spacetime 145

The curves (6.9) can be recast as conformal geodesics. To see this, one follows

the argument of Lemma 5.2 and introduces a parameter τ̄ such that τ = τ(τ̄)

and makes use of the ansatz

β̄ ≡ α(τ̄)ẋ� = α(τ̄)dT.

Substituting the above expression into the conformal geodesic Equations (5.42a)

and (5.42b) and taking into account formula (6.8b) for the Schouten tensor of

the Einstein universe one finds the equations

τ ′′ + ατ ′2 = 0, α′ =
1

2
τ ′(α2 + 1),

with ′ denoting differentiation with respect to τ̄ . A solution to the above

equations is given by

τ = 2arctan
τ̄

2
, α =

τ̄

2
. (6.10)

Now, one has that 〈β̄,x′〉 = ατ ′ so that the conformal factor Θ̄ satisfying

the condition Θ̄2gE (x
′,x′) = 1 obeys the equation Θ̄′ = 〈β̄,x′〉Θ̄ with initial

condition Θ̄� = 1. The differential equation for Θ̄ can be solved to give

Θ̄ = 1 +
1

4
τ̄2. (6.11)

It can be verified that

β̄ =
1

2
τ̄dT = Θ̄−1dΘ̄.

Using the conformal factor Θ̄ one obtains a conformal representation of the

Einstein universe with metric ḡE ≡ Θ̄2gE so that

ḡE = dτ̄ ⊗ dτ̄ −
(
1 +

1

4
τ̄2
)2

h̄,

where the parameter τ̄ has been introduced as the new time coordinate.

This conformal representation of the Einstein cylinder will be known as the

expanding Einstein cylinder. Notice that x′ = Θ̄−1ẋ so that ḡE (x
′,x′) = 1.

It can be readily verified that the congruence is integrable and that the curves

are orthogonal to the surfaces of constant τ̄ .

6.2 The Minkowski spacetime

The Minkowski solution (M̃, η̃) is the spacetime given by M̃ = R4 and

η̃ = ημνdx
μ ⊗ dxν , (6.12)

where (xμ) = (t, x, y, z) and ημν ≡ diag(1,−1,−1,−1). Alternatively, using

spherical coordinates one can write

η̃ = dt⊗ dt− r2dr ⊗ dr − r2σ. (6.13)
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146 Conformal extensions of exact solutions

Using the expression of the Minkowski metric in Cartesian coordinates one

readily sees that Riem[η̃] = 0 so that, in particular, Ric[η̃] = 0; that is, η̃

is a solution to the vacuum Einstein field equations with vanishing cosmological

constant. Moreover, one has that Weyl[η̃] = 0 so that η̃ is conformally flat and,

thus, conformal to the metric of the Einstein cylinder. This relation is analysed

in the next section.

6.2.1 The compactification into the Einstein cylinder

A standard procedure for the construction of conformal extensions of Lorentzian

manifolds is to make use of pairs of so-called null coordinates . In the present case

a convenient choice is given by

u ≡ t− r, v ≡ t+ r. (6.14)

Conventionally, the coordinate is called a retarded time, while v is an advanced

time. It can be readily verified that η̃�(du,du) = η̃�(dv,dv) = 0. It follows that

η̃ =
1

2
(du⊗ dv + dv ⊗ du)− 1

4
(v − u)2σ.

In order to have r ≥ 0 one has the restriction u ≤ v. The present analysis is

mainly concerned with the behaviour at infinity; thus, it is natural to introduce

a further transformation of coordinates:

u ≡ tanU, v ≡ tanV, U, V ∈ (− 1
2π,

1
2π), U ≤ V.

From the relations

du =
1

cos2 U
dU = (1 + u2)dU, dv =

1

cos2 V
dV = (1 + v2)dV,

and the identity

v − u = tanV − tanU =
sin(V − U)

cosU cosV
,

one obtains

η̃ =
1

4 cos2 U cos2 V

(
2(dU ⊗ dV + dV ⊗ dU)− sin2(U − V )σ

)
.

This last expression suggests defining the unphysical metric η ≡ Ξ2
M η̃ where

ΞM ≡ 2 cosU cosV, (6.15)

so that

η = 2(dU ⊗ dV + dV ⊗ dU)− sin2(U − V )σ.

The conformal factor ΞM vanishes whenever U = ± 1
2π or V = ± 1

2π. In order

to investigate the situation in more detail one introduces the final change of

coordinates

ψ ≡ V − U, T ≡ V + U.
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Γ i0

I+

I−

i+

i−

R×S3

M

Figure 6.1 Conformal extension of the Minkowski spacetime. Left, conformal
embedding of the Minkowski spacetime in the Einstein cylinder: the shaded
region corresponds to the set MM of equation (6.21). Right, Penrose diagram
of the Minkowski spacetime: the line Γ corresponds to the axis of symmetry,
the points i0, i+ and i− are spatial infinity, future timelike infinity and past
timelike infinity, respectively. Finally, I + and I − are future and past null
infinity; see main text for further details.

Using standard trigonometric identities, one can rewrite the conformal factor

(6.15) in terms of the coordinates T and ψ to obtain

ΞM = cosT + cosψ. (6.16)

Thus, one ends up with the metric

η = dT ⊗ dT − dψ ⊗ dψ − sin2 ψσ. (6.17)

Thus, one has that η = gE . Consequently, the rescaling procedure described in

the previous paragraphs compactifies the Minkowski spacetime into a region of

the Einstein cylinder ; see Figure 6.1, left panel. The standard coordinates (t, r)

on the Minkowski spacetime are related to the (T, ψ) coordinates on the Einstein

cylinder via the formulae:

t =
sinT

cosT + cosψ
, r =

sinψ

cosT + cosψ
. (6.18)

It follows from the previous discussion that the Minkowski spacetime (R4, η̃)

is conformal to the domain

M̃M ≡
{
p ∈ ME | 0 ≤ ψ(p) < π, ψ(p)− π < T (p) < π − ψ(p)

}
,

on which ΞM > 0. In addition to M̃M , it is convenient to single out a number of

subsets ofME playing a special role in the discussion of the asymptotic behaviour

of the Minkowski spacetime:
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148 Conformal extensions of exact solutions

(a) Future and past null infinity are defined as the hypersurfaces

I ± ≡
{
p ∈ ME | 0 < ψ(p) < π, T (p) = ±(π − ψ(p))

}
, (6.19)

on which ΞM = 0. A calculation shows that

dΞM = − sinTdT − sinψdψ, (6.20)

so that dΞM �= 0 on I ±. It can, however, be verified that

gE (dΞM ,dΞM )|I ± = 0,

so that I ± are null hypersurfaces.

(b) Spatial infinity is defined by

i0 ≡
{
p ∈ ME | ψ(p) = π, T (p) = 0

}
.

Inspection of expression (6.7) for the metric gE shows that the radius of the

2-sphere defined by T = 0 and ψ = 0 vanishes. Accordingly, i0 consists of a

single point. Evaluating the differential (6.20) at i0 one finds that

dΞM |i0 = 0, HessΞM |i0 = −gE |i0 .

(c) Future and past timelike infinity is defined as

i± ≡
{
p ∈ ME | ψ(p) = 0, T (p) = ±π

}
.

Again, from the metric (6.7) it follows that the 2-spheres defined by T = ±π

and ψ = 0 have vanishing radius so that both i+ and i− correspond to points.

Using (6.20) one finds that

dΞM |i± = 0, HessΞM |i± = gE |i± .

The motivation for the above definitions follows from the analysis of geodesics;

see below. It is important to point out that by convention i0, i± /∈ I ±. Finally,

it is convenient to define the manifold with boundary

MM = M̃M ∪ I + ∪ I − ∪ i+ ∪ i− ∪ i0, (6.21)

which will be called the conformally extended Minkowski manifold.

The Penrose diagram of the Minkowski spacetime

The spherical symmetry of the Minkowski spacetime can be exploited to provide

a diagrammatic representation of the global structure of the spacetime known

as a Penrose (or Penrose-Carter) diagram. It follows from the discussion

in Section 6.1.1 that the action of the group SO(3) on MM gives rise to the

quotient manifold with coordinates (T, ψ) given by

QM ≡
{
p ∈ QE | 0 ≤ ψ(p) ≤ π, ψ(p)− π ≤ T (p) ≤ π − ψ(p)

}
.

