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SIR MODEL WITH SOCIAL GATHERINGS
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Abstract

We introduce an extension to Kermack and McKendrick’s classic susceptible–infected–
recovered (SIR) model in epidemiology, whose underlying mechanism of infection
consists of individuals attending randomly generated social gatherings. This gives rise to
a system of ordinary differential equations (ODEs) where the force of the infection term
depends non-linearly on the proportion of infected individuals. Some specific instances
yield models already studied in the literature, to which the present work provides a prob-
abilistic foundation. The basic reproduction number is seen to depend quadratically on
the average size of the gatherings, which may be helpful in understanding how restric-
tions on social gatherings affect the spread of the disease. We rigorously justify our
model by showing that the system of ODEs is the mean-field limit of the jump Markov
process corresponding to the evolution of the disease in a finite population.
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1. Introduction to the model

1.1. Classic SIR model

The susceptible–infected–recovered (SIR) model, introduced in 1927 by Kermack and
McKendrick [14], is a simple system of ordinary differential equations (ODEs) representing
the evolution of the spread of an infectious disease in a large population. It belongs to a broader
class known as compartmental models in epidemiology. More specifically:

s′ = −βsi, i′ = βsi − γ i, r′ = γ i, (1)

where the prime denotes the derivative with respect to time t ≥ 0. Here, s = st, i = it, and
r = rt denote the proportion of the population that is susceptible to the disease, infected,
and recovered (or removed), respectively; thus, s + i + r = 1. These labels are referred to as
compartments.

The rationale behind (1) is as follows. Informally, the size of the population is assumed
to be infinite. Encounters between pairs of individuals occur randomly among the population,
and a susceptible individual can acquire the disease only when interacting with an infectious
individual. The incidence rate, i.e. the global rate at which infections occur, is thus proportional
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to s, i, and a parameter β, corresponding to the average number of contacts per person per unit
time, multiplied by the probability of disease transmission. Once infected, an individual can
then spread the disease to other susceptibles via the same mechanism. After some time, the
individual recovers and gains permanent immunity, so can no longer infect others. The global
rate of recovery is thus proportional to i and a parameter γ , where 1/γ is the mean duration of
the infectious period.

Remark 1. In the literature, the total number of individuals is typically finite and denoted
by N, and (continuous versions of) the actual number of individuals in each compartment is
used instead of their proportions, that is, S = Ns, I = Ni, and R = Nr. However, in the present
article, the case N < ∞ will refer to a Markov process representing the random evolution of the
number of individuals of each type in the finite population, whose mean-field limit as N → ∞
yields (1). Thus, we will reserve the use of N and the capital letters S, I, and R for that setting.

In recent decades, the model (1) and its variants have been used extensively to predict
the evolution of disease spread; see, for instance, [3, 6, 9, 12, 18]. In particular, during the
COVID-19 pandemic, the SIR model was used as a mathematical tool to study the effect of
non-pharmaceutical interventions (NPIs). These are actions taken by authorities and individ-
uals, apart from medical measures such as getting vaccinated and taking medicine, which aim
to help slow the spread of the disease; see [20] for an extensive biomedical review. Examples
of NPIs include wearing face masks, frequent hand washing, social distancing, bans on social
gatherings, lockdowns, border closures, etc. Mathematically, the effects of social distancing
and other NPIs are typically modelled by modifying the term βi in (1), known as the force of
infection, either by making β depend on time or some additional variable (e.g. space), or by
considering a non-linear dependence on i. The effects of some NPIs, such as mass testing and
contact tracing, are better modelled by shortening the average effective infectious period 1/γ .
See, for instance, [8, 10, 15, 22].

1.2. SIR model with social gatherings

In the existing literature of compartmental models, the effects of restrictions on social gath-
erings are typically considered as being part of the joint effect of all the NPIs that aim at
decreasing the number of contacts between individuals (social distancing, lockdowns, etc.), or
even as part of all the NPIs as a whole; see, for instance, [8, 10, 13, 15]. One exception is
[1], where the authors consider a mathematical model in which the population is split into a
fixed number of large gatherings. However, to the best of our knowledge, almost all the avail-
able compartmental models still assume, implicitly or explicitly, that the underlying infection
mechanism consists of encounters between pairs of individuals, as in the original work of
Kermack and McKendrick. Motivated by this, our main goal in this article is to introduce an
extension of the classic SIR model (1) that accounts for the way social gatherings take place
in the population and to study their effects on the spread of the disease. More importantly, and
this is the main contribution of the present work, we provide an explicit probabilistic interpreta-
tion for the microscopic (i.e. person-to-person) mechanism of infection in terms of individuals
attending these social gatherings.

Remark 2. It is important to note that a very similar model was proposed and studied in the
recently published article [5], written independently and almost simultaneously. Indeed, the
first preprint of the present article appeared on arXiv in March 2022, whereas the only available
version of [5] seems to be the published one, which was submitted in May 2022.
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FIGURE 1. Evolution of the proportion of infected individuals i, obtained by solving numerically the SIR
model with gatherings given by (2), for three different values of θ . Parameters: μ = 0.5, p = 0.2, γ = 0.1,

i0 = 0.01.

We now describe our model. As mentioned earlier, one of the underlying assumptions
behind (1) is that encounters always take place between two individuals. In our extended set-
ting, encounters, which we call gatherings, can have any number of individuals. Specifically,
in the simplest case where the size of the gatherings is some fixed number θ ∈ {0, 1, 2, . . .},
our model is given by the following system of ODEs:

s′ = −μθs(1 − (1 − pi)θ−1), i′ = μθs(1 − (1 − pi)θ−1) − γ i, r′ = γ i. (2)

Here, μ > 0 is the rate at which gatherings occur, and p ∈ [0, 1] is the probability of transmis-
sion of the disease. Note that when θ = 2, we recover the usual SIR model (1) with β = 2μp.
The qualitative behaviour of (2) is similar to (1): initially, there is a possible increase in the
proportion of infected individuals, then it reaches a maximum, and then it decays to 0; see
Lemma 1. This can be seen in Figure 1, where we display the numerical solution of (2) for
some values of the parameters.

