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Abstract

Let ¥ be a family of zero-free meromorphic functions in a domain D, let 4 be a holomorphic function
in D, and let k be a positive integer. If the function f® — /4 has at most k distinct zeros (ignoring
multiplicity) in D for each f € ¥, then ¥ is normal in D.
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1. Introduction

Let D be a domain in C and ¥ be a family of meromorphic functions in D. We say that
¥ is normal in D (in the sense of Montel) if each sequence {f,} in ¥ has a subsequence
{fn;} that converges locally uniformly on D, with respect to the spherical metric, to a
meromorphic function or co (see Hayman [4], Schiff [9], or Yang [11]). To avoid
any confusion, we point out that the spherical metric is applied to the values of the
function, not to the points in D.

In 1959, Hayman [3] proved the following result.

THeOREM 1. Let f be a nonconstant meromorphic function in C and k be a positive
integer. Then at least one of the functions f and f% — 1 has a zero. Moreover; if f
is transcendental, then at least one of the functions f and f® — 1 has infinitely many
zeros.

The normality corresponding to Theorem 1 was conjectured by Hayman [5] and
confirmed by Gu [2].
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THEOREM 2. Let k be a positive integer and let ¥ be a family of zero-free meromorphic
functions in a domain D. If, for each f € F, the function f® — 1 has no zeros in D,
then ¥ is normal in D.

In 1986, Yang [10] extended Theorem 2 as follows.

THEOREM 3. Let F be a family of meromorphic functions defined in a domain D and
h be a holomorphic function in D that is not identically zero. If, for each f € F, the
functions f and f*% — h have no zeros in D, then F is normal in D.

Recently, Chang [1] improved Theorem 2 and proved the following result.

THEOREM 4. Let k be a positive integer and F be a family of zero-free meromorphic
functions in a domain D such that, for each f € F, the function f® — 1 has at most k
distinct zeros (ignoring multiplicity) in D. Then ¥ is normal in D.

Chang also gave an example to show that the condition that f® — 1 has at most k
distinct zeros is best possible.

It is natural to ask whether Theorem 3 remains valid if we replace the hypothesis
that f® — h has no zeros with the hypothesis that f*) — & has at most k distinct zeros.
In this paper, we use the methods of Chang [1] and of Pang et al. [7] to give an
affirmative answer to the question. Here is our main result.

THEOREM 5. Let F be a family of zero-free meromorphic functions in a domain D, let
h be a holomorphic function in D that is not identically zero, and let k be a positive
integer. If the function f® — h has at most k distinct zeros (ignoring multiplicity) in D
foreach f € F, then ¥ is normal in D.

ExampLE 6. Suppose that ¥ ={f,(z) =1/(nz):n=1,2,3,...}, that D={z:|z] < 1},
and that h(z) = 1/Z5*!, where k is a positive integer. Then, for any f, € ¥, the function
f,ik) — h has only one zero in D, but ¥ is not normal in D. This shows that Theorem 5
is not valid if the function /% is allowed to be meromorphic.

ExampLe 7. Suppose that F = {f,(z) = 1/(nz) : n> k!12**D + 1}, that D ={z: |7 < 1},
and that a(z) = 1/(z — 1)*!, where k is a positive integer. Then, for any f, € ¥, the
function f,gk) — h has k + 1 distinct zeros in D, but ¥ is not normal in D. This shows
that the condition in Theorem 5 that f® — h has at most k distinct zeros (ignoring
multiplicity) in D is best possible.

2. Some lemmas

For the proof of Theorem 5, we require the following results.

Lemma 8 [8, 12]. Let @ € R satisfy —1 <a <co and let F be a family of zero-free
meromorphic functions in a domain D. If ¥ is not normal at 7y € D, then there exist
points z; € D tending to zo, functions f; € F, positive numbers p; tending to 0, and a
nonconstant zero-free meromorphic function g of order at most two such that

8n(&) = p;" filzj + pj&) — 8©&)

locally uniformly in & in C, with respect to the spherical metric.
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Lemmva 9 [7]. Let f be a transcendental meromorphic function of finite order, a be a
polynomial that is not identically zero, and k be a positive integer. If the function f
has no zeros, then the function f* — a has infinitely many zeros.

Lemma 10 [1].  Let f be a nonconstant zero-free rational function and k be a
positive integer. Then the function f® — 1 has at least k + 1 distinct zeros (ignoring
multiplicity) in C.

Using the method of Chang [1], we obtain the following lemma.