In what follows, in a slight abuse of notation, the projections of I ±, i±, i0 ⊂
MM on the quotient manifold QM will be denoted, again, by the same symbols.
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6.2 The Minkowski spacetime 149

Clearly, I +, i±, i0 ⊂ ∂QM ; however, ∂QM has a further component consisting

of the centre of symmetry

Γ ≡
{
p ∈ QM |ψ(p) = 0, −π < T (p) < π}.

As the conformal metric η is the standard one on the Einstein cylinder, it follows

from the discussion in Section 6.1.3 that the quotient metric inherited by η on

QM is the two-dimensional Minkowski metric

γM = dT ⊗ dT − dψ ⊗ dψ.

Given the above, the Penrose diagram of the Minkowski spacetime is simply

the depiction of QM as a subset of R2 as shown in Figure 6.1, right panel. A

discussion of the construction of Penrose diagrams for more general spacetimes

is given in Section 6.5.2.

Analysis of the behaviour of geodesics

Intuition on the various features of the construction described in the previous

paragraphs can be obtained by analysing the behaviour of various types of

physical metric geodesics. To this end one notices the following formulae that can

be verified using the coordinate transformations taking the original Minkowski

metric of Equation (6.13) into the metric (6.17):

sinT =
2t√

(1 + (t− r)2) (1 + (t+ r)2)
, (6.22a)

cosT =
1− t2 + r2√

(1 + (t− r)2) (1 + (t+ r)2)
, (6.22b)

cosψ =
1 + t2 − r2√

(1 + (t− r)2) (1 + (t+ r)2)
. (6.22c)

(a) Spacelike geodesics. Radial spacelike geodesics in the Minkowski space-

time can be described using the radial coordinate r as a parameter. It follows

then that the time coordinate of the curves is given by

t = ar + t�, a2 < 1, t� ∈ R.

For r → ∞ it follows from (6.22a)–(6.22c) that

sinT → 0, cosT → 1, cosψ → −1.

Hence one concludes that T → 0 and ψ → π as the curve escapes to infinity.

Thus, in the unphysical picture, spacelike radial geodesics finish at the same

point, spatial infinity i0, independently of the value of a.
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(b) Timelike geodesics. For concreteness, consider the family of geodesics

described by

t = ar + t�, |a| > 1.

It can be verified that as r → ∞ one has the limits

sinT → 0, cosT → −1, cosψ → 1.

Depending on whether sinT approaches 0 from the right or the left, the

latter limits correspond to either T → π and ψ → 0 or T → −π and ψ → 0.

Thus, the timelike geodesics start and finish, respectively, at i− and i+.

(c) Null geodesics. Consider, for example, the family of outgoing null geodesics

described by the condition u = u�, where u� is a constant and u is the null

coordinate defined in (6.14). Now, taking the limit v → ∞ one finds that

sinT → 1√
1 + u2

�

, cosT → u�√
1 + u2

�

, cosψ → − u�√
1 + u2

�

.

Thus, in the limit one has that T = π − ψ, corresponding to future null

infinity I +. Similarly, for incoming geodesics described by the condition

v = v�, v� a constant and with v as defined in (6.14), one finds that the

limit points lie on the line T − ψ = π, corresponding to past null infinity

I −. Summarising, incoming null geodesics start at I − while outgoing null

geodesics end at I +.

6.2.2 Compactifications adapted to spatial infinity

The discussion of the structure of spatial infinity is better carried out in

an alternative conformal representation. Intuitively, the region of spacetime

associated with the spatial infinity of the Minkowski spacetime (R4, η̃) is

contained in the domain D̃ ≡ {p ∈ R4 | ημνxμ(p)xν(p) < 0}, the complement of

the light cone through the origin, where (xμ) denote the standard Cartesian

coordinates. Now, consider the coordinate inversion defined by

yμ = − xμ

X2
, xμ = − yμ

Y 2
,

where X2 ≡ ημνx
μxν and Y 2 ≡ ημνy

μyν . This coordinate transformation maps

D̃ onto itself. Moreover, a computation yields

dyμ = − 1

X2

(
δμλ − 2

X2
xμηλνx

ν

)
dxλ,

so that

ημνdy
μ ⊗ dyν = X−4ημνdx

μ ⊗ dxν .
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i0

I−

I+

Figure 6.2 The Minkowski spacetime close to null and spatial infinity: the
conformal boundary corresponds to the surface of the cones, while the interior
of the spacetime corresponds to the exterior of the light cones; see main text
for further details.

This computation suggests introducing the conformal factor Ξ = 1/X2. Hence,

one concludes that

η = Ξ2η̃ = Ξ2ημνdx
μ ⊗ dxν .

Hence, one has a conformal representation of the Minkowski spacetime which is

also flat. An inspection shows that the boundary ∂D̃ decomposes into the sets

I + = {p ∈ R4 | y0(p) > 0, ημνy
μ(p)yν(p) = 0},

I − = {p ∈ R4 | y0(p) < 0, ημνy
μ(p)yν(p) = 0},

i0 = {p ∈ R4 | (yμ(p)) = (0, 0, 0, 0)};

see Figure 6.2. An analysis similar to the one carried out in Section 6.2.1 shows

that these sets admit the interpretation of future null infinity, past null infinity

and spatial infinity, respectively. More precisely, I + (I −) can be thought of as

being generated by the end points of future (past) directed null geodesics while

all spatial geodesics eventually run into the point i0. The null hypersurfaces I +

form the null cone through the point i0. Defining the manifold with boundary

D ≡ D̃∪∂D̃ one observes that the conformal metric η extends smoothly through

the boundary.

6.2.3 Conformal geodesics in the Minkowski spacetime

Conformal geodesics in the Minkowski spacetime can be computed using the

version of the equations adapted to the physical metric; see Section 5.5.6. Using

standard Cartesian coordinates so that all the Christoffel symbols vanish, the

third-order Equation (5.65) reduces to

x̃′′′ = β2x̃′, β2 ≡ −η̃�(β̃, β̃), (6.23)
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where it is recalled that β2 is constant along the conformal geodesic and ′ denotes

differentiation with respect to the physical proper time τ̃ . Regarding (6.23) as a

second-order equation for x̃′ one has that

x̃′ = v1 cosh(βτ̃) + v2 sinh(βτ̃),

where v1 and v2 are two constant vectors on the Minkowski spacetime. Making

use of the initial conditions x̃′′(0) = β̃
�

� and x̃′(0) = x′
� one finds that

x̃′ = x′
� cosh(βτ̃) + β−1β̃

�

� sinh(βτ̃).

A final integration taking into account the initial condition x̃(0) = x� and

Equation (5.63a) yields

x̃(τ̃) = x� + β−1x′
� sinh(βτ̃) + β−2β̃

�

� cosh(βτ̃)− β2β̃
�

�,

β̃(τ̃) = βx′�
� sinh(βτ̃) + β̃� cosh(βτ̃),

where in the first expression, in an abuse of notation, the vectors x′
� and β̃

�

� are

understood as describing points in R4. To rewrite this general solution in terms

of the unphysical proper time τ one makes use of formula (5.58). A computation

yields the formulae:

x(τ) = x� +Θ�Θ
−1(τ)

(
ẋ�τ +

1

2
η̃(ẋ�, ẋ�)β

�
�τ

2

)
, (6.24a)

β(τ) =
(
1 + τ〈β�, ẋ�〉

)
β� −

1

2
η̃�(β�,β�)ẋ�τ, (6.24b)

where

Θ(τ) = Θ�

(
1 + 〈β�, ẋ�〉τ +

1

4
η̃(ẋ�, ẋ�)η̃

�(β�,β�)τ
2

)
.