The rationale behind the proposed model is the following:

• An infected individual recovers at rate γ , as before.

• Gatherings occur at rate μ per individual, and are treated as being instantaneous.

– When a gathering takes place, randomly sample θ individuals from the infinite
population. That is: independently, perform θ times the experiment of sampling
from the set {susceptible, infected, recovered} with respective probabilities s, i,
and r.

– Each susceptible in the gathering will attempt to acquire the disease as many times
as there are infectious individuals in the room, each time with probability p, inde-
pendent of everything else. All those susceptibles that acquired the disease at least
once, instantaneously and simultaneously become infected.
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The system in (2) can be obtained from this description; see Section 1.4 for a more detailed
but still informal derivation. A completely rigorous justification is provided in Section 5.

1.3. Random size of gatherings

More generally, we can consider the case where the number of individuals attending each
gathering is random. That is, the sizes of these instantaneous gatherings can be taken as
independent copies of some random variable � on {0, 1, 2, . . .} with known distribution.
Consequently, the incidence rate μθs(1 − (1 − pi)θ−1) in (2) (with � in place of θ ) is to be
replaced by its expected value. Specifically, the system of ODEs is

s′ = −μsB(i), i′ = μsB(i) − γ i, r′ = γ i, (3)

together with some initial condition (s0, i0, r0) ∈ [0, 1]3 such that s0 + i0 + r0 = 1, where the
function B : [0, 1] →R+ is defined as

B(i) =E[�(1 − (1 − pi)�−1)]. (4)

In Section 3 we study the main analytical properties of the system of ODEs in (3): well-
posedness is provided in Lemma 1, and in Lemma 2 we show that the disease spreads more
slowly, and less in total, than in the classic SIR model (1), provided that the basic reproduction
number (recalled in Section 2.2) is the same.

Remark 3. Our proposed mechanism of infection, social gatherings, can be used to obtain
variants of other compartmental models, such as susceptible–infected–recovered–susceptible
(SIRS), susceptible–infected–recovered–vaccinated (SIRV), susceptible–exposed–infected–
recovered (SEIR), maternally derived passive immunity–susceptible–infected–recovered
(MSEIR), include birth and death, etc.; see [12] for a review. To do so, we simply replace
βsi (or the corresponding term representing the incidence rate) by μsB(i), where B( · ) is given
by (4). For example, for the SEIR model, the corresponding extension with gatherings is

s′ = −μsB(i), e′ = μsB(i) − εe, i′ = εe − γ i, r′ = γ i,

where e = et is the proportion of the population that has been exposed to the disease but has
not become infectious yet, and the parameter ε > 0 is the rate at which individuals change from
exposed to infected. In the present article we study only the extension to the classic system (1),
because it is archetypal and arguably the most well-known model in this setting. Most of our
developments can be easily adapted to other variants.

1.4. Model derivation

We now proceed to deduce (2) and (3). The population size is assumed to be infinite,
which means that the developments of this section are still informal. We work with a fixed
non-random size of gatherings θ ∈ {0, 1, 2, . . .}; the general case (3) follows just by taking
expectations with respect to the randomness of �.

Call U the number of new infections in a gathering with θ individuals chosen randomly
among the infinite population, where the proportions of susceptible, infected, and recovered
individuals are s, i, and r, respectively. Since the average rate at which individuals change
from susceptible to infected corresponds to μE[U], to justify (2) we need to show that E[U] =
θs(1 − (1 − ip)θ−1).

Let S̃, Ĩ, and R̃ be the numbers of susceptible, infected, and recovered individuals, respec-
tively, obtained after sampling θ individuals at random from the infinite population. Clearly,
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(S̃, Ĩ, R̃) has a multinomial distribution with probabilities (s,i,r). Recall that each of the S̃ sus-
ceptibles will attempt to acquire the disease Ĩ times, each time with probability p. Thus, given
the value of Ĩ, the probability that a given susceptible in the room acquires the disease is 1 − qĨ ,
where q = 1 − p. Therefore,

E[U | S̃, Ĩ] =E

[
S̃∑

k=1

1{susceptible k got infected} | S̃, Ĩ

]
=

S̃∑
k=1

(1 − qĨ) = S̃ − S̃qĨ . (5)

It is clear that S̃ ∼ binomial(θ, s) and Ĩ ∼ binomial(θ, i). Moreover, given the value of Ĩ, we
have S̃ ∼ binomial(θ − Ĩ, s/(s + r)), which implies E[S̃ | Ĩ] = (s/(s + r))(θ − Ĩ). Consequently,
using (6), we have

E
[
E

[
S̃qĨ | Ĩ

]] = s

s + r
E

[
qĨ(θ − Ĩ)

] = s

s + r

(
θ (1 − ip)θ − θqi(1 − ip)θ−1) = θs(1 − ip)θ−1.

Taking expectations in (5), we thus obtain the desired expression:

E[U] = θs − θs(1 − ip)θ−1 = θs(1 − (1 − ip)θ−1).

Remark 4. In contrast, when the total population size is N < ∞, the θ individuals sampled
(without replacement) from the finite population follow a multivariate hypergeometric distri-
bution. When studying the mean-field limit (explained in Section 2.3), one of the key points
is a careful analysis on the convergence of this distribution, as N → ∞, to the multinomial
(sampling with replacement). This is performed in Step 4 of the proof of Theorem 2.