Lemwma 11. Let f be a nonconstant zero-free rational function, a be a polynomial that
is not identically zero, and k be a positive integer. Then the function f® — a has at
least k + 1 distinct zeros (ignoring multiplicity) in C.

Proor. If deg a = 0, then a is constant, and the result follows from Lemma 10.

Now we suppose that dega > 0. Since f is a nonconstant zero-free rational
function, f is not a polynomial, and hence has at least one finite pole. Further, by
calculation, the function f® — g has at least one zero in C. Thus, we can write

a@=A[ [@+vm, (1)
i=1
Q= e @)

Cy [T,z + wy)l
[T, (z + )k ”

where A, Cy, and C, are nonzero constants, m, n, s, l;, m;, and n; are positive integers,
the v; (when 1 < i < m) are distinct complex numbers, and the w; (when 1 <i < s) and
z; (when 1 <i < n) are distinct complex numbers.

Set M =3", m; and N =3, n;. Thendega=M > 1. By induction, we deduce

P =ak) + 3)

from (2) that
Pi(2)
K) () — k
D=t 4
1= s )
where Py is a polynomial of degree (n — 1)k. Thus, by (1), (3), and (4),
Al Jewvwr [ Je+ s o[ Je+rw = P, 5)
i=1 i=1 i=1

It follows that | . "
Zl[=Z(ni+k)+Zmi=nk+N+M
i=1 i=1 i=1

and C; = —A. Thus, by (5),

[ Ja+vaym [ Ja+zo = Ja+wn' =44V o),
i=1 i=1 i=1
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where Q(t) = 1""DkP.(1/£)/A. Then Q is a polynomial of degree less than (n — 1)k,
and it follows that

[T, + vy T, (1 + ziny™** |+ M O(1) ©)
[T, (1 + win) IS+ wint
Note that, for ¢ near O,
tk+N+M t
OO ey, (7)
[T, (1 + w;p)h
where ag # 0. Logarithmic differentiation of both sides of (6) and (7) shows that
n s
ivi i +k)zi liw; -
mvi | N Rg i 0@V asi 0. (8)
= 1+ vt = 1+ z¢ = 1+ w;it
Set
Sl ={V1,V2, .. '9vm}m{Z19Z23 .. ',Zn}
and
So={vi,va, vt 0 {w, wa, L wgh
We consider four cases.
Case1: S1=8,=0. Letz,,; =v; when 1 <i<m and
N = ni+k whenl<i<n,
’_ mi_, Whenn+1<i<n+m.
In this case, (8) may be rewritten:
n+m Z l Wi
51 1 —
- = O(fHN+M-L t—0. 9
T+t Z 1+ ( ) st ©
Comparing the coefficients of t/ when j=0,1,...,k+ N+ M -2 in (9), we deduce
that
n+m
ZNZ—ZZW =0 Vje{l,2,....k+N+M-1). (10)

Let Zy4m+i = w; when 1 <i<s. Noting that }""[" N; — Y.7_, [; = 0 and using (10), we
deduce that the system of linear equations

n+m+s

> dx=0, (11)

i=1

where 0 < j <k + N + M — 1, has a nonzero solution

(X],.. < Xntms Xn+m+1s « - - 9xn+m+s):(N1’- . -aNn+m9 _119- . "_ls)'
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Ifk+ N+ M >n+m+ s, then the determinant det(z{ Yn+m+s)x(n+m+s) Of the coefficients
of the system of equations (11), where 0 < j<n+m+ s—1, is equal to zero, by
Cramer’s rule (see for instance [6]). However, the z; are distinct complex numbers
when 1 <i<n+ m + s, and the determinant is a Vandermonde determinant, so cannot
be 0 (see [6]), which is a contradiction.

Hence, we conclude that kK + N + M <n + m + s. It follows from this and the two
inequalities N = Y7, n; >nand M = 3" m; >mthat s>k + 1.

Case 2: S| # 0 and S, = 0. Without loss of generality, we may and shall assume that
S1={vi,va2,...,vam}. Thus, v; =z; when 1 <i < M. Let M5 = m — M;. We consider
two subcases.

Subcase 2.1: M3 > 1. Set z,4; = vy, +; Wwhen 1 <i < M3. If M| < n, then set
n;+m;+k whenl<i<M,,

Ni=<n;+k when M, + 1 <i<n,

A, —nti whenn+1<i<n+ Ms.
If M, = n, then set
Ni:{ni+m,-+k when 1 <i< M, =n,
ML, —pi whenn +1<i<n+ Ms.
Subcase 2.2: M5 = 0. If M| < n, then set

i =

_|ni+mi+k whenl<i<M,,
n +k when M| +1<i<n.