Conformal geodesics which satisfy η̃(ẋ, ẋ) = 0 at some point coincide, following

the discussion of Section 5.5.4, with null geodesics. Those with β� = 0 are

standard geodesics of the Minkowski spacetime. Now, if ẋ� is spacelike or

timelike one can assume, without loss of generality, that 〈β�, ẋ�〉 = 0 –

following the discussion of Section 5.5.3 this can always be achieved through a

reparametrisation of the form given by Equation (5.48) of Lemma 5.1. If ẋ� and

β�
� generate a timelike 2-surface and ẋ� is timelike, then the conformal geodesic

is a hyperbola in the plane tangent to that 2-surface. An example of such type

of curve is given by the expression

x(τ) =

(
4τ

4− a2τ2
,
1

a
+

2aτ2

4− a2τ2
, 0, 0

)
, |τ | ≤ 2

a
(6.25)

where a−2 ≡ −η̃(ẋ, ẋ). Examples of these conformal geodesics are depicted in

Figure 6.3.
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t

r

a=2 a=1 a=4
5

i0
Γ

i+

i−

I+

I−

Figure 6.3 Examples of conformal geodesics in the Minkowski spacetime: left,
plot in (t, r)-coordinates of the curve (6.25) for the parameter choices a =
4
5
, 1, 2; right, location of the curves in the Penrose diagram of the Minkowski

spacetime. Notice that the curves intersect the conformal boundary at the
same points. The diagram is quantitatively correct.

A special class of conformal geodesics

As a consequence of the transformation properties of the conformal geodesic

equations, the family of curves on the Einstein cylinder given by Equation (6.9)

defines a congruence of conformal geodesics on the Minkowski spacetime.

Recalling that ḡE ≡ Θ̄2gE and gE ≡ Ξ2
M η̃ where Θ̄ and ΞM are the conformal

factors given, respectively, by Equations (6.11) and (6.16), one has that ḡE =

Θ2
M η̃ with ΘM ≡ ΞM Θ̄. Along the conformal curves one has that

ΞM = cos τ + cosψ =

(
4− τ̄2

4 + τ̄2

)
+ cosψ,

where the second equality is obtained from the reparametrisation formula

(6.10) and standard trigonometric identities. Moreover, one finds that along the

conformal geodesics

ΘM = 2 cos2
ψ

2

(
1− 1

4
tan2

ψ

2
τ̄2
)
.

To obtain the covector βM associated to the solution of the η̃-conformal geodesic

equations let

ΥM ≡ Ξ−1
M dΞM = − sin τdT + sinψdψ

cos τ + cosψ
.

Recalling that τ = 2arctan 1
2 τ̄ it follows, using standard trigonometric identities,

that
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Figure 6.4 A class of conformal geodesics ruling the Einstein cylinder; see
main text for further details.

ΥM = −Θ−1
M

(
τ̄dT +

(
1 +

1

4
τ̄2
)
sinψdψ

)
.

Finally, defining βM ≡ β̄+ΥM , one concludes from the transformation formulae

for the solutions of the conformal geodesic equations that the pair (x(τ̄),βM (τ̄))

with

x(τ̄) =

(
2arctan

τ̄

2
, x�

)
,

βM (τ̄) =
(
arctan

τ̄

2
−Θ−1

M τ̄
)
dT −Θ−1

M

(
1 +

1

4
τ̄2
)
sinψdψ,

is a solution to the η̃-conformal geodesic equations. Notice, in particular, that

βM (0) = − sinψ

1 + cosψ
dψ.

A depiction of the above class of conformal geodesics is given in Figure 6.4.

6.2.4 Hyperboloids in the Minkowski spacetime

An important class of spacelike hypersurfaces in the Minkowski spacetime is

given by the standard hyperboloids

Hk = {p ∈ R4 | t2(p)− r2(p) = k}, k > 0. (6.26)

A direct computation reveals that the unit normal vector to these hypersurfaces

is given by

ν� =
1√
k
(t∂t + r∂r).

Using this expression one can verify that the extrinsic curvature of the

hyperboloids is pure trace, that is, proportional to the intrinsic metric of Hk.

The mean curvature (i.e. the trace of the extrinsic curvature) is given by

https://doi.org/10.1017/9781009291347.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.009


6.3 The de Sitter spacetime 155

k=1
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k=1
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k= 1
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k=1

Figure 6.5 Examples of hyperboloids in the Minkowski spacetime: left, the
standard hyperboloids Hk with k = 1, 1

2
, 1

4
, 1

10
in (t, r)-coordinates (see

Equation (6.26)); right, location of the hyperboloids in the Penrose diagram.
The diagram is quantitatively correct.

K̃ =
3√
k
.

That is, the standard hyperboloids are surfaces of constant mean curvature.

Making use of the coordinates (U, V ) introduced in Section 6.2.1, the defining

equation for the hyperboloids can be rewritten as tanU tanV = k. The

hyperboloids intersect null infinity whenever V = 1
2π. It follows that, in this

case, U = 0. Thus, the hyperboloids Hk intersect null infinity at the same points

independent of the value of k. The hypersurfaces differ from each other by the

angle α at which they intersect null infinity. One can compute that

tanα = −dU

dV
= k.

In particular, if k2 = 1, one has that α = 1
4π. This particular hyperboloid

corresponds to a horizontal line T = 1
2π in the Penrose diagram of the Minkowski

spacetime; see Figure 6.5.

A more general class of hyperboloids can be obtained by translating the

standard hyperboloids (6.26). To this end, one considers the defining equation

k = (t−t�)
2−r2 for fixed k and t�. Varying t� one obtains a family of translated

hyperboloids Ht�,k. The intersection of the Ht�,k now depends on the value of

t�: if V = 1
2π, it follows that U = arctan t�.

6.3 The de Sitter spacetime

The de Sitter spacetime (M̃dS , g̃dS) is the solution to the vacuum Einstein

field equations Ric[g̃] = λg̃ with negative constant Ricci scalar, in the signature

https://doi.org/10.1017/9781009291347.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.009


156 Conformal extensions of exact solutions

conventions of this book. The spacetime manifold is given by M̃dS = R×S3 and

there exist coordinates where the metric is given by

g̃dS = dt⊗ dt− a2 cosh2(t/a) h̄, a ≡
√

3

|λ| , −∞ < t < ∞, (6.27)

with h̄ denoting the standard metric of the 3-sphere. Alternatively, there exist

further coordinates (t̄, r̄) in terms of which the metric of the de Sitter spacetime

takes the form

g̃dS =

(
1 +

1

3
λr̄2
)
dt̄⊗ dt̄−

(
1 +

1

3
λr̄2
)−1

dr̄ ⊗ dr̄ − r̄2σ. (6.28)

This metric is static for r̄2 > − 1
3λ. A discussion of the relation between various

systems of coordinates can be found in Griffiths and Podolský (2009).

To construct a conformal extension of the de Sitter spacetime it is convenient

to introduce a new coordinate T via the condition

dt = a cosh(t/a)dT.

Fixing the constant of integration by requiring that T = 0 if t = 0 one obtains

T = 2a arctan et − 1

2
aπ, t = ln tan

(
T

2a
+

1

4
π

)
,

or, equivalently tan(T/2) = tanh(t/2a). Using standard trigonometric identities

the latter can be recast as

cosT =
1

cosh(t/a)
.

Thus, one concludes that

g̃dS = a2 cosh2 t (dT ⊗ dT − h̄) .

The latter expression suggests introducing the conformal factor

ΞdS =
1

a cosh(t/a)
=

1

a
cosT, (6.29)

so that the conformal metric Ξ2
dS g̃ is, again, that of the Einstein cylinder. It

follows that the locus of points for which ΞdS = 0 corresponds to T = ± 1
2π;

notice that T → ± 1
2π as t → ±∞. In view of the latter, one defines future and

past conformal infinity, respectively, as

I ±
dS ≡

{
p ∈ ME

∣∣∣∣ T (p) = ±π

2

}
. (6.30)

The terminology for these sets will be justified in the next section. From the

previous discussion it follows that the de Sitter spacetime is conformal to the

domain

M̃dS ≡
{
p ∈ ME

∣∣∣∣ − π

2
< T (p) <

π

2

}
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Γ2 Γ1

I+
dS

I−
dS

R×S3

M

Figure 6.6 Conformal extension of the de Sitter spacetime. Left, conformal
embedding of the de Sitter spacetime in the Einstein cylinder: the shaded
region corresponds to the set MdS of Equation (6.31). Right, Penrose diagram
of the de Sitter spacetime: the lines Γ1 and Γ2 correspond to the axes of
symmetry, while I +

dS and I −
dS denote, respectively, future and past conformal

infinity; see main text for further details.

of the Einstein cylinder. Moreover, one sets

MdS ≡ M̃dS ∪ I +
dS ∪ I −

dS . (6.31)

To construct the Penrose diagram of the de Sitter spacetime one considers the

quotient domain QdS ≡ MdS/SO(3). The boundary ∂QdS of the quotient

manifold consists of the projection of the conformal boundary (to be denoted

again by I ±
dS) and the two centres of symmetry Γ1 and Γ2 given, respectively,

by the conditions ψ = 0 and ψ = π. A depiction of the Penrose diagram of the

de Sitter spacetime is given in Figure 6.6, right panel.