2. Discussion of the model

2.1. Particular cases

Randomizing the sizes of the gatherings gives the model more flexibility. For instance, if
authorities restrict social gatherings to have a maximum size K, then we can work with some
� whose distribution is supported on {0, 1, . . . , K} (e.g. discrete uniform). Moreover, if the
distribution of � is such that the function [0, 1] 	 ξ 
→E[ξ�] has an explicit expression, then
so does E[�ξ�−1] = (d/dξ )E[ξ�]; thus, the function B(i) given by (4) will have a closed
form, leading to an explicit system of ODEs. This includes some frequently used distributions,
such as the discrete uniform, geometric, negative binomial, etc. We highlight the following
particular cases.

Example 1. When � ∼ binomial(K, α), it is easy to check that, for all ξ ∈ [0, 1],

E[ξ�] = (1 − α(1 − ξ ))K, E[�ξ�−1] = Kα(1 − α(1 − ξ ))K−1, (6)

which gives B(i) = Kα(1 − (1 − αpi)K−1). The system of ODEs is (notice that when α = 1, we
recover (2)):

s′ = −μKαs(1 − (1 − αpi)K−1), i′ = μKαs(1 − (1 − αpi)K−1) − γ i, r′ = γ i. (7)

Example 2. When � ∼ Poisson(λ), it is straightforward to check that E[�ξ�−1] = λe−λ(1−ξ )

for all ξ ∈ [0, 1], which then gives B(i) = λ(1 − e−λpi). The system of ODEs is

s′ = −μλs(1 − e−λpi), i′ = μλs(1 − e−λpi) − γ i, r′ = γ i. (8)

https://doi.org/10.1017/jpr.2023.65 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.65


672 R. CORTEZ

Notice that an expression similar to μλs(1 − e−λpi) also appears in the model presented in
[15], although the underlying infection mechanism considered there is spatial in nature, and
the formula with the exponential is obtained only after an approximation. The present article
provides a different microscopic interpretation, by means of gatherings whose size follows a
Poisson distribution, which justifies the use of a model like (8).

Example 3. Consider the case where � has a logarithmic distribution with parameter α ∈
(0, 1), denoted � ∼ log (α), that is,

P(� = k) = −1

log (1 − α)

αk

k
for all k = 1, 2, . . .

It is easy to check that

E[�ξ�−1] = −1

log (1 − α)

α

1 − αξ

for all ξ ∈ [0, 1], which, after a straightforward computation, gives

B(i) = ai

1 + bi
for a = −α2p

(1 − α)2 log (1 − α)
and b = αp

1 − α
.

The system of ODEs reads:

s′ = − μasi

1 + bi
, i′ = μasi

1 + bi
− γ i, r′ = γ i. (9)

This model, with an incidence rate of the form μasi/(1 + bi) for some constants a,b, was
studied in [9] as the main example. One of its features is that it can be solved explicitly in the
s–i plane:

i(s) =

⎧⎪⎨
⎪⎩

−1

b
+ Csρ + s

ρ − 1
, ρ �= 1,

−1

b
+ Cs − s log s, ρ = 1,

where ρ = γ b/μa and C is a constant depending on the initial condition (s0, i0); see [9, Section
6] for more details. Again, the present article provides a probabilistic justification for the use
of a model like (9) by means of gatherings whose size follows a logarithmic distribution.

2.2. Reproduction number

The basic reproduction number R0 is a crucial quantity in many epidemiological models. It
is defined as the average number of new infections produced by an infected individual in a large
population where almost everyone is susceptible to the disease. Its importance comes from the
fact that the initial behaviour of the system (i.e. the initial increase or decline of the small
infected population) depends on whether the basic reproduction number exceeds the threshold
value of 1. In other words, a major epidemic outbreak is possible if and only if R0 > 1.

Mathematically, R0 is the overall rate of new infections divided by the overall rate of recov-
eries when i ≈ 0 and r = 0 (then s = 1 − i). For (1), this gives R0 = β/γ . For our extended
model (3), we thus have

R0 = lim
i→0

μ(1 − i)B(i)

γ i
= μB′(0)

γ
.

From (4), we see that B′(i) = pE[�(� − 1)(1 − pi)�−2], and then R0 = (μp/γ )E[�(� − 1)].
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For instance:

• when � ≡ θ (model (2)), we have R0 = μpθ (θ − 1)/γ ;

• if � ∼ binomial(K, α) (model (7)), then R0 = μpα2K(K − 1)/γ ;

• if � ∼ Poisson(λ) (model (8)), then R0 = μpλ2/γ ; and

• if � ∼ log (α) (model (9)), then

R0 = − μpα2

γ (1 − α)2 log (1 − α)
= −μp log (1 − α)E[�]2

γ
.

Notice that in these examples (and possibly many others) R0 grows quadratically with the
average size of the gatherings. This fact may provide a new insight on the way that NPIs such
as social distancing and lockdowns affect the spread of the disease. For instance, it may be a
tool to determine how restriction policies on social gatherings should be defined; or it may be
helpful to better understand why infection rates can rise significantly after lockdowns are lifted
[7].

2.3. Finite-population stochastic dynamics and mean-field limit

The informal description of the classic SIR model (1) by means of interactions between
pairs of individuals in an infinite population given in Section 1.1 can be made precise. To
do so, we consider N < ∞ individuals subjected to these random encounters, giving rise to
a jump Markov process on {0, . . . , N}3 corresponding to the evolution of the disease in the
finite population. Compared to the completely deterministic system of ODEs, this stochastic
process provides a more realistic representation of the complex random interactions that take
place in a real-life epidemic. Nevertheless, despite the intrinsic randomness of this process, it
can be shown that the proportions of susceptible, infected, and recovered individuals converge
to the solution of (1) in the limit as N → ∞. This is a kind of law of large numbers, known as
the mean-field limit of the finite population dynamics. This type of result is essential, because
it gives a full mathematical validation for the model. It was first proven in [16], see also [11,
Chapter 11, Theorem 2.1] and [3, Theorem 5.2]; for a more recent and elementary proof, see
[4].