If M, = n, then set
N,-=n,~+m,~+k when <i<M; =n.

In both subcases, (8) may be rewritten:

n+Ms

Nz 5 Lws
wro Z A 0(tk+N+M_1) ast— 0,
L+zir S T+wt

where 0 < M3 <m — 1. Using the argument of Case 1, we deduce that s > k + 1.

Case 3: S| =0 and S, # (0. Without loss of generality, we may and shall assume that
S>={vi,va2,...,Vva,}. Thus, v; =w; when 1 <i < M,. Let My = m — M,. We consider
two subcases.

Case 3.1: My > 1. Set wgy; = Vpp4i, 1 <0< My If M, < s, then set

L —m; when 1 <i < M,,
L;=11; when M, + 1 <i<s,

My, —s+i when s+ 1 <i<s+ My.
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If M, = s, set

L,':

li—m,’ WhenlSiSMZ:s,
—Mmy,—s+i When s+ 1<i<s+ My

Case 3.2: My =0. If M, < s, then set
{1,» —m; when1<i<M,,

l; when M, +1 <i<s.

If M, = s, then set
L,~=l,~—ml~ WhéﬂlSiSMZZS.

In both subcases, (8) may be rewritten:

n;zi Liw; _
i Z e (tk+N+M 1) ast— 0,
1+zl L +wit

where 0 < M4 <m — 1. Using the argument of Case 1, we deduce that s > k + 1.

Case 4: S1# 0 and S, # (. Without loss of generality, we may and shall assume
that Sy ={vi,va, ..., vp}, S2={wi, wo,...,wp,}, and v; =z when 1 <i< M, and
w; = v+ When 1 <i < M,. Set Ms = m — M, — M;. We consider two subcases.

Case4.1: Ms>1. Set z,4; = VM, +Ma+is 1 <i< Ms. If My < n, then set
ni+m;+k whenl<i< M,

Ni=<n;+k when M| +1<i<n,

MM, +My—n+i whenn+1<i<n+ Ms.
If M, = n, then set

N {ni+mi+k when 1 <i< M, =n,
i =

MM, +My—n+i whenn + 1 <i<n+ Ms.

If M, < s, then set

L=

l,' — My, +i when 1 <i< Mz,
I; when M, + 1 <i<s.

If M, = s, then set
L[=li—mM1+,’ whenlSiSM2=s.

Case 4.2: Ms =0. If M; < n, then set

nj+m;+k whenl<i< M,
i= .
n;+k when M; +1<i<n.
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If M, = n, then set
N[=n,’+m,’+k WhenlSiSM1=l’l.

And, if M, < s, set

Li=

l,’ — Mpg +i when 1 <i< Mz,
l; when M, + 1 <i<s.

If M, = s, then set
L,-:li—mM]+i WhCnlSiSMZZS.

In both subcases, (8) may be rewritten:

n+Ms

Nz —Z WL _ o) asi 0

1+ zt 1+ wt

where 0 < Ms < m — 2. Using the argument of Case 1, we deduce that s > k + 1.
This completes the proof of Lemma 11. O

3. Proof of Theorem 5

First we show that ¥ is normal on the set D’, defined to be {z€ D: h(z) # 0}.
Suppose that ¥ is not normal at zp € D’. We may assume that D is the disc A(0, 1)
with center 0 and radius 1, and that i(zp) = 1. By Lemma 8, there exist points z; € D
tending to zo, functions f; € ¥, positive numbers p; tending to 0, and a nonconstant
zero-free meromorphic function g of order at most two such that

2u(6) = w )

n

locally uniformly in ¢ in C with respect to the spherical metric.

We claim that the function g® — 1 has at most k distinct zeros. With a view to a
contradiction, suppose that g® — 1 has k + 1 distinct zeros & s when 1< j<k+1. By
Lemma 8, g is not identically 1. By Hurwitz’s theorem and because

81 €)= Mz + pu€) = £ + pu) = h(za + pr) = gV = 1
as n — oo, there exist points &, ; when j=1,2,...,k+ 1 suchthat&, ; — &; and
frfk)(zn + pnfn,j) =z, + Pnén,j)-

However, f,fk) (z) = h(z) has at most k distinct roots in D, and z,, + p,&, ; — zo, which is
a contradiction, and proves our claim.