6.3.1 Behaviour of geodesics

As in the case of the Minkowski spacetime, intuition about the conformal

representation of the de Sitter spacetime can be obtained through the analysis

of the behaviour of geodesics. For simplicity set λ = −3 so that a = 1 in the line

element (6.27). The geodesic equations can be found to be

t′2 − cosh2 t ψ′2 = ε, ψ′ =
�

cosh2 t
,

where � is a constant, ε takes the values 1, 0 or −1 depending on whether one

considers timelike, null or spacelike geodesics and ′ denotes differentiation with

respect to an affine parameter s. As in the case of the Minkowski spacetime one

distinguishes the following three cases:
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(a) Spacelike geodesics. The geodesic equations can be solved to yield

t(s) = arcsinh
(√

�2 − 1 sin(s− s�)
)
,

ψ(s) = ψ� + arctan
(
� tan(s− s�)

)
,

with s� and ψ� real constants. Thus, it follows that the range of the

coordinates is bounded and the geodesics remain in a compact region

following the same path over and over.

(b) Timelike geodesics. For concreteness, consider future-pointing geodesics

– the past pointing case is similar. The geodesic equations can be solved to

give:

t(s) = arcsinh
(√

�2 + 1 sinh(s− s�)
)
,

ψ(s) = ψ� + arctan
(
� tanh(s− s�)

)
.

It follows that for s → ∞ one has t → ∞. Thus, one obtains the limit points

T =
π

2
, ψ = ψ� + arctan �.

The geodesics approach a definite point on the spacelike hypersurface I +
dS

defined in (6.30).

(c) Null geodesics. In this case, the geodesic equations give the solution

t(s) = arcsinh s,

ψ(s) = ψ� + arctan(�s).

From these expressions it follows, on the one hand, that if s → ∞, then

t → ∞, T → π

2
, ψ → ψ� +

π

2
,

while on the other, if s → −∞, then

t → −∞, T → −π

2
, ψ → ψ� −

π

2
.

Hence, the null geodesics start and finish, respectively, at I −
dS and I +

dS , in

antipodal points on S3.

6.3.2 Conformal geodesics in the de Sitter spacetime

As a consequence of the conformal invariance of conformal geodesics, the curves

in the Einstein universe discussed in Section 6.1.3 are also conformal geodesics

of the de Sitter spacetime.

Making use of the relations gE = Ξ2
dS g̃dS and ḡE = Θ̄2gE where Θ̄ and ΞdS

are the conformal factors given, respectively, by Equations (6.11) and (6.29), one
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finds that ḡE = Θ2
dS g̃dS with ΘdS ≡ Θ̄ΞdS . A calculation using the first of the

equations in (6.10) shows that

ΞdS = a cos τ = a

(
4− τ̄2

4 + τ̄2

)
,

where in a slight abuse of notation the coordinate T has been replaced by the

parameter of the curves τ . Hence, one finds that

ΘdS = a

(
1− 1

4
τ̄2
)
,

so that ΘdS vanishes at τ̄ = ±2. To construct the covector associated to the

congruence of conformal geodesics consider ΥdS ≡ ΞdS
−1dΞdS . A calculation

then shows that

ΥdS = − 16τ̄

16− τ̄4
dτ̄ = − 4τ̄

4− τ̄2
dτ.

Letting βdS ≡ β̄ + ΥdS , it follows from the transformation laws for conformal

geodesics in Section 5.5.2 that the pair (x(τ̄),βds(τ̄)), with

x(τ̄) =
(
2arctan

τ̄

2
, x�

)
, βdS(τ̄) = −

(
2τ̄

4− τ̄2

)
dτ̄ , (6.32)

is a solution to the g̃dS-conformal geodesic equations with parameter τ̄ . Notice,

in particular, that at the Cauchy surface given by τ̄ = 0 one has that βdS(0) = 0.

Following the discussion from the previous paragraph, the surface given by the

condition τ̄ = −2 represents past null infinity I −
dS . In some applications, one

needs to prescribe initial data for the congruence of conformal geodesics at I −
dS .

In this case, it is convenient to introduce the further reparametrisation τ̂ = τ̄ +2

so that

ΘdS = τ̂ − 1

4
τ̂2, βdS = −

(
2τ̂ − 4

4τ̂ + τ̂2

)
dτ̂ .

6.4 The anti-de Sitter spacetime

The anti-de Sitter spacetime is given by the manifold M̃adS ≈ R4 equipped

with the metric

g̃adS = cosh2 r dt⊗ dt− a2
(
dr ⊗ dr + sinh2 rσ

)
, a ≡

√
3

λ
,

with t ∈ R and r ∈ (0,∞). Strictly speaking, this spacetime is the so-called

universal covering space of the anti-de Sitter spacetime – the classical

anti-de Sitter spacetime has a periodic time coordinate and, thus, closed timelike

curves. As in the case of the de Sitter spacetime, it is possible to introduce

coordinates (t̄, r̄) in terms of which the metric takes the form

g̃adS =

(
1 +

1

3
λr̄2
)
dt̄⊗ dt̄−

(
1 +

1

3
λr̄2
)−1

dr̄ ⊗ dr̄ − r̄2σ. (6.33)
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As (in the signature conventions used in this book) λ > 0, there are no horizons

in the anti-de Sitter spacetime; see, for example, Griffiths and Podolský (2009).

To obtain a conformal representation of this spacetime, it is convenient to

consider a new radial coordinate via the condition

dr = cosh rdψ,

so that ψ = 2arctan er − 1
2π. This condition is equivalent to tanψ = sinh r.

Hence, one has that ψ ∈ [0, 1
2π]. Setting T = t/a, a calculation then shows that

g̃adS = a2 cosh2 r (dT ⊗ dT − h̄) .

The latter suggests introducing the conformal factor

ΞadS =
a

cosh r
= a cosψ. (6.34)

Thus, the conformal metric Ξ2
adS g̃ is, again, that of the Einstein cylinder. From

the previous discussion it follows that the anti-de Sitter spacetime is conformal

to the domain

M̃adS =

{
p ∈ ME

∣∣∣∣ 0 ≤ ψ(p) <
π

2

}
,

of the Einstein cylinder. Notice, however, that in contrast to the conformal

representation of the de Sitter spacetime, the conformal anti-de Sitter spacetime

does not cover the whole spatial sections of the cylinder. In particular, one has

that the conformal factor ΞadS vanishes at ψ = 1
2π; that is, the conformal

boundary is, in this case, a timelike hypersurface. Following standard usage,

define the conformal infinity of the anti-de Sitter spacetime as

IadS ≡
{
p ∈ ME

∣∣∣∣ ψ(p) = π

2

}
.

One also defines

MadS ≡ M̃adS ∪ IadS . (6.35)

The Penrose diagram for the anti-de Sitter spacetime is constructed by consider-

ing the quotient domain QadS ≡ MadS/SO(3) with boundary ∂QadS = IadS∪Γ
where IadS denotes the projection of null infinity onto QE and Γ denotes the

centre of symmetry given by the condition ψ = 0. A depiction of the Penrose

diagram is given in Figure 6.7.