More generally, we can also study the finite-population case for our proposed model (3). Let
us thus consider the jump Markov process XN

t = (SN
t , IN

t , RN
t ) on {0, . . . , N}3 corresponding

to the evolution of the numbers of susceptible, infected, and recovered individuals in the N-
population, whose evolution consists of random social gatherings and recoveries, as described
heuristically in Section 1.2 for the case of an infinite population and � constant. Specifically,
when XN

t is at state (S,I,R), its dynamics are as follows:

• At rate γ I, a recovery takes place: jump from (S,I,R) to (S, I − 1, R + 1).

• At rate μN, an instantaneous gathering takes place:

– Sample the size of the gathering �; if � > N, nothing happens.

– Sample � individuals at random, without replacement, from the finite population;
call S̃N , ĨN , and R̃N the numbers of selected suceptibles, infected, and recovered
(thus, S̃N + ĨN + R̃N = �).
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– Each of the S̃N selected susceptibles will attempt to acquire the disease ĨN

times, each time with probability p, independent of everything else. That is, if
Jk ∈ {0, 1} denotes the random variable that is equal to 1 when selected suscep-
tible k ∈ {1, . . . , S̃N} got infected, and 0 otherwise, then it is clear that 1 − Jk ∼
Bernoulli((1 − p)ĨN

).

– Jump from (S,I,R) to (S − J, I + J, R), where J = ∑S̃N

k=1 Jk is the number of new
infections.

The process starts at t = 0 from some given random vector XN
0 = (SN

0 , IN
0 , RN

0 ) satisfying
SN

0 + IN
0 + RN

0 = N. This description unambiguously specifies the evolution of the process,
which clearly satisfies SN

t + IN
t + RN

t = N for all t ≥ 0; see also Section 4 for an explicit
stochastic equation in terms of Poisson random processes. In Section 5 we study the mean-field
limit of XN

t , i.e. we show that the proportions SN
t /N, IN

t /N, and RN
t /N converge, as N → ∞,

to the solution (st, rt, it) of (3), just as in the classic setting (1). This provides a completely
rigorous mathematical justification for our model.

2.4. Relation to previous work

The present article extends the classic SIR model (1) [14] by introducing a non-linear depen-
dence of the force of infection on i. This is not new; for instance, in [18, 19] the authors
consider incidence rates of the kind saib/(1 + cib−1) for some constants a, b, c > 0, and study
the dynamical behaviour of the associated system of ODEs. Similarly, in [9] the authors replace
the term βi in (1) by a general non-linear function satisfying some properties. One of the moti-
vations of the authors was to capture the phenomenon of saturation (see also [15]): as the
number of infected individuals increases, the force of infection slows down, no longer increas-
ing linearly. Since this is certainly the case for (3) (unless � ∈ {0, 1, 2} almost surely (a.s.), see
Proposition 1), the present paper can be seen as introducing a broad class of such non-linear
functions μB(i) by means of (4). Moreover, our model provides an intuitive explanation for
the saturation phenomenon: social gatherings induce some redundancy in the infection mech-
anism. In other words, when the population has a significant number of infected individuals,
some of their infectious power is lost because many gatherings will have few susceptibles
available.

As mentioned in Section 2.1, specific choices for the distribution of � yield formulas for the
incidence rate, already studied in the literature, of the form s(1 − e−ai) [15] and asi/(1 + bi)
[9]. This shows that our proposed model is flexible and mathematically relevant, and at the
same time it provides a probabilistic foundation for the use of those specific incidence rates.

Regarding the mean-field limit, it has been established for a model on R
d that is much more

general than (1); see, for instance, [3, 11, 16]. In Section 4 we also state and prove a mean-
field result in a similar general setting, suitable for our purposes; see Theorem 1. However, we
remark that in the context of those references, the finite-population dynamics depend only on
the proportions of each compartment, whereas in our proposed model (3) we need to know
the actual number of individuals in each compartment in order to sample the attendants of the
gatherings. Consequently, the setting that we consider in Section 4 is slightly more general;
specifically, the jump-rate functions will be allowed to depend on N. In Section 5 we apply this
to prove Theorem 2, which establishes the mean-field limit for (3).

Remark 5. In [5], a proof for a mean-field result similar to our Theorem 2 is given. Moreover,
the authors also prove a central limit theorem for the temporal evolution and for the final size
of a major outbreak, alongside other related results.
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3. Main properties

In this section we study the analytical behaviour of our proposed model (3). The following
proposition summarizes the main properties of the function B(i) that we will use throughout
this article. The proof is straightforward, so we omit it. To avoid trivial situations, in all that
follows we will assume that �, the random variable on {0, 1, 2, . . .} giving the size of the
gatherings, satisfies P(� ≥ 2) > 0 and E[�2] < ∞.

Proposition 1. Fix p ∈ (0, 1]; then, the function B : [0, 1] →R+ given by (4) satisfies the
following properties:

(i) B(0) = 0 and B′(0) = pE[�(� − 1)] > 0.

(ii) B is strictly increasing.

(iii) B is Lipschitz continuous and concave. Moreover, B(i) = B′(0)i if and only if � ∈
{0, 1, 2} a.s.; otherwise B is strictly concave.

We now state the main properties of the solution of the system (3). Notice that, thanks to the
previous proposition, our setting is very similar to the one in [9]. Thus, the proof of the next
lemma is a straightforward adaptation of the arguments in [9, Section 4], so we omit it here.

Lemma 1. There exists a unique continuously differentiable solution (st, it, rt)t≥0 to (3).
Moreover, it satisfies the following properties:

(i) (st, it, rt) ∈ [0, ∞)3 for all t ≥ 0. If s0 > 0, i0 > 0, then (st, it, rt) ∈ (0, ∞)3 for all t > 0.