By Lemma 9, g is a rational function. But this contradicts Lemma 10, which shows
that ¥ is normal in D’.
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We now prove that ¥ is normal at points z where h(z) =0. By making standard
normalizations, we may assume that

hZ)=7"+ apm "™+ =7"b(z) VzeA,
where m > 1, b(0) = 1, and i(z) # 0 when 0 < |z] < 1. Let

fﬁ:z{F:F(z)z%,feT}.

For all f € ¥, the function f has no zeros; hence, for all F' € 77, the function F has
no zeros, and 0 is a pole of F with multiplicity at least m. We shall prove that 7| is
normal at 0. Suppose otherwise: then, by Lemma 8, there exist points z; € A tending
to 0, functions F'; € ¥, positive numbers p; tending to 0, and a nonconstant zero-free
meromorphic function g of order at most two such that

F’l n n
@) = D )

n
locally uniformly on C with respect to the spherical metric. We distinguish two cases,
following Pang et al. [7].

Case 1: (z,/pn) has a convergent subsequence. We still denote the subsequence by
(zn/pn) and its limit by a. Let g(¢) = g(¢ — @). Then

Fu(pn) _ Fu(zn + pn(€ = 2u/Pn))
Jon P
the convergence being locally uniform in ¢ in C with respect to the spherical metric,

hence uniform on compact subsets of C disjoint from the poles of g. Clearly, g has no
zeros, and the pole of g at 0 has order at least m. Now define G,(&) = f,(0,&)/0*™ and

G(&) = &£"g(é). Then

— 8§ —a) =g(&),

()" Fn(on&)

k+m
n

Gu(é) = — £"8() = G(9),

uniformly on compact subsets of C disjoint from the poles of . Since g has a pole of
order at least m at 0, it follows that G(0) # 0; since g has no zeros, it follows that G has
no zeros. Further, .

i 10nE) _

n—oo pZ’

é_-m
uniformly on compact subsets of C. So,

Wad) _ 11 0u) = hipsé)
k

Jo Pn

G - - GO -¢".

Since fn(k) — h has at most k distinct zeros in the ball A(zy, 6) with center zy and radius 6,
as discussed above, the equation G®(¢) = & has at most k distinct roots in C.
However, by Lemma 9, G is a rational function, which contradicts Lemma 11.
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Case 2. (z,/pn) has a subsequence tending to oo. We still denote the subsequence by
(zu/pn)- By simple calculation,

m\(l) £(k—1)
(k)( Y=o f (Z) § k(Z)g—m(Z)
(12)

(k)
— f sz) _ Z C]f(k—l)(z)ll’
V4 = Z

where

C]l(m(m—l)-~-(m—l+1) when [ < m,
C =
0 when [ > m.

From (12) and the identity pﬁl gﬁlk_l)(f) =F flk_l)(zn + pr€), we obtain

g€ = FP(z, + pad)

= M Z CF(k l)(Z,, + pué)

(zn +pn§)m (zn + pn'f)l
)
S @n + pnd) )
= C
(Zn + PpEY" Z 8 (6) n/pn +O
Hence,
frf )(Zn + pné) *) (k=1) C 1
S Tervoad CAR Z & O T+ e b+ )

Now lim,, o b(z, + pré) = 1 and lim, . 1/(z,/pn + &) = 0. So,

n(k)(zrz + pné‘:) - h(Zn + pn{:)
Mz + pné)

uniformly on compact subsets of C disjoint from the poles of g.

Since F has no zeros and f® — i has at most k distinct zeros, as discussed in Case 1,
we see that g has no zeros and g® — 1 has at most k distinct zeros. However, by
Lemma 9, g is a rational function, and this contradicts Lemma 10.

We have thus proved that ¥ is normal at 0. It remains to prove that ¥ is normal
at 0. Since ¥ is normal at 0 and F(0) = oo for each F € ¥, there exists § > 0 such that
|F(2)| =1 forall F € ¥} and all z € A0, 6). If f € ¥, then f has no zeros in A(0, ), so
1/ f is analytic in A(0, 6). Therefore,

'11 2m

- gY@ -1

1
% = mz—m Sd_’" VZEA(O,Eé)

for all f € ¥. By the maximum principle and Montel’s theorem, # is normal at 0, and
thus ¥ is normal in D. This completes the proof of Theorem 5.
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RemMark 12. In the proof of Theorem 5, we just use a very special case of Lemma 11,
namely, when a(z) = .
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