6.4.1 Geodesics in the anti-de Sitter spacetime

In what follows, for simplicity assume that λ = 3 so that a = 1. Radial geodesics

in the anti-de Sitter spacetime are described by the equations

cosh2 r T ′2 − r′2 = ε, T ′ =
�

cosh2 r
.
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Γ IadS

R×S3

MadS

Figure 6.7 Conformal extension of the anti-de Sitter spacetime. Left, confor-
mal embedding of the anti-de Sitter spacetime in the Einstein cylinder: the
shaded region corresponds to the set MadS of Equation (6.35). Right, Penrose
diagram of the anti-de Sitter spacetime: the line Γ corresponds to the axis of
symmetry, while IadS denotes conformal infinity; see main text for further
details.

These equations can be obtained from those of the de Sitter spacetime by the

replacements t �→ r, ψ �→ T and ε �→ −ε; see Section 6.3.1. Again, one has three

cases to consider:

(a) Spacelike geodesics. In this case, the geodesic equations can be solved to

give

r(s) = arcsinh
(√

�2 + 1 sinh(s− s�)
)
,

T (s) = T� + arctan
(
� tanh(s− s�)

)
,

with s� and T� real constants. Thus, for s → ∞ one obtains the limits

r → ∞, ψ → π

2
, T → T� + arctan �.

As a consequence, in the conformal representation, radial spacelike geodesics

approach the conformal boundary IadS .

(b) Timelike geodesics. For simplicity only future-oriented geodesics are

considered. The solution to the geodesic equations is then given by

r(s) = arcsinh
(√

�2 − 1 sin(s− s�)
)
,

T (s) = T� + arctan
(
� tan(s− s�)

)
.

Accordingly, the coordinate r is periodic while τ grows unbounded – the

limit points of these curves are not in the Einstein cylinder.

(c) Null geodesics. In this case, the solution to the geodesic equations is

r(s) = arcsinh s,

T (s) = T� + arctan s.
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As a consequence of these equations one has the limits

r → ∞, ψ → π

2
, T → T� +

π

2
,

as s → ∞. Thus, in the conformal representation, the null geodesics end at

the conformal boundary IadS .

6.4.2 Conformal geodesics in the anti-de Sitter spacetime

The methods used to construct conformal geodesics in the Minkowski and the de

Sitter spacetimes can also be used in the anti-de Sitter spacetime. For conciseness,

the discussion is restricted to the class of conformal geodesics arising from the

curves (6.9) in the Einstein universe.

Using that gE = Ξ2
adS g̃adS and that ḡE = Θ̄2gE where Θ̄ and ΞadS are the

conformal factors given by Equations (6.11) and (6.34), one finds that ḡE =

Θ2
adsg̃adS , where

ΘadS ≡ Θ̄ΞadS = a cosψ

(
1 +

1

4
τ̄2
)
.

Letting

ΥadS ≡ Ξ−1
adSdΞadS = − tanψdψ,

one finds that the associated covector is given by

βadS ≡ β̄ +ΥadS =
1

2
τ̄dT − tanψdψ

=
2τ̄

4 + τ̄2
dτ̄ − tanψdψ.

The expression for the actual curve is, as in the case of the de Sitter spacetime,

given by

x(τ̄) =
(
2arctan

τ̄

2
, x�

)
. (6.36)

An important property of this non-intersecting congruence of conformal geodesics

is that curves that for some value of the parameter τ̄ are at the conformal

boundary IadS remain in it for all values of τ̄ ; this observation follows from the

fact that the curve given by Equation (6.36) is constant in the spatial directions.

Remark. As arctan 1
2 τ̄ → 1

2π as τ̄ → ∞ and τ = 2arctan 1
2 τ̄ , the parameter τ̄

does not cover the whole Einstein cylinder and only exhausts the slab [−π, π]×S3.

In order to continue the conformal geodesic to other portions of the anti-de Sitter

spacetime one has to introduce a reparametrisation of the curve by means of a

fractional transformation as discussed in Lemma 5.1.
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6.5 Conformal extensions of static and stationary

black hole spacetimes

A natural extension of the discussion of the previous sections is the analysis

of the conformal structure of spacetimes describing black holes. The more

complicated topology of these spacetimes and the presence of singularities and

horizons make this analysis a much more challenging endeavour. In fact, several

aspects of the conformal structure of static and stationary black holes are open

research questions.

6.5.1 The Schwarzschild spacetime

The Schwarzschild spacetime, being static and spherically symmetric, is the

simplest type of black hole spacetime. The Birkhoff theorem states that any

spherically symmetric solution to the vacuum Einstein field equations with

vanishing cosmological constant is, in fact, isometric to the Schwarzschild

spacetime; see, for example, Misner et al. (1973). Moreover, the black hole

uniqueness theorems show that the Schwarzschild spacetime is the only static

black hole spacetime; see, for example, Chruściel et al. (2012b) for an entry point

to the extensive literature on this topic.

The Schwarzschild metric is given in standard (t, r) coordinates by the line

element

g̃S =

(
1− 2m

r

)
dt⊗ dt−

(
1− 2m

r

)−1

dr ⊗ dr − r2σ, (6.37)

with m the so-called mass parameter. The reader interested in a discussion of

the various aspects of the Schwarzschild spacetime is referred to, for example,

Griffiths and Podolský (2009) and Hawking and Ellis (1973).

To obtain a conformal extension of the Schwarzschild spacetime it is convenient

to make use of coordinates adapted to the light-cone structure of the spacetime.

Accordingly, one introduces the advanced and retarded null Eddington-

Finkelstein coordinates

u ≡ t− r − 2m log |r − 2m| , v ≡ t+ r + 2m log |r − 2m| ,

so that the line element (6.37) transforms into

g̃S =
1

2

(
1− 2m

r

)
(du⊗ dv + dv ⊗ du)− r2σ,

where the relation between r and the coordinates (u, v) is given implicitly by the

condition

r + 2m log |r − 2m| = 1

2
(v − u).
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The singular behaviour of the metric at r = 2m is then removed by means of a

reparametrisation of the null coordinates. Namely, one sets

U ≡ −4me−u/4m, V ≡ 4mev/4m,

so that one obtains

g̃S =
m

r
e−r/2m(dU ⊗ dV + dV ⊗ dU)− r2σ, (6.38)

where r is now given implicitly by the condition

UV = −8m(r − 2m)er/2m.

The horizon is then given by the condition UV = 0 while the singularity

corresponds to UV = 16m2. The line element in Equation (6.38) is the so-

called Kruskal-Székeres form of the Schwarzschild spacetime. It provides the

maximal analytic extension of the Schwarzschild metric (6.37). Inspection of

the admissible range of coordinates in Equation (6.38) shows that the resulting

maximal manifold has the topology of R× R× S2.

To compactify the Kruskal-Székeres form of the Schwarzschild metric one

introduces a further coordinate transformation:

Ū ≡ arctan

(
U

4m

)
, V̄ ≡ arctan

(
V

4m

)
where

−1

2
π < Ū <

1

2
π, −1

2
π < V̄ <

1

2
π, −1

2
π < Ū + V̄ <

1

2
π.

It follows then that

dU = 4m sec2 ŪdŪ , dV = 4m sec2 V̄ dV̄ ,

so that the line element (6.38) transforms into

g̃S = sec2 Ū sec2 V̄

(
16m3

r
e−r/2m(dŪ ⊗ dV̄ + dV̄ ⊗ dŪ)− r2 cos2 Ū cos2 V̄ σ

)
.

It is, therefore, natural to consider a conformal factor of the form

ΞS = cos Ū cos V̄ ,

so that gS = Ξ2
S g̃S is given by

gS =
16m3

r
e−r/2m(dŪ ⊗ dV̄ + dV̄ ⊗ dŪ)− r2 cos2 Ū cos2 V̄ σ,

where r = r(Ū , V̄ ). This conformal metric is singular at r = 0 (the singularity).

In order to discuss the structure of the conformal boundary of the Schwarzschild

spacetime, it is convenient to introduce the coordinates

T ≡ V̄ + Ū , ψ ≡ V̄ − Ū ,
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so that T ∈ [−π, π], ψ ∈ [−π, π]. One sees that the maximal analytic extension

of the Schwarzschild spacetime is conformal to the interior of the domain MS ⊂
(−π, π)× [−π, π]× S2 with boundary given by

∂MS = I +
1 ∪ I +

2 ∪ I −
1 ∪ I −

2 ∪ i01 ∪ i02 ∪ i+1 ∪ i+2 ∪ i−1 ∪ i−2 ,

where by analogy with the analysis of the conformal boundary of the Minkowski

spacetime one defines the various components of null infinity as

I +
1 ≡

{
V̄ =

1

2
π

}
, I +

2 ≡
{
Ū =

1

2
π

}
,

I −
1 ≡

{
Ū = −1

2
π

}
, I −

2 ≡
{
V̄ = −1

2
π

}
,

and the two components of spatial infinity as

i01 ≡ {T = 0, ψ = π}, i02 ≡ {T = 0, ψ = −π}.