(ii) st + it + rt = 1 for all t ≥ 0.

(iii) st is decreasing and rt is increasing. Moreover, if s0 ≤ γ i0/(μB(i0)), then it is decreas-
ing; otherwise, it first increases up to a maximum value, and then decreases.

(iv) There exists s∞ ∈ [0, 1] such that limt→∞ (st, it, rt) = (s∞, 0, 1 − s∞). If s0 ∈ (0, 1),
then s∞ ∈ (0, 1) as well.

The next lemma tells us that the proportion of susceptibles in our proposed model (3) is
always bounded below by the corresponding proportion for the classic SIR model (1), provided
that β = μB′(0) and that both have the same initial conditions. In other words, assuming the
same basic reproduction number, the disease spreads more slowly in our setting, and a higher
proportion of the population never gets infected, i.e. the value of s∞ is higher. In Figure 2
we illustrate this fact numerically. This was already hinted in [9]; for the convenience of the
reader, we provide a precise statement and proof here.

Lemma 2. Let β = μB′(0). Denote by (st, it, rt) and (ŝt, ı̂t, r̂t) the solutions to (3) and (1)
respectively, with the same initial conditions (s0, i0, r0), s0, i0 > 0. Write i = i(s) and ı̂ = ı̂(s)
for the proportions of infected individuals in terms of the variable s ∈ (0, s0] of the proportion
of susceptibles. Then i(s) ≤ ı̂(s) for all s ∈ (0, s0], and st ≥ ŝt for all t ≥ 0.

Proof. By Lemma 1, we have st, it, rt > 0 for all t > 0. We assume that B is strictly concave;
if not, then Proposition 1(iii) gives B(i) = B′(0)i, which implies that i(s) ≡ ı̂(s) and st ≡ ŝt. From
(3) and (1), we obtain

di

ds
= −1 + γ i

μsB(i)
and

dı̂

ds
= −1 + γ

μsB′(0)
.
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FIGURE 2. Evolution of the proportion of susceptible individuals s, obtained by solving numerically the
model (3) with μ = 0.02, γ = 0.04, p = 1, and i0 = 0.01, for three different values of R0 and three choices
of the function B(i). In each plot, the parameters c, θ , and λ were chosen such that R0 = μB′(0)/γ is the
same for the three functions B(i); that is, they satisfy c = θ (θ − 1) = λ2. Note that for the classic SIR

model (1), i.e. B(i) = ci, the s curve remains below the other two.
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Consequently, for u = u(s) = i(s) − ı̂(s), since B(i) < B′(0)i for i > 0 we have

du

ds
= γ

μs

(
i

B(i)
− 1

B′(0)

)
> 0.

Since u(s0) = 0, this gives u(s) < 0, that is, i(s) < ı̂(s) for all s ∈ (0, s0).
Now, let’s go back to time variables. We argue by contradiction: assume that there exists t̄

such that st̄ < ŝt̄. Let t∗ ∈ [0, t̄) be the last time that st and ŝt were equal. We thus have

s′
t∗ = −μst∗B(it∗) > −μŝt∗B′(0)it∗ > −μŝt∗B′(0)ı̂t∗ = ŝ′

t∗ ,

which contradicts the definition of t∗. Thus, we must have st ≥ ŝt for all t ≥ 0. �

4. Mean-field limit for a general model

Our goal now is to study the mean-field limit of the jump Markov process corresponding to
the evolution of the disease in a finite population of size N for our SIR model with gatherings
(3), as described in Section 2.3. To that end, in this section we first prove the desired conver-
gence in a much more general setting; then, in Section 5 we apply this result to (3). We follow
and generalize slightly the developments of [3, Chapter 5]; see also [11, Chapter 11].

Let us describe the general model. Fix the total number of individuals N ∈N. Let (XN
t )t≥0 be

the jump Markov process on {0, . . . , N}d, starting from some given random initial condition
XN

0 ∈ {0, . . . , N}d, such that, for all states x ∈ {0, . . . , N}d and jump amplitudes � ∈Z
d,

a jump from x to x + � occurs at rate NλN
� (x). (10)

Here, λN
� : {0, . . . , N}d →R+ is a rate function such that λN

� (x) = 0 whenever x + � /∈
{0, . . . , N}d; this ensures that the process remains in {1, . . . , N}d.

Example 4. For our SIR model with gatherings we have d = 3, and the rate functions λN
� ( · )

can be non-zero only for two types of jump amplitudes � ∈Z
3:

�0:= (0, −1, 1) (recovery),

�k:= (− k, k, 0), k = 1, . . . , N (infection of k susceptibles).

Specifically, for any (S, I, R) ∈ {0, . . . , N}3 with S + I + R = N,

λN
�0

(S, I, R) = γ
I

N
, λN

�k
(S, I, R) = μP[UN = k],

where UN ∈ {0, . . . , S} is the random variable of the number of newly infected individuals in a
gathering of size � sampled randomly without replacement from the finite population (S,I,R).
Notice that whereas we can write λN

�0
(S, I, R) = γ i (dependence only on i = I/N), the functions

λN
�k

(S, I, R) for k = 1, . . . , N do depend on N through the distribution of UN . This shows why
the general model that we just introduced allows the rate functions to depend on N.

It is convenient to write the process XN
t explicitly. To that end, consider a collection

(P�(t))�∈Zd of independent Poisson processes on R with intensity 1. It is straightforward to
see that the stochastic equation
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XN
t = XN

0 +
∑
�∈Zd

�P�

(
N

∫ t

0
λN

� (XN
s ) ds

)
(11)

indeed defines a process with jump intensities given by (10).
In Theorem 1 we present a convergence result for the process ZN

t = (1/N)XN
t , which is

a more general version of [3, Theorem 5.2]. In that reference, the proof was based on the
following well-known fact: for a Poisson process P(t) on R with intensity λ, for all T ≥ 0,

lim
N→∞ sup

t≤T

∣∣∣∣ 1

N
P(Nt) − λt

∣∣∣∣ = 0 a.s. (12)

In the present paper, because our setting is more general (in particular, the jump rate functions
λN

� (x) are not required to be identically 0 for all but finitely many �s, uniformly on N), we will
need the following stronger version. The proof is somewhat technical, so it may be skipped at
first reading. In what follows, | · | denotes the 1-norm on R

d.

Lemma 3. Consider a collection of non-negative numbers (λ̄�)�∈Zd such that
∑

� |�|λ̄� < ∞,
and define the process Q(t) = ∑

�∈Zd �P�(λ̄�t) on Z
d. Then Q is well defined. Moreover, for

λ̄ = ∑
� �λ̄� ∈R

d, it satisfies, for all T ≥ 0,

lim
N→∞ sup

t≤T

∣∣∣∣ 1

N
Q(Nt) − tλ̄

∣∣∣∣ = 0 a.s.

Proof. For simplicity we work with d = 1; the general case is obtained by arguing
component-wise.

Note that
∣∣E[Q(t)]

∣∣ ≤ ∑
� |�|λ̄�t < ∞, and thus Q is well defined. To prove the desired

convergence, the main idea of the argument, which can be found in [11, Chapter 11, Theorem
2.1], is that

lim
N→∞ sup

t≤T

∣∣∣∣ 1

N
Q(Nt) − tλ̄

∣∣∣∣ ≤ lim
N→∞

∑
�∈Z

|�| sup
t≤T

∣∣∣∣ 1

N
P�(λ̄�Nt) − λ̄�t

∣∣∣∣
=

∑
�∈Z

|�| lim
N→∞ sup

t≤T

∣∣∣∣ 1

N
P�(λ̄�Nt) − λ̄�t

∣∣∣∣,
which equals 0 thanks to (12). However, it is not obvious that we can exchange the limit and
the summation; we spend the rest of the proof justifying this step. We will use the following
‘converse’ of the dominated convergence theorem, which can be found in [21].

Proposition 2. Let fN, f be integrable functions on a σ -finite measure space (E, ν) such that
limN fN = f ν-a.s., and limN

∫
fNg dν = ∫

fg dν for all g bounded and measurable. Then, any
subsequence of (fN)N∈N has a sub-subsequence which is dominated by an integrable function.

Now, let hN(�) = |�| supt≤T |(1/N)P�(λ̄�Nt) − λ̄�t|. We want to show that limN
∑

� hN(�) =
0. We argue by contradiction: assume that, modulo subsequence, we have limN

∑
� hN(�) =

a > 0. Note that

hN(�) ≤ |�| 1

N
P�(λ̄�NT) + |�|λ̄�T =: fN(�). (13)

We apply Proposition 2 in the measure space E =Z with ν being the counting measure. Fix
g : Z→R bounded. Then
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∫
fNg dν =

∑
�∈Z

|�| 1

N
P�(λ̄�NT)g(�) + T

∑
�∈Z

|�|λ̄�g(�) = 1

N

N∑
k=1

Yk + T
∑
�∈Z

|�|λ̄�g(�),

where Yk:= ∑
�∈Z |�|g(�){P�(kλ̄�T) −P�((k − 1)λ̄�T)}. Since the P� have independent incre-

ments, we see that (Yk)k∈N are independent and identically distributed, with E[Yk] =
T

∑
� |�|λ̄�g(�) < ∞. Thus, by the strong law of large numbers, we deduce that (1/N)

∑N
k=1 Yk

converges to T
∑

� |�|λ̄�g(�), P-a.s. Consequently, limN
∫

fNg dν = ∫
fg dν for the ν-integrable

function f (�):= 2T|�|λ̄�. Similarly, for all �, limN fN(�) = f (�), P-a.s.
We can thus apply Proposition 2 and deduce that, modulo subsequence, fN is dominated by

some ν-integrable function. By (13), this implies that hN is also dominated. The dominated
convergence theorem now gives 0 < a = ∑

�∈Z limN→∞ hN(�) = 0, thanks to (12). This is a
contradiction, which concludes the proof. �

In order to state and prove our general result, rather than dealing directly with λN
� (x), which

gives the rate for each jump amplitude � ∈Z
d, it is convenient to study the expected jump rate

amplitudes, so we define the function

FN(z) =
∑
�∈Zd

�λN
� (Nz) for all z ∈

{
0,

1

N
, . . . , 1

}d

. (14)

That is, when the process is at state Nz, the vector FN(z) corresponds to the expected jump rate
amplitudes. We will require that FN converges in some sense to a function F : [0, 1]d →R

d as
N → ∞. We will quantify this using the uniform norm,

‖FN − F‖∞:= sup
z∈{0,1/N,...,1}d

|FN(z) − F(z)|. (15)

Moreover, given some z0 ∈ [0, 1]d, we will typically denote by (zt)t≥0 the solution to the
differential equation in integral form

zt = z0 +
∫ t

0
F(zs) ds for all t ≥ 0. (16)

Theorem 1. Let (Xt)t≥0 be the jump Markov process on {0, . . . , N}d given by the rule in
(10), and write ZN

t = (1/N)XN
t . Assume that there exist a collection of non-negative numbers

(λ̄�)�∈Zd and a function F : [0, 1]d →R
d such that:

(i) λN
� (x) ≤ λ̄� for all N ∈N and x ∈ {0, . . . , N}d, and

∑
� |�|λ̄� < ∞;

(ii) F is Lispchitz, and limN ‖FN − F‖∞ = 0.

Assume also that limN ZN
0 = z0 a.s. for some z0 ∈ [0, 1]d, and let (zt)t≥0 be the solution to

(16) associated with F. Then, for all T ≥ 0, limN→∞ supt≤T |ZN
t − zt| = 0 a.s.