Finally, the timelike infinities are given by

i±1 ≡
{
T = ±π, ψ =

1

2
π

}
, i±2 ≡

{
T = ±π, ψ = −1

2
π

}
.

An analysis of the geodesics on the Schwarzschild spacetime justifies the name

given to the various components of ∂MS . Observe that the singularities at r = 0

are not included as part of the boundary ∂MS . In this representation, the spatial

infinities i01 and i02 can be seen to correspond to two points on the conformal

manifold. Further properties of the conformal structure of the Schwarzschild

spacetime – in particular, the nature of i0 – will be analysed in the context of the

conformal Einstein field equations in Chapter 20. Finally, the Penrose diagram of

the Schwarzschild spacetime can be readily obtained by considering the quotient

manifold QS = MS /SO(3); the resulting diagram is given in Figure 6.8.

Conformal geodesics in the Schwarzschild spacetime

A detailed analysis of a class of conformal geodesics in this spacetime can be

found in Friedrich (2003a) where it is shown that the Schwarzschild spacetime

can be completely covered by a (non-singular) congruence of conformal geodesics.

This congruence is adapted to the spherical symmetry of the spacetime.

6.5.2 Conformal extensions of other static, spherically

symmetric spacetimes

The procedure to construct a conformal extension of the Schwarzschild spacetime

discussed in Section 6.5.1 can be generalised to include a wide class of static,

spherically symmetric spacetimes. In this section, an adaptation of a general

procedure given on Walker (1970) is discussed. This discussion illuminates the

conformal diagram of a number of spacetimes.
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i01i02

I+
1

i
+
1i

+
2

I+
2

H +
2 H +

1

I−
1I−

2

i−2

H −
2 H −

1

i−1

Figure 6.8 Penrose diagram of the Schwarzschild spacetime. The null hyper-
surfaces I ±

1 and I ±
2 correspond to the four different components of null

infinity, while the points i01, i
0
2 and i±1 , i

±
2 denote, respectively, the various

locations of spatial and timelike infinities. The serrated lines denote the
singularities, and H ±

1 and H ±
2 correspond to the various components of the

horizon; see the main text for further details.

In what follows, let (M̃, g̃) denote a spherically symmetric spacetime endowed

with a further Killing vector ∂t. The following considerations will be independent

of the matter content of the spacetime; hence, the spacetime is not assumed to

be a vacuum. Attention will be restricted to spacetimes in which it is possible

to find coordinates (t, r) such that the metric g̃ takes the form

g̃ = F (r)dt⊗ dt− F (r)−1dr ⊗ dr − r2σ.

The coordinate r is an areal coordinate; that is, the area of a 2-sphere described

by the conditions t = constant, r = constant is 4πr2. The function F (r) is the

norm of the Killing vector ∂t. When F (r) > 0 the Killing vector ∂t is timelike,

and, thus, the metric g̃ is static.

To simplify the presentation, the subsequent analysis will make use of the

quotient manifold Q̃ = M̃/SO(3). The two-dimensional quotient metric γ̃

induced by g̃ on Q̃ is given by

γ̃ = F (r)dt⊗ dt− F (r)−1dr ⊗ dr.

The Levi-Civita connection associated to the Lorentzian metric γ̃ will be

denoted by ˜�D. Let ẋ = (ṫ, ṙ) denote the tangent vector to an affinely parametrised

geodesic in Q̃; here, and in what follows, a dot ( ˙ ) denotes differentiation with

respect to an affine parameter. The geodesic equation ˜�Dẋẋ = 0 can be integrated

once to yield

ṫ = κF, ṙ =
√

κ2 − εF ,

where κ is a constant and ε ≡ γ̃(ẋ, ẋ). As γ̃ is a two-dimensional metric, the

only invariant of the curvature of γ̃ is the Ricci scalar R[γ̃] = F ′′, where ′ denotes
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differentiation with respect to r. In the remainder of this section it will be shown

that if F and F ′′ are finite for all r ∈ R, then every geodesic in Q̃ can be extended

until it is complete. If, on the other hand, F or F ′′ become unbounded for some

value r�, then only those geodesics along which r = r� within a finite affine

distance from some point in Q̃ are incomplete and inextendible; hence, Q̃ and

also M̃ are singular. The extensions obtained from the following considerations

are maximal.

Elementary blocks. In what follows, assume that F has a finite number of

zeros, to be denoted by ai, i = 1, . . . , n with a1 < · · · < an. If F approaches a

constant finite value as r → ∞, so that R[γ̃] = F ′′ → 0, then one can redefine

coordinates so that limr→∞ F = ±1. In this case Q̃ is asymptotically flat and a

null conformal boundary similar to that of the Minkowski spacetime can be

constructed; an analogous discussion can be made in the case r → −∞. A

different possible asymptotic behaviour occurs when F becomes unbounded as

r → ∞. Using the de Sitter and the anti-de Sitter metrics in static form as

given by Equations (6.28) and (6.33) one sees that the behaviour F → −∞ and

F → ∞ as r → ∞ corresponds, respectively, to de Sitter-like and anti-de Sitter-

like asymptotic regions. These regions can be compactified to obtain conformal

boundaries similar to those of the de Sitter and anti-de Sitter spacetimes, that

is, given, respectively, by spacelike and timelike hypersurfaces.

When F vanishes, the orbits of the timelike Killing vector become null; that

is, one has a Killing horizon . This suggests dividing Q̃ into n + 1 regions

(blocks). Each of these regions is bounded by two of the Killing horizons, by a

Killing horizon and conformal infinity, or by a Killing horizon and a singular line

at r = r� for r� fixed. The maximal extension of Q̃ is found by gluing together

elementary blocks along their boundaries (seams). In what follows, for a non-

singular seam it will be understood one where F = 0 and F ′′ is finite, while

a singular seam will be one where F or F ′′ (or both) are unbounded. Blocks

can be glued together only along non-singular seams across which F ′′ is smooth.

In each region

Q̃i ≡
{
(t, r) ∈ Q̃ | t ∈ R, r ∈ [ai, ai+1]

}
,

fix some value ri ∈ (ai, ai+1) of r and define null coordinates via

ui ≡ t−
∫ r

ri

F−1(s)ds, vi ≡ t+

∫ r

ri

F−1(s)ds.

In terms of these new coordinates the metric γ̃ takes the form

γ̃ =
1

2
F (r)(dui ⊗ dvi + dvi ⊗ dui).

This form of the metric is smooth for ui, vi ∈ R if F (r) is smooth. The coordinate

r will be regarded as a function of (ui, vi) given, implicitly, as the solution to the

equations
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1

2
(vi − ui) =

∫ r

ri

F−1(s)ds,
1

2
(ui + vi) = t. (6.39)

The construction can be extended to singular blocks by setting ri = r�.

In the non-singular case, the integrals∫ r

ai

F−1(s)ds,

∫ ai+1

ri

F−1(s)ds,

are divergent as the points r = ai, ai+1 are poles of the integrand. From this

observation together with the formulae in (6.39), assuming F > 0 in Q̃i, one

deduces the limits:

(a) If r → ai+1 and vi is finite, then ui → −∞ and t → −∞.

(b) If r → ai+1 and ui is finite, then vi → +∞ and t → +∞.

(c) If r → ai and vi is finite, then ui → +∞ and t → +∞.

(d) If r → ai and ui is finite, then vi → −∞ and t → −∞.

The setting described by the above limits is depicted in Figure 6.9, left panel.

The coordinates (ui, vi) can be compactified via

Ui ≡ arctanui, Vi ≡ arctan vi,

with Ui, Vi ∈ [− 1
2π,

1
2π] so that γ̃ can be rewritten as

γ̃ =
1

2
F (r) sec2 Ui sec

2 Vi(dUi ⊗ dVi + dVi ⊗ dUi). (6.40)

In what follows, for simplicity, given a regular block Q̃i with coordinate r ∈
[ai, ai+1], it is assumed that the zeros of F (r) are such that

F (r) sec2 Ui sec
2 Vi < ∞ as Ui → ±1

2
π or Vi → ±1

2
π.

F >0 F<0

r=ai

r=ai

r=ai+1

r=ai+1 r=ai+1 r=ai+1

r=ai r=ai

r= const.

r= const.

u= const.

v= const.

v= const.

u= const.

u=+∞

u=−∞
v=+∞

v=−∞

v=+∞
u=+∞

v=−∞

u=−∞

Figure 6.9 Coordinates in a regular block without asymptotic regions; see
main text for details.
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(a) (b)

(e) (f)

(c) (d)

Figure 6.10 Elementary blocks for the construction of Penrose diagrams: (a)
non-singular block without asymptotic regions; (b) non-singular block with a
null I ; (c) non-singular block with a spacelike I ; (d) non-singular block with
a timelike I ; (e) block with a timelike singularity; (f) block with a spacelike
singularity.

In the case of blocks Q̃i with r ∈ [ai,±∞) corresponding to asymptotic regions,

the metric (6.40) allows us to read out a conformal factor. The particular form

of the conformal factor depends on the particular nature of the asymptotic end:

Ξi =

⎧⎪⎪⎨
⎪⎪⎩

cosUi cosVi if F (r) → 1 as r → ∞

cosUi cosVi√
F (r)

if F (r) → ∞ as r → ∞.

The resulting construction can be depicted in a conformal diagram.

The discussion of the case F < 0 in Q̃i is analogous. In this case the orbits

of the Killing vector ∂t are spacelike, and the hypersurfaces of constant r are

timelike. The behaviour of the various coordinates in a regular elementary block

is summarised in Figure 6.9, right panel. A depiction of the various elementary

blocks is given in Figure 6.10.

Flipping of blocks. The convention used in drawing the diagrams in Figure 6.9

is that the coordinate r increases from left to right (if F > 0) and from bottom to

top (if F < 0). As this is a mere convention, it is possible to flip the blocks about

ri. This operation effectively interchanges the roles of u and v. In addition, as

the metric γ̃ is independent of the coordinate t, one has the discrete symmetry

t �→ −t which allows further flipping of blocks with respect to the surfaces of

constant t – vertically if F > 0 and horizontally if F < 0.

Gluing blocks. All geodesics such that r = ai for some finite value of the affine

parameter are incomplete. These geodesics can be extended by gluing blocks

along non-singular seams. The convention followed in gluing the blocks is that

the time coordinate in each block, t if F (r) > 0 and r if F (r) < 0, changes

https://doi.org/10.1017/9781009291347.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.009


170 Conformal extensions of exact solutions

Q̃i Q̃i+1

(b)

1 1

1

1

(a)

0 0

2

2

Figure 6.11 The two ways of gluing elementary blocks as discussed in the main
text. In the configuration (1) the block Q̃i+1 has been flipped about ri, while
in configuration (2) it is necessary to invert its time orientation; see the main
text for further details.

vertically. Consider, for example, the gluing of a block Q̃i+1 with F (r) > 0

and a block Q̃i with F (r) < 0. By suitably flipping the blocks, they can be

glued together in the two ways shown in Figure 6.11. Under the assumption

that F ′′ is smooth at r = ai+1 (and hence also the curvature), the gluing of

blocks is equivalent to showing that the null hypersurfaces are continuous along

the seams, that is, that there is a coordinate system covering both blocks in a

neighbourhood of r = ai+1 in a smooth fashion. This construction is implemented

through Eddington-Finkelstein type coordinates.

As a first example consider configuration (1) of Figure 6.11 where the block

Q̃i is glued to a block Q̃i+1 which has been flipped about ri. Direct inspection

reveals that while advanced null coordinates exhaust at the gluing seam (i.e.

they become infinite), a null retarded coordinate extends to the two blocks Q̃i

and Q̃i+1. Accordingly, one sets

du = dt− F−1(r)dr,

so that

γ̃ = F (r)du⊗ du+ (du⊗ dr + dr ⊗ du). (6.41)

Now, allowing r ∈ [ai, ai+2] one finds that the coordinates (u, r) cover both

blocks in configuration (1) of Figure 6.11 – the resulting combined block is shown

in configuration (1) of Figure 6.12. In particular, the coordinate u is finite at

r = ai+1 and the metric (6.41) is smooth for r ∈ (ai, ai+2).

In order to perform the gluing in configuration (2) of Figure 6.11, one needs to

flip the block Q̃i+1 about t. Direct inspection shows that for this configuration

retarded null coordinates exhaust at the gluing seam. Accordingly, one introduces

advanced null coordinates

dv = dt+ F−1(r)dr,

so as to obtain

γ̃ = F (r)dv ⊗ dv − (dv ⊗ dr + dr ⊗ dv). (6.42)
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(a) (b)2

1

11

1

2

2

2

1

1

1

0

0

0

0

Figure 6.12 The two composite blocks obtained from the the gluing procedures
in Figure 6.11.

0

0

0

2
2

1

1

1

1

Figure 6.13 Gluing applied to three blocks simultaneously. A fourth block can
be glued using the Kruskal construction – see the main text for further details.

The coordinate v is finite at r = ai+1. Thus, the pair (v, r) covers the composite

block. One can verify that the metric (6.42) is smooth for r ∈ (ai, ai+2); the

resulting combined block is shown in configuration (2) of Figure 6.12.

Gluing à la Kruskal. The gluings discussed in the last paragraphs can be

performed simultaneously; the resulting configuration is shown in Figure 6.13.

In addition, one could also glue a further region Q̃i+1 obtained from Q̃i+1 by

applying the reflection in the time coordinate. Notice, however, that the point

p is not covered by either of the coordinates (u, r) and (v, r). Depending on the

particular form of F (r) it may be possible to obtain a single coordinate patch for

the four blocks; this is the case, for example, in the Schwarzschild spacetime. The

procedure to do this makes use of a generalisation of the Kruskal coordinates;

see Figure 6.13. The general strategy is to find coordinates (U, V ) such that the

metric takes the form
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γ̃ = G(r)(dU ⊗ dV + dV ⊗ dU),

where G is bounded and non-zero at r = ai+1. Since U = U(t, r) and V = V (t, r)

one readily finds the conditions

G∂tU∂tV = F, ∂rU∂tV + ∂tU∂rV = 0, G∂rU∂rV = −F−1.

It can be verified that a solution to the above is given by

U(t, r) = a exp

(
bt+ b

∫
dr

F (r)

)
, V (t, r) =

1

a
exp

(
−bt+ b

∫
dr

F (r)

)
,

G(r) =
F (r)

b2
exp

(
−2b

∫
dr

F (r)

)
,

where a and b are constants. The function G(r) given by the above formulae

can be singular. The key point in the construction is to analyse whether the

constant b can be chosen so that G(r) is bounded and non-zero at r = ai+1. As

an illustration, in the case of the Schwarzschild spacetime one has that

F (r) = 1− 2m

r
so that G(r) =

1

b2r
(r − 2m)1−4mbe−2br.

Hence, choosing b = 1/4m one has

G(r) =
16m2

r
e−r/2m,

which is bounded and non-zero at r = 2m, the location of the horizon.

By contrast, in the case of the extremal Reissner-Nordström spacetime – see

Equation (6.43) – one has

F (r) =
(
1− m

r

)2
so that G(r) =

1

b2
(r −m)2−4mb exp

(
−2br +

6m2b

r −m

)
.