Proof. The proof is an extension of [3, Theorem 5.2]. Let P̂�(t) =P�(t) − t. From (11),
dividing by N gives

ZN
t = ZN

0 + 1

N

∑
�∈Zd

�P̂�

(
N

∫ t

0
λN

� (NZN
s ) ds

)
+

∫ t

0
FN(ZN

s ) ds.
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From (16), for all t ≤ T ,

|ZN
t − zt| ≤ |ZN

0 − z0| + sup
s≤t

∣∣∣∣ 1

N

∑
�∈Zd

�P̂�

(
N

∫ s

0
λN

� (NZN
u ) du

)∣∣∣∣ +
∫ t

0
|FN(ZN

s ) − F(zs)| ds

≤ |ZN
0 − z0| + sup

s≤t

∣∣∣∣ 1

N

∑
�∈Zd

�P̂�(Nλ̄�s)

∣∣∣∣ + t‖FN − F‖∞ + L
∫ t

0
|ZN

s − zs| ds,

where in the second term we used that λN
� ( · ) ≤ λ̄�, and in the third term we added and

subtracted F(ZN
s ) and used that F is L-Lipschitz. Using Grönwall’s lemma, we thus obtain

|ZN
t − zt| ≤

(
|ZN

0 − z0| + sup
s≤t

∣∣∣∣ 1

N

∑
�∈Zd

�P̂�(Nλ̄�s)

∣∣∣∣ + t‖FN − F‖∞
)

eLt.

Thus, supt≤T |ZN
t − zt| is bounded by the right-hand side with t replaced by T . The first and

third terms converge to 0 as N → ∞ by assumption; the second term also converges to 0 thanks
to Lemma 3. The result follows taking limits. �

5. Mean-field limit for the SIR model with gatherings

Finally, we use Theorem 1 to state and prove the following result, which establishes
the mean-field limit of the finite-population Markov process associated with our proposed
model (3).

Theorem 2. Let XN
t be the Markov process on {0, . . . , N}3 described in Section 2.3 and

Example 1. Write ZN
t = (1/N)XN

t , and let zt = (st, it, rt) be the solution to (3). Assume that
limN ZN

0 = z0. Then, for all T ≥ 0, limN→∞ supt≤T |ZN
t − zt| = 0 a.s.

Proof. Let us fix some notation. Denote by WN = (S̃N, ĨN, R̃N) (respectively, W = (S̃, Ĩ, R̃))
the number of selected susceptible, infected, and recovered individuals in a gathering, drawn at
random, without replacement, from a finite population with sizes (S, I, R) ∈ {0, . . . , N}3, S +
I + R = N (respectively, an infinite population with proportions (s, i, r) = (S/N, I/N, R/N)).
Given the value of �, it is clear that WN has a multivariate hypergeometric distribution,
whereas W is multinomial. Also, UN (respectively, U) denotes the number of new infections
in the gathering in the finite case (respectively, infinite).

We will apply Theorem 1, for which we need to check that conditions (i) and (ii) are
satisfied. We adopt the general notation of Section 4. We split the proof into five steps.

Step 1. We first check condition (i) of Theorem 1. With the notation of Example 4, we only
need to find uniform (in N) bounds for the rate functions λN

�0
and λN

�k
, k = 1, . . . , N. For the

former we have λN
�0

(S, I, R) = γ I/N ≤ γ =: λ̄�0 , whereas for k = 1, . . . , N,

λN
�k

(S, I, R) = μP[UN = k] = μ

N∑
θ=k

P[UN = k | � = θ ]P[� = θ ] ≤ μP[� ≥ k] =: λ̄�k .

Consequently,

∑
�∈Zd

|�|λ̄N
� = |�0|γ + μ

∞∑
k=1

|�k|P[� ≥ k] ≤ 2γ + 2μ

∞∑
k=1

kP[� ≥ k] = 2γ + 2μE

[
�(� + 1)

2

]
,

which is finite thanks to the assumption E[�2] < ∞. Thus, condition (i) is satisfied.
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Step 2. We now aim to check condition (ii) of Theorem 1. From Example 4 and the defi-
nition of FN in (14) we see that FN(s, i, r) = ( − μE[UN], μE[UN] − γ i, γ i), and the natural
candidate for the limiting function F is

F(s, i, r) = ( − μE[U], μE[U] − γ i, γ i) = ( − μsB(i), μsB(i) − γ i, γ i),

where the last equality was verified in Section 1.4. Therefore, (16) in the present setting is just
(3) written in integral form. As in (5), we have

E[UN] =E[S̃N] −E[S̃NqĨN
], E[U] =E[S̃] −E[S̃qĨ],

where q = 1 − p. Thus,

|FN(s, i, r) − F(s, i, r)| ≤ 2μ|E[S̃N] −E[S̃]| + 2μ
∣∣E[

S̃NqĨN ] −E
[
S̃qĨ]∣∣. (17)

Consequently, to check condition 2, it suffices to show that those two terms converge to 0 as
N → ∞ uniformly on (s,i,r).