In this case one cannot find a value of b which makes G(r) finite and non-zero

at r = m. In particular, the choice b = 1/2m yields

G(r) =
1

4m2
exp

(
− r

m
+

3m

r −m

)
,

which is singular at r = m. More generally, if F (r) is a rational function, it can

be shown that the value b can be chosen so that G(r) is finite and non-zero at

r = ai+1 if ai+1 is a non-repeated zero of F (r); see Walker (1970) for the details

of the proof.
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Some examples

The procedure described in the previous paragraphs can be employed to

construct the Penrose diagrams and conformal compactifications of a number of

well-known spherically symmetric spacetimes. In particular, one has the following

(details can be found in the given references):

The non-extremal Reissner-Nordström spacetime. This is the solution to

the Einstein-Maxwell field equations given by the metric

g̃ =

(
1− 2m

r
+

q2

r2

)
dt⊗ dt−

(
1− 2m

r
+

q2

r2

)−1

dr ⊗ dr − r2σ,

with q2 < m2. In this case F (r) = 1−2m/r+q2/r2 has two zeros. One can identify

three elementary blocks: an asymptotically flat region, a standard regular block

and a block with a timelike singularity. In this case Kruskal’s construction can

be employed to glue four blocks simultaneously. The resulting Penrose diagram

is given in Figure 6.14; see Carter (1973).

Figure 6.14 Penrose diagram of the Reissner-Nordström spacetime in the non-
extremal (q2 < m2) case. The points i0 correspond to the various spatial
infinities, the points i± to future and past timelike infinity, respectively, and
the lines I ± to the various components of null infinity. The dashed lines
H ± correspond to the various horizons. Finally, the serrated lines denote the
singularities.
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Figure 6.15 Penrose diagram of the Reissner-Nordström spacetime in the
extremal case (q2 = m2). The point i0 corresponds to spatial infinity, the
points i± to future and past timelike infinity, respectively, and the lines I ±

to the various components of null infinity. The dashed lines labeled by H
correspond to the various horizons. Finally, the serrated lines denote the
singularities.

The extremal Reissner-Nordström spacetime. This is the particular case

of the Reissner-Nordström spacetime for which q2 = m2. The metric is given by

g̃ =
(
1− m

r

)2
dt⊗ dt−

(
1− m

r

)−2

dr ⊗ dr − r2σ. (6.43)

In this case, one has a double zero of F (r) = (1 − m/r)2. Thus, one cannot

make use of Kruskal’s construction. One can identify two elementary blocks: an

asymptotically flat one and a block with a timelike singularity. The resulting

Penrose diagram is given in Figure 6.15; see Carter (1966a, 1971). An interesting

property of the extremal Reissner-Nordström spacetime is that it is conformally

invariant under a certain spatial inversion; see Couch and Torrence (1984). This

discrete conformal symmetry can be used to relate properties of null infinity with

properties of the horizon; see Bizon and Friedrich (2012). A similar symmetry

exists for a particular combination of the parameters in the Reissner-Nordström-

de Sitter spacetime; see Brännlund (2004).

The Schwarzschild-de Sitter and Schwarzschild-anti de Sitter space-

times. The metric for these spacetimes is given by

g̃ =

(
1− 2m

r
+

1

3
λr2
)
dt⊗ dt−

(
1− 2m

r
+

1

3
λr2
)−1

dr ⊗ dr − r2σ,

where it is assumed that m > 0. If λ > 0 (the anti-de Sitter case), then it can be

verified that F (r) = 1− 2m/r−λr2/3 has only one real root corresponding to a

black hole-type horizon. The resulting diagram is given in Figure 6.16. If λ < 0

(the de Sitter case) and 0 < −9λm2 < 1, then F (r) can be shown to have two
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Figure 6.16 Penrose diagram of the Schwarzschild-anti de Sitter spacetime.
The vertical lines I denote the two components of conformal infinity, while
the dashed lines labeled by H ± denote the various components of the horizon.
The serrated lines denote the singularities.

Figure 6.17 Penrose diagram of the Schwarzschild-de Sitter spacetime. The
horizontal lines labeled by I ± correspond to the various components of
conformal infinity. The dashed lines Hc and Hb denote, respectively, the
cosmological and black hole horizons. The serrated lines indicate the location
of the singularities.

positive real roots corresponding, respectively, to a black hole-type horizon and

a cosmological type horizon. The resulting blocks can be arranged in a periodic

diagram as given in Figure 6.17; see, for example, Griffiths and Podolský (2009).

In this case it is also possible to make topological identifications; see Beig and

Heinzle (2005). The cases −9λm2 = 1 and −9λm2 > 1 correspond, respectively,

to the so-called extremal and hyperextremal cases.

Other examples of spacetimes amenable to the general construction described

in this section are the Nariai solution, the Reissner-Nordström-de Sitter and the

Reissner-Nordström-anti de Sitter solutions; see, for example, Brill and Hayward

(1994) for a detailed discussion.

6.5.3 Extending across the conformal boundary

In Schmidt and Walker (1983) it has been observed that the conformal represen-

tations of some spacetimes can be extended across the conformal boundary. In

the case of the Schwarzschild solution this is best seen by considering the metric

written in terms of a retarded null coordinate:

g̃S =

(
1− 2m

r

)
du⊗ du+ (du⊗ dr + dr ⊗ du)− r2σ, (6.44)
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where, in particular, u ∈ R. Defining � ≡ 1/r, a calculation yields that

�2g̃S = �2 (1− 2m�)du⊗ du− (du⊗ d�+ d�⊗ u)− σ. (6.45)

In this representation, future null infinity I + is given by the condition � = 0.

The key observation is that the metric (6.45) can be analytically extended by

allowing � to take negative values. To identify the spacetime on the other side

of I + one undoes the conformal rescaling to obtain

ḡS = (1− 2m�)du⊗ du− 1

�2
(du⊗ d�+ d�⊗ du)− 1

�2
σ,

where � ∈ (−∞, 0). To bring the metric to a more familiar form one introduces

new coordinates r̄ = −1/�, v̄ = u and defines m̄ = −m, so that

ḡS =

(
1− 2m̄

r̄

)
dv̄ ⊗ dv̄ − (dv̄ ⊗ dr̄ + dr ⊗ dv̄)− r̄2σ, (6.46)

with r̄ ∈ (0,∞) and v̄ ∈ R. The metric (6.46) corresponds to the negative

mass Schwarzschild spacetime in advanced null coordinates. The null

hypersurface I + of the conformal extension of the original (positive mass)

Schwarzschild spacetime corresponds to the null hypersurface I − of the negative

mass Schwarzschild spacetime. It is important to point out that the spacetimes

described by the metrics (6.44) and (6.46) are causally disconnected; however,

at the level of the conformal structure, they are an extension of each other. This

situation is depicted, at the level of Penrose diagrams, in Figure 6.18.

The ideas described in the previous paragraphs can be used to construct so-

called maximal conformal extensions of the Schwarzschild spacetime.

Further details can be found in Schmidt and Walker (1983). The construction

described in this section can be adapted to other spacetimes, for example, the

Reissner-Nordström solution.

Figure 6.18 Extending the conformal structure of the Schwarzschild spacetime
through null infinity. The future null infinity of the positive mass Schwarzschild
spacetime is identified with the past null infinity of the negative mass
Schwarzschild spacetime, see main text for further details. The points denoted
by white dots are excluded from the discussion.
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6.6 Further reading

The discussion presented in this chapter has been restricted to the analysis of the

conformal structure of static, spherically symmetric spacetimes. Some aspects of

this discussion can be adapted to the analysis of other exact solutions like the

Kerr and Kerr-Newman spacetimes; this is discussed in, for example, Carter

(1973), Hawking and Ellis (1973) and Griffiths and Podolský (2009). Another

class of spacetimes amenable to an explicit discussion of its conformal structure is

that of the Friedman-Lemâıtre-Robertson-Walker (FLRW) cosmological models;

see again Hawking and Ellis (1973) and Griffiths and Podolský (2009).

An alternative discussion of Penrose diagrams of spherically symmetric

spacetimes which allows for dynamic configurations can be found in appendix C

of Dafermos and Rodnianski (2005). The idea of a Penrose diagram can be

adapted to the analysis of suitable two-dimensional timelike totally geodesic

hypersurfaces of non-spherically symmetric spacetimes. This idea has been

particularly fruitful in the case of the Kerr and Kerr-Newman spacetime; see,

for example, Carter (1966b, 1968, 1973), Hawking and Ellis (1973) and Griffiths

and Podolský (2009). This strategy, has been adapted to a variety of situations

in Chruściel et al. (2012a).
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