Step 3. We start with the first term of (17). Clearly, given � = θ ≤ N, we have S̃N ∼
hypergeom(N, S, θ ), and so

E[S̃N] =
N∑

θ=1

E[S̃N | � = θ ]P[� = θ ] =
N∑

θ=1

Sθ

N
P[� = θ ] = sE[�1{� ≤ N}],

and since E[S̃] = sE[�], we obtain

|E[S̃N] −E[S̃]| ≤E[�1{� > N}]. (18)

Step 4. We now study the second term in (17); this is the key part of the proof. Write
νN =L(WN), ν =L(W). Since the function φ(x, y, z) = xqy is bounded, we have

∣∣E[
S̃NqĨN ] −E

[
S̃qĨ]∣∣ ≤ ‖φ‖∞‖νN − ν‖TV, (19)

where ‖ · ‖TV denotes the total variation norm, defined as ‖νN − ν‖TV = 2 inf P[WN �= W],
where the infimum is taken over all couplings, that is, over all possible ways of defining WN

and W on a common probability space, with WN ∼ νN and W ∼ ν. We now define one par-
ticular coupling: sample � as usual, and then draw � elements from the set {1, . . . , N} with
replacement; now, define W = (S̃, Ĩ, R̃) as

S̃ = number of elements in {1, . . . , S},
Ĩ = number of elements in {S + 1, . . . , S + I},
R̃ = number of elements in {S + I + 1, . . . , N},

WN =

⎧⎪⎨
⎪⎩

W if � ≤ N and there were no repeated elements,

ŴN if � ≤ N and some element was repeated,

(0, 0, 0) if � > N,
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where ŴN is some independent realization of νN . It is clear that WN ∼ νN and W ∼ ν.
Moreover,

P[WN = W] =
N∑

θ=1

P[WN = W | � = θ ]P[� = θ ]

≥
N∑

θ=1

P[no repeated elements | � = θ ]P[� = θ ]

=
N∑

θ=1

N

N

N − 1

N
· · · N − θ + 1

N
P[� = θ ]

=E

[
N

N

N − 1

N
· · · N − � + 1

N

]
,

thus
1

2
‖νN − ν‖TV ≤ 1 − P[WN = W] ≤ 1 −E

[
N

N

N − 1

N
· · · N − � + 1

N

]
. (20)

Step 5. Finally, from (17)–(20), we obtain

|FN(s, i, r) − F(s, i, r)| ≤ 2μE[�1{� > N}] + 4μ‖φ‖∞
{

1 −E

[
N

N

N − 1

N
· · · N − � + 1

N

]}
.

Both terms go to 0 as N → ∞, the first one by monotone convergence and the second one by
dominated convergence. Noting that this does not depend on (s,i,r), taking the supremum over
(s, i, r) ∈ {0, 1/N, . . . , 1}3 shows that limN ‖FN − F‖∞ = 0 (the norm ‖ · ‖∞ was defined in
(15)). Thus, condition (ii) of Theorem 1 is checked and the proof is complete. �

6. Conclusion and perspectives

We have introduced the non-linear system of ODEs (3), which is a novel extension to
Kermack and McKendrick’s classic SIR model in epidemiology [14]. The main novelty is
that, rather than encounters between pairs of individuals, in this proposed model the infection
mechanism consists of instantaneous social gatherings having a random number of attendants,
where potentially many susceptible individuals can simultaneously acquire the disease from
one or more infected individuals.

Some particular instances of this model yield equations already considered in the related
literature. The basic reproduction number is shown to have an explicit expression, and in many
examples it grows quadratically with the average size of the gatherings. This may provide a new
insight on the way that some non-pharmaceutical interventions affect the spread of a disease.
The qualitative behaviour of our system of ODEs is similar to the classic SIR model, although
in our case the disease spreads more slowly and less in total, assuming the same reproduction
number. Finally, a rigorous justification of the model is provided, by proving that the system
(3) is the mean-field limit of the corresponding Markov process representing the evolution of
a finite population subjected to random social gatherings and recoveries. The proofs involve
slight extensions of well-established techniques from the theory of ODEs and jump Markov
processes.

As mentioned in Remark 3, it is straightforward to obtain variants with social gatherings as
the driving infection mechanism for other compartmental models, such as SIRS, SIRV, SEIR,
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models with birth and death, etc. To do so, simply use B(i), given by (4), as the force of
infection. Other distributions for the duration of the infectious period, such as the Erlang dis-
tribution, can be easily included by subdividing the infectious compartment into sub-stages. A
mean-field limit result analogous to Theorem 2 is expected to hold in all these cases, with a
proof in the same vein as the one presented here. Also, for some of those variants (e.g. SEIR),
it should be relatively straightforward to prove a comparison result similar to Lemma 2. An
interesting question is whether such a comparison still holds for variants where individuals can
become susceptible again after being infected (e.g. SIRS). Another possible extension, which
is less straightforward, would be to include age structure in the population (e.g. infants, adults,
and elderly). The corresponding model will have to consider, for each age group, a value for
the probability of infection, and an additional parameter for the propensity to participate in
social gatherings.

Many articles use a compartmental model together with empirical data in order to estimate
the actual effect of social distancing, gathering restrictions, and other NPIs that reduce the
number of contacts; see, for instance, [1, 10, 22]. Nevertheless, it would be interesting to per-
form a similar study using our model (or some variant) to investigate if and how the departure
from the underlying assumption of pairwise transmission provides better results.

Strong empirical evidence indicates that, for some diseases, a significant number of infec-
tions take place at relatively few but very large gatherings, such as weddings, sporting events,
concerts, etc. These are known as superspreading events, and they can have a major impact
on the epidemic outbreak (see, for instance, [17, 2] for COVID-19). In [13] the authors use a
discrete-time stochastic compartmental model with randomized individual transmission rates,
which models superspreading as short windows in time when an individual is highly infec-
tious. On the other hand, our proposed framework provides a straightforward and explicit way
of modelling superspreading events: simply consider a heavy-tailed distribution for �, the ran-
dom variable of the size of the gatherings. More specifically, we can assume that E[�2] = ∞
but still E[�] < ∞, so that the function B(i) given by (4) is well defined; this will generate some
very large gatherings which can potentially produce many new infections. Most of our analysis
does not directly apply to this scenario, because we required E[�2] < ∞ throughout this arti-
cle. In particular, note that the basic reproduction number, given by R0 = (μp/γ )E[�(� − 1)],
becomes infinite. The behaviour and properties of the proposed system of ODEs in (3) under
this assumption, and the validity of its mean-field limit, are a challenging and interesting
possible line of research.